32bit IEEE 754: Decimal ↗ Single Precision Floating Point Binary: 92 000 000 000 000 000 025 Convert the Number to 32 Bit Single Precision IEEE 754 Binary Floating Point Representation Standard, From a Base 10 Decimal System Number

Number 92 000 000 000 000 000 025(10) converted and written in 32 bit single precision IEEE 754 binary floating point representation (1 bit for sign, 8 bits for exponent, 23 bits for mantissa)

1. Divide the number repeatedly by 2.

Keep track of each remainder.

We stop when we get a quotient that is equal to zero.


  • division = quotient + remainder;
  • 92 000 000 000 000 000 025 ÷ 2 = 46 000 000 000 000 000 012 + 1;
  • 46 000 000 000 000 000 012 ÷ 2 = 23 000 000 000 000 000 006 + 0;
  • 23 000 000 000 000 000 006 ÷ 2 = 11 500 000 000 000 000 003 + 0;
  • 11 500 000 000 000 000 003 ÷ 2 = 5 750 000 000 000 000 001 + 1;
  • 5 750 000 000 000 000 001 ÷ 2 = 2 875 000 000 000 000 000 + 1;
  • 2 875 000 000 000 000 000 ÷ 2 = 1 437 500 000 000 000 000 + 0;
  • 1 437 500 000 000 000 000 ÷ 2 = 718 750 000 000 000 000 + 0;
  • 718 750 000 000 000 000 ÷ 2 = 359 375 000 000 000 000 + 0;
  • 359 375 000 000 000 000 ÷ 2 = 179 687 500 000 000 000 + 0;
  • 179 687 500 000 000 000 ÷ 2 = 89 843 750 000 000 000 + 0;
  • 89 843 750 000 000 000 ÷ 2 = 44 921 875 000 000 000 + 0;
  • 44 921 875 000 000 000 ÷ 2 = 22 460 937 500 000 000 + 0;
  • 22 460 937 500 000 000 ÷ 2 = 11 230 468 750 000 000 + 0;
  • 11 230 468 750 000 000 ÷ 2 = 5 615 234 375 000 000 + 0;
  • 5 615 234 375 000 000 ÷ 2 = 2 807 617 187 500 000 + 0;
  • 2 807 617 187 500 000 ÷ 2 = 1 403 808 593 750 000 + 0;
  • 1 403 808 593 750 000 ÷ 2 = 701 904 296 875 000 + 0;
  • 701 904 296 875 000 ÷ 2 = 350 952 148 437 500 + 0;
  • 350 952 148 437 500 ÷ 2 = 175 476 074 218 750 + 0;
  • 175 476 074 218 750 ÷ 2 = 87 738 037 109 375 + 0;
  • 87 738 037 109 375 ÷ 2 = 43 869 018 554 687 + 1;
  • 43 869 018 554 687 ÷ 2 = 21 934 509 277 343 + 1;
  • 21 934 509 277 343 ÷ 2 = 10 967 254 638 671 + 1;
  • 10 967 254 638 671 ÷ 2 = 5 483 627 319 335 + 1;
  • 5 483 627 319 335 ÷ 2 = 2 741 813 659 667 + 1;
  • 2 741 813 659 667 ÷ 2 = 1 370 906 829 833 + 1;
  • 1 370 906 829 833 ÷ 2 = 685 453 414 916 + 1;
  • 685 453 414 916 ÷ 2 = 342 726 707 458 + 0;
  • 342 726 707 458 ÷ 2 = 171 363 353 729 + 0;
  • 171 363 353 729 ÷ 2 = 85 681 676 864 + 1;
  • 85 681 676 864 ÷ 2 = 42 840 838 432 + 0;
  • 42 840 838 432 ÷ 2 = 21 420 419 216 + 0;
  • 21 420 419 216 ÷ 2 = 10 710 209 608 + 0;
  • 10 710 209 608 ÷ 2 = 5 355 104 804 + 0;
  • 5 355 104 804 ÷ 2 = 2 677 552 402 + 0;
  • 2 677 552 402 ÷ 2 = 1 338 776 201 + 0;
  • 1 338 776 201 ÷ 2 = 669 388 100 + 1;
  • 669 388 100 ÷ 2 = 334 694 050 + 0;
  • 334 694 050 ÷ 2 = 167 347 025 + 0;
  • 167 347 025 ÷ 2 = 83 673 512 + 1;
  • 83 673 512 ÷ 2 = 41 836 756 + 0;
  • 41 836 756 ÷ 2 = 20 918 378 + 0;
  • 20 918 378 ÷ 2 = 10 459 189 + 0;
  • 10 459 189 ÷ 2 = 5 229 594 + 1;
  • 5 229 594 ÷ 2 = 2 614 797 + 0;
  • 2 614 797 ÷ 2 = 1 307 398 + 1;
  • 1 307 398 ÷ 2 = 653 699 + 0;
  • 653 699 ÷ 2 = 326 849 + 1;
  • 326 849 ÷ 2 = 163 424 + 1;
  • 163 424 ÷ 2 = 81 712 + 0;
  • 81 712 ÷ 2 = 40 856 + 0;
  • 40 856 ÷ 2 = 20 428 + 0;
  • 20 428 ÷ 2 = 10 214 + 0;
  • 10 214 ÷ 2 = 5 107 + 0;
  • 5 107 ÷ 2 = 2 553 + 1;
  • 2 553 ÷ 2 = 1 276 + 1;
  • 1 276 ÷ 2 = 638 + 0;
  • 638 ÷ 2 = 319 + 0;
  • 319 ÷ 2 = 159 + 1;
  • 159 ÷ 2 = 79 + 1;
  • 79 ÷ 2 = 39 + 1;
  • 39 ÷ 2 = 19 + 1;
  • 19 ÷ 2 = 9 + 1;
  • 9 ÷ 2 = 4 + 1;
  • 4 ÷ 2 = 2 + 0;
  • 2 ÷ 2 = 1 + 0;
  • 1 ÷ 2 = 0 + 1;

2. Construct the base 2 representation of the positive number.

Take all the remainders starting from the bottom of the list constructed above.


92 000 000 000 000 000 025(10) =


100 1111 1100 1100 0001 1010 1000 1001 0000 0010 0111 1111 0000 0000 0000 0001 1001(2)


3. Normalize the binary representation of the number.

Shift the decimal mark 66 positions to the left, so that only one non zero digit remains to the left of it:


92 000 000 000 000 000 025(10) =


100 1111 1100 1100 0001 1010 1000 1001 0000 0010 0111 1111 0000 0000 0000 0001 1001(2) =


100 1111 1100 1100 0001 1010 1000 1001 0000 0010 0111 1111 0000 0000 0000 0001 1001(2) × 20 =


1.0011 1111 0011 0000 0110 1010 0010 0100 0000 1001 1111 1100 0000 0000 0000 0110 01(2) × 266


4. Up to this moment, there are the following elements that would feed into the 32 bit single precision IEEE 754 binary floating point representation:

Sign 0 (a positive number)


Exponent (unadjusted): 66


Mantissa (not normalized):
1.0011 1111 0011 0000 0110 1010 0010 0100 0000 1001 1111 1100 0000 0000 0000 0110 01


5. Adjust the exponent.

Use the 8 bit excess/bias notation:


Exponent (adjusted) =


Exponent (unadjusted) + 2(8-1) - 1 =


66 + 2(8-1) - 1 =


(66 + 127)(10) =


193(10)


6. Convert the adjusted exponent from the decimal (base 10) to 8 bit binary.

Use the same technique of repeatedly dividing by 2:


  • division = quotient + remainder;
  • 193 ÷ 2 = 96 + 1;
  • 96 ÷ 2 = 48 + 0;
  • 48 ÷ 2 = 24 + 0;
  • 24 ÷ 2 = 12 + 0;
  • 12 ÷ 2 = 6 + 0;
  • 6 ÷ 2 = 3 + 0;
  • 3 ÷ 2 = 1 + 1;
  • 1 ÷ 2 = 0 + 1;

7. Construct the base 2 representation of the adjusted exponent.

Take all the remainders starting from the bottom of the list constructed above.


Exponent (adjusted) =


193(10) =


1100 0001(2)


8. Normalize the mantissa.

a) Remove the leading (the leftmost) bit, since it's allways 1, and the decimal point, if the case.


b) Adjust its length to 23 bits, by removing the excess bits, from the right (if any of the excess bits is set on 1, we are losing precision...).


Mantissa (normalized) =


1. 001 1111 1001 1000 0011 0101 000 1001 0000 0010 0111 1111 0000 0000 0000 0001 1001 =


001 1111 1001 1000 0011 0101


9. The three elements that make up the number's 32 bit single precision IEEE 754 binary floating point representation:

Sign (1 bit) =
0 (a positive number)


Exponent (8 bits) =
1100 0001


Mantissa (23 bits) =
001 1111 1001 1000 0011 0101


The base ten decimal number 92 000 000 000 000 000 025 converted and written in 32 bit single precision IEEE 754 binary floating point representation:
0 - 1100 0001 - 001 1111 1001 1000 0011 0101

The latest decimal numbers converted from base ten to 32 bit single precision IEEE 754 floating point binary standard representation

Number 2 162 729 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard May 02 22:14 UTC (GMT)
Number 165.372 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard May 02 22:14 UTC (GMT)
Number 3 950.833 5 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard May 02 22:14 UTC (GMT)
Number -39 291 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard May 02 22:14 UTC (GMT)
Number 2 402 607 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard May 02 22:14 UTC (GMT)
Number 621 319 693 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard May 02 22:14 UTC (GMT)
Number 262 147 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard May 02 22:14 UTC (GMT)
Number 1 966 080.000 000 000 104 592 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard May 02 22:14 UTC (GMT)
Number 4 136 360 513 059 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard May 02 22:14 UTC (GMT)
Number 3 779 320 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard May 02 22:14 UTC (GMT)
All base ten decimal numbers converted to 32 bit single precision IEEE 754 binary floating point

How to convert decimal numbers from base ten to 32 bit single precision IEEE 754 binary floating point standard

Follow the steps below to convert a base 10 decimal number to 32 bit single precision IEEE 754 binary floating point:

  • 1. If the number to be converted is negative, start with its the positive version.
  • 2. First convert the integer part. Divide repeatedly by 2 the base ten positive representation of the integer number that is to be converted to binary, until we get a quotient that is equal to zero, keeping track of each remainder.
  • 3. Construct the base 2 representation of the positive integer part of the number, by taking all the remainders of the previous dividing operations, starting from the bottom of the list constructed above. Thus, the last remainder of the divisions becomes the first symbol (the leftmost) of the base two number, while the first remainder becomes the last symbol (the rightmost).
  • 4. Then convert the fractional part. Multiply the number repeatedly by 2, until we get a fractional part that is equal to zero, keeping track of each integer part of the results.
  • 5. Construct the base 2 representation of the fractional part of the number by taking all the integer parts of the previous multiplying operations, starting from the top of the constructed list above (they should appear in the binary representation, from left to right, in the order they have been calculated).
  • 6. Normalize the binary representation of the number, by shifting the decimal point (or if you prefer, the decimal mark) "n" positions either to the left or to the right, so that only one non zero digit remains to the left of the decimal point.
  • 7. Adjust the exponent in 8 bit excess/bias notation and then convert it from decimal (base 10) to 8 bit binary, by using the same technique of repeatedly dividing by 2, as shown above:
    Exponent (adjusted) = Exponent (unadjusted) + 2(8-1) - 1
  • 8. Normalize mantissa, remove the leading (leftmost) bit, since it's allways '1' (and the decimal sign if the case) and adjust its length to 23 bits, either by removing the excess bits from the right (losing precision...) or by adding extra '0' bits to the right.
  • 9. Sign (it takes 1 bit) is either 1 for a negative or 0 for a positive number.

Example: convert the negative number -25.347 from decimal system (base ten) to 32 bit single precision IEEE 754 binary floating point:

  • 1. Start with the positive version of the number:

    |-25.347| = 25.347

  • 2. First convert the integer part, 25. Divide it repeatedly by 2, keeping track of each remainder, until we get a quotient that is equal to zero:
    • division = quotient + remainder;
    • 25 ÷ 2 = 12 + 1;
    • 12 ÷ 2 = 6 + 0;
    • 6 ÷ 2 = 3 + 0;
    • 3 ÷ 2 = 1 + 1;
    • 1 ÷ 2 = 0 + 1;
    • We have encountered a quotient that is ZERO => FULL STOP
  • 3. Construct the base 2 representation of the integer part of the number by taking all the remainders of the previous dividing operations, starting from the bottom of the list constructed above:

    25(10) = 1 1001(2)

  • 4. Then convert the fractional part, 0.347. Multiply repeatedly by 2, keeping track of each integer part of the results, until we get a fractional part that is equal to zero:
    • #) multiplying = integer + fractional part;
    • 1) 0.347 × 2 = 0 + 0.694;
    • 2) 0.694 × 2 = 1 + 0.388;
    • 3) 0.388 × 2 = 0 + 0.776;
    • 4) 0.776 × 2 = 1 + 0.552;
    • 5) 0.552 × 2 = 1 + 0.104;
    • 6) 0.104 × 2 = 0 + 0.208;
    • 7) 0.208 × 2 = 0 + 0.416;
    • 8) 0.416 × 2 = 0 + 0.832;
    • 9) 0.832 × 2 = 1 + 0.664;
    • 10) 0.664 × 2 = 1 + 0.328;
    • 11) 0.328 × 2 = 0 + 0.656;
    • 12) 0.656 × 2 = 1 + 0.312;
    • 13) 0.312 × 2 = 0 + 0.624;
    • 14) 0.624 × 2 = 1 + 0.248;
    • 15) 0.248 × 2 = 0 + 0.496;
    • 16) 0.496 × 2 = 0 + 0.992;
    • 17) 0.992 × 2 = 1 + 0.984;
    • 18) 0.984 × 2 = 1 + 0.968;
    • 19) 0.968 × 2 = 1 + 0.936;
    • 20) 0.936 × 2 = 1 + 0.872;
    • 21) 0.872 × 2 = 1 + 0.744;
    • 22) 0.744 × 2 = 1 + 0.488;
    • 23) 0.488 × 2 = 0 + 0.976;
    • 24) 0.976 × 2 = 1 + 0.952;
    • We didn't get any fractional part that was equal to zero. But we had enough iterations (over Mantissa limit = 23) and at least one integer part that was different from zero => FULL STOP (losing precision...).
  • 5. Construct the base 2 representation of the fractional part of the number, by taking all the integer parts of the previous multiplying operations, starting from the top of the constructed list above:

    0.347(10) = 0.0101 1000 1101 0100 1111 1101(2)

  • 6. Summarizing - the positive number before normalization:

    25.347(10) = 1 1001.0101 1000 1101 0100 1111 1101(2)

  • 7. Normalize the binary representation of the number, shifting the decimal point 4 positions to the left so that only one non-zero digit stays to the left of the decimal point:

    25.347(10) =
    1 1001.0101 1000 1101 0100 1111 1101(2) =
    1 1001.0101 1000 1101 0100 1111 1101(2) × 20 =
    1.1001 0101 1000 1101 0100 1111 1101(2) × 24

  • 8. Up to this moment, there are the following elements that would feed into the 32 bit single precision IEEE 754 binary floating point:

    Sign: 1 (a negative number)

    Exponent (unadjusted): 4

    Mantissa (not-normalized): 1.1001 0101 1000 1101 0100 1111 1101

  • 9. Adjust the exponent in 8 bit excess/bias notation and then convert it from decimal (base 10) to 8 bit binary (base 2), by using the same technique of repeatedly dividing it by 2, as already demonstrated above:

    Exponent (adjusted) = Exponent (unadjusted) + 2(8-1) - 1 = (4 + 127)(10) = 131(10) =
    1000 0011(2)

  • 10. Normalize the mantissa, remove the leading (leftmost) bit, since it's allways '1' (and the decimal point) and adjust its length to 23 bits, by removing the excess bits from the right (losing precision...):

    Mantissa (not-normalized): 1.1001 0101 1000 1101 0100 1111 1101

    Mantissa (normalized): 100 1010 1100 0110 1010 0111

  • Conclusion:

    Sign (1 bit) = 1 (a negative number)

    Exponent (8 bits) = 1000 0011

    Mantissa (23 bits) = 100 1010 1100 0110 1010 0111

  • Number -25.347, converted from the decimal system (base 10) to 32 bit single precision IEEE 754 binary floating point =
    1 - 1000 0011 - 100 1010 1100 0110 1010 0111