32bit IEEE 754: Decimal ↗ Single Precision Floating Point Binary: 75 411 011 011 001 099 999 999 999 999 999 971 Convert the Number to 32 Bit Single Precision IEEE 754 Binary Floating Point Representation Standard, From a Base 10 Decimal System Number

Number 75 411 011 011 001 099 999 999 999 999 999 971(10) converted and written in 32 bit single precision IEEE 754 binary floating point representation (1 bit for sign, 8 bits for exponent, 23 bits for mantissa)

1. Divide the number repeatedly by 2.

Keep track of each remainder.

We stop when we get a quotient that is equal to zero.


  • division = quotient + remainder;
  • 75 411 011 011 001 099 999 999 999 999 999 971 ÷ 2 = 37 705 505 505 500 549 999 999 999 999 999 985 + 1;
  • 37 705 505 505 500 549 999 999 999 999 999 985 ÷ 2 = 18 852 752 752 750 274 999 999 999 999 999 992 + 1;
  • 18 852 752 752 750 274 999 999 999 999 999 992 ÷ 2 = 9 426 376 376 375 137 499 999 999 999 999 996 + 0;
  • 9 426 376 376 375 137 499 999 999 999 999 996 ÷ 2 = 4 713 188 188 187 568 749 999 999 999 999 998 + 0;
  • 4 713 188 188 187 568 749 999 999 999 999 998 ÷ 2 = 2 356 594 094 093 784 374 999 999 999 999 999 + 0;
  • 2 356 594 094 093 784 374 999 999 999 999 999 ÷ 2 = 1 178 297 047 046 892 187 499 999 999 999 999 + 1;
  • 1 178 297 047 046 892 187 499 999 999 999 999 ÷ 2 = 589 148 523 523 446 093 749 999 999 999 999 + 1;
  • 589 148 523 523 446 093 749 999 999 999 999 ÷ 2 = 294 574 261 761 723 046 874 999 999 999 999 + 1;
  • 294 574 261 761 723 046 874 999 999 999 999 ÷ 2 = 147 287 130 880 861 523 437 499 999 999 999 + 1;
  • 147 287 130 880 861 523 437 499 999 999 999 ÷ 2 = 73 643 565 440 430 761 718 749 999 999 999 + 1;
  • 73 643 565 440 430 761 718 749 999 999 999 ÷ 2 = 36 821 782 720 215 380 859 374 999 999 999 + 1;
  • 36 821 782 720 215 380 859 374 999 999 999 ÷ 2 = 18 410 891 360 107 690 429 687 499 999 999 + 1;
  • 18 410 891 360 107 690 429 687 499 999 999 ÷ 2 = 9 205 445 680 053 845 214 843 749 999 999 + 1;
  • 9 205 445 680 053 845 214 843 749 999 999 ÷ 2 = 4 602 722 840 026 922 607 421 874 999 999 + 1;
  • 4 602 722 840 026 922 607 421 874 999 999 ÷ 2 = 2 301 361 420 013 461 303 710 937 499 999 + 1;
  • 2 301 361 420 013 461 303 710 937 499 999 ÷ 2 = 1 150 680 710 006 730 651 855 468 749 999 + 1;
  • 1 150 680 710 006 730 651 855 468 749 999 ÷ 2 = 575 340 355 003 365 325 927 734 374 999 + 1;
  • 575 340 355 003 365 325 927 734 374 999 ÷ 2 = 287 670 177 501 682 662 963 867 187 499 + 1;
  • 287 670 177 501 682 662 963 867 187 499 ÷ 2 = 143 835 088 750 841 331 481 933 593 749 + 1;
  • 143 835 088 750 841 331 481 933 593 749 ÷ 2 = 71 917 544 375 420 665 740 966 796 874 + 1;
  • 71 917 544 375 420 665 740 966 796 874 ÷ 2 = 35 958 772 187 710 332 870 483 398 437 + 0;
  • 35 958 772 187 710 332 870 483 398 437 ÷ 2 = 17 979 386 093 855 166 435 241 699 218 + 1;
  • 17 979 386 093 855 166 435 241 699 218 ÷ 2 = 8 989 693 046 927 583 217 620 849 609 + 0;
  • 8 989 693 046 927 583 217 620 849 609 ÷ 2 = 4 494 846 523 463 791 608 810 424 804 + 1;
  • 4 494 846 523 463 791 608 810 424 804 ÷ 2 = 2 247 423 261 731 895 804 405 212 402 + 0;
  • 2 247 423 261 731 895 804 405 212 402 ÷ 2 = 1 123 711 630 865 947 902 202 606 201 + 0;
  • 1 123 711 630 865 947 902 202 606 201 ÷ 2 = 561 855 815 432 973 951 101 303 100 + 1;
  • 561 855 815 432 973 951 101 303 100 ÷ 2 = 280 927 907 716 486 975 550 651 550 + 0;
  • 280 927 907 716 486 975 550 651 550 ÷ 2 = 140 463 953 858 243 487 775 325 775 + 0;
  • 140 463 953 858 243 487 775 325 775 ÷ 2 = 70 231 976 929 121 743 887 662 887 + 1;
  • 70 231 976 929 121 743 887 662 887 ÷ 2 = 35 115 988 464 560 871 943 831 443 + 1;
  • 35 115 988 464 560 871 943 831 443 ÷ 2 = 17 557 994 232 280 435 971 915 721 + 1;
  • 17 557 994 232 280 435 971 915 721 ÷ 2 = 8 778 997 116 140 217 985 957 860 + 1;
  • 8 778 997 116 140 217 985 957 860 ÷ 2 = 4 389 498 558 070 108 992 978 930 + 0;
  • 4 389 498 558 070 108 992 978 930 ÷ 2 = 2 194 749 279 035 054 496 489 465 + 0;
  • 2 194 749 279 035 054 496 489 465 ÷ 2 = 1 097 374 639 517 527 248 244 732 + 1;
  • 1 097 374 639 517 527 248 244 732 ÷ 2 = 548 687 319 758 763 624 122 366 + 0;
  • 548 687 319 758 763 624 122 366 ÷ 2 = 274 343 659 879 381 812 061 183 + 0;
  • 274 343 659 879 381 812 061 183 ÷ 2 = 137 171 829 939 690 906 030 591 + 1;
  • 137 171 829 939 690 906 030 591 ÷ 2 = 68 585 914 969 845 453 015 295 + 1;
  • 68 585 914 969 845 453 015 295 ÷ 2 = 34 292 957 484 922 726 507 647 + 1;
  • 34 292 957 484 922 726 507 647 ÷ 2 = 17 146 478 742 461 363 253 823 + 1;
  • 17 146 478 742 461 363 253 823 ÷ 2 = 8 573 239 371 230 681 626 911 + 1;
  • 8 573 239 371 230 681 626 911 ÷ 2 = 4 286 619 685 615 340 813 455 + 1;
  • 4 286 619 685 615 340 813 455 ÷ 2 = 2 143 309 842 807 670 406 727 + 1;
  • 2 143 309 842 807 670 406 727 ÷ 2 = 1 071 654 921 403 835 203 363 + 1;
  • 1 071 654 921 403 835 203 363 ÷ 2 = 535 827 460 701 917 601 681 + 1;
  • 535 827 460 701 917 601 681 ÷ 2 = 267 913 730 350 958 800 840 + 1;
  • 267 913 730 350 958 800 840 ÷ 2 = 133 956 865 175 479 400 420 + 0;
  • 133 956 865 175 479 400 420 ÷ 2 = 66 978 432 587 739 700 210 + 0;
  • 66 978 432 587 739 700 210 ÷ 2 = 33 489 216 293 869 850 105 + 0;
  • 33 489 216 293 869 850 105 ÷ 2 = 16 744 608 146 934 925 052 + 1;
  • 16 744 608 146 934 925 052 ÷ 2 = 8 372 304 073 467 462 526 + 0;
  • 8 372 304 073 467 462 526 ÷ 2 = 4 186 152 036 733 731 263 + 0;
  • 4 186 152 036 733 731 263 ÷ 2 = 2 093 076 018 366 865 631 + 1;
  • 2 093 076 018 366 865 631 ÷ 2 = 1 046 538 009 183 432 815 + 1;
  • 1 046 538 009 183 432 815 ÷ 2 = 523 269 004 591 716 407 + 1;
  • 523 269 004 591 716 407 ÷ 2 = 261 634 502 295 858 203 + 1;
  • 261 634 502 295 858 203 ÷ 2 = 130 817 251 147 929 101 + 1;
  • 130 817 251 147 929 101 ÷ 2 = 65 408 625 573 964 550 + 1;
  • 65 408 625 573 964 550 ÷ 2 = 32 704 312 786 982 275 + 0;
  • 32 704 312 786 982 275 ÷ 2 = 16 352 156 393 491 137 + 1;
  • 16 352 156 393 491 137 ÷ 2 = 8 176 078 196 745 568 + 1;
  • 8 176 078 196 745 568 ÷ 2 = 4 088 039 098 372 784 + 0;
  • 4 088 039 098 372 784 ÷ 2 = 2 044 019 549 186 392 + 0;
  • 2 044 019 549 186 392 ÷ 2 = 1 022 009 774 593 196 + 0;
  • 1 022 009 774 593 196 ÷ 2 = 511 004 887 296 598 + 0;
  • 511 004 887 296 598 ÷ 2 = 255 502 443 648 299 + 0;
  • 255 502 443 648 299 ÷ 2 = 127 751 221 824 149 + 1;
  • 127 751 221 824 149 ÷ 2 = 63 875 610 912 074 + 1;
  • 63 875 610 912 074 ÷ 2 = 31 937 805 456 037 + 0;
  • 31 937 805 456 037 ÷ 2 = 15 968 902 728 018 + 1;
  • 15 968 902 728 018 ÷ 2 = 7 984 451 364 009 + 0;
  • 7 984 451 364 009 ÷ 2 = 3 992 225 682 004 + 1;
  • 3 992 225 682 004 ÷ 2 = 1 996 112 841 002 + 0;
  • 1 996 112 841 002 ÷ 2 = 998 056 420 501 + 0;
  • 998 056 420 501 ÷ 2 = 499 028 210 250 + 1;
  • 499 028 210 250 ÷ 2 = 249 514 105 125 + 0;
  • 249 514 105 125 ÷ 2 = 124 757 052 562 + 1;
  • 124 757 052 562 ÷ 2 = 62 378 526 281 + 0;
  • 62 378 526 281 ÷ 2 = 31 189 263 140 + 1;
  • 31 189 263 140 ÷ 2 = 15 594 631 570 + 0;
  • 15 594 631 570 ÷ 2 = 7 797 315 785 + 0;
  • 7 797 315 785 ÷ 2 = 3 898 657 892 + 1;
  • 3 898 657 892 ÷ 2 = 1 949 328 946 + 0;
  • 1 949 328 946 ÷ 2 = 974 664 473 + 0;
  • 974 664 473 ÷ 2 = 487 332 236 + 1;
  • 487 332 236 ÷ 2 = 243 666 118 + 0;
  • 243 666 118 ÷ 2 = 121 833 059 + 0;
  • 121 833 059 ÷ 2 = 60 916 529 + 1;
  • 60 916 529 ÷ 2 = 30 458 264 + 1;
  • 30 458 264 ÷ 2 = 15 229 132 + 0;
  • 15 229 132 ÷ 2 = 7 614 566 + 0;
  • 7 614 566 ÷ 2 = 3 807 283 + 0;
  • 3 807 283 ÷ 2 = 1 903 641 + 1;
  • 1 903 641 ÷ 2 = 951 820 + 1;
  • 951 820 ÷ 2 = 475 910 + 0;
  • 475 910 ÷ 2 = 237 955 + 0;
  • 237 955 ÷ 2 = 118 977 + 1;
  • 118 977 ÷ 2 = 59 488 + 1;
  • 59 488 ÷ 2 = 29 744 + 0;
  • 29 744 ÷ 2 = 14 872 + 0;
  • 14 872 ÷ 2 = 7 436 + 0;
  • 7 436 ÷ 2 = 3 718 + 0;
  • 3 718 ÷ 2 = 1 859 + 0;
  • 1 859 ÷ 2 = 929 + 1;
  • 929 ÷ 2 = 464 + 1;
  • 464 ÷ 2 = 232 + 0;
  • 232 ÷ 2 = 116 + 0;
  • 116 ÷ 2 = 58 + 0;
  • 58 ÷ 2 = 29 + 0;
  • 29 ÷ 2 = 14 + 1;
  • 14 ÷ 2 = 7 + 0;
  • 7 ÷ 2 = 3 + 1;
  • 3 ÷ 2 = 1 + 1;
  • 1 ÷ 2 = 0 + 1;

2. Construct the base 2 representation of the positive number.

Take all the remainders starting from the bottom of the list constructed above.


75 411 011 011 001 099 999 999 999 999 999 971(10) =


1110 1000 0110 0000 1100 1100 0110 0100 1001 0101 0010 1011 0000 0110 1111 1100 1000 1111 1111 1100 1001 1110 0100 1010 1111 1111 1111 1110 0011(2)


3. Normalize the binary representation of the number.

Shift the decimal mark 115 positions to the left, so that only one non zero digit remains to the left of it:


75 411 011 011 001 099 999 999 999 999 999 971(10) =


1110 1000 0110 0000 1100 1100 0110 0100 1001 0101 0010 1011 0000 0110 1111 1100 1000 1111 1111 1100 1001 1110 0100 1010 1111 1111 1111 1110 0011(2) =


1110 1000 0110 0000 1100 1100 0110 0100 1001 0101 0010 1011 0000 0110 1111 1100 1000 1111 1111 1100 1001 1110 0100 1010 1111 1111 1111 1110 0011(2) × 20 =


1.1101 0000 1100 0001 1001 1000 1100 1001 0010 1010 0101 0110 0000 1101 1111 1001 0001 1111 1111 1001 0011 1100 1001 0101 1111 1111 1111 1100 011(2) × 2115


4. Up to this moment, there are the following elements that would feed into the 32 bit single precision IEEE 754 binary floating point representation:

Sign 0 (a positive number)


Exponent (unadjusted): 115


Mantissa (not normalized):
1.1101 0000 1100 0001 1001 1000 1100 1001 0010 1010 0101 0110 0000 1101 1111 1001 0001 1111 1111 1001 0011 1100 1001 0101 1111 1111 1111 1100 011


5. Adjust the exponent.

Use the 8 bit excess/bias notation:


Exponent (adjusted) =


Exponent (unadjusted) + 2(8-1) - 1 =


115 + 2(8-1) - 1 =


(115 + 127)(10) =


242(10)


6. Convert the adjusted exponent from the decimal (base 10) to 8 bit binary.

Use the same technique of repeatedly dividing by 2:


  • division = quotient + remainder;
  • 242 ÷ 2 = 121 + 0;
  • 121 ÷ 2 = 60 + 1;
  • 60 ÷ 2 = 30 + 0;
  • 30 ÷ 2 = 15 + 0;
  • 15 ÷ 2 = 7 + 1;
  • 7 ÷ 2 = 3 + 1;
  • 3 ÷ 2 = 1 + 1;
  • 1 ÷ 2 = 0 + 1;

7. Construct the base 2 representation of the adjusted exponent.

Take all the remainders starting from the bottom of the list constructed above.


Exponent (adjusted) =


242(10) =


1111 0010(2)


8. Normalize the mantissa.

a) Remove the leading (the leftmost) bit, since it's allways 1, and the decimal point, if the case.


b) Adjust its length to 23 bits, by removing the excess bits, from the right (if any of the excess bits is set on 1, we are losing precision...).


Mantissa (normalized) =


1. 110 1000 0110 0000 1100 1100 0110 0100 1001 0101 0010 1011 0000 0110 1111 1100 1000 1111 1111 1100 1001 1110 0100 1010 1111 1111 1111 1110 0011 =


110 1000 0110 0000 1100 1100


9. The three elements that make up the number's 32 bit single precision IEEE 754 binary floating point representation:

Sign (1 bit) =
0 (a positive number)


Exponent (8 bits) =
1111 0010


Mantissa (23 bits) =
110 1000 0110 0000 1100 1100


The base ten decimal number 75 411 011 011 001 099 999 999 999 999 999 971 converted and written in 32 bit single precision IEEE 754 binary floating point representation:
0 - 1111 0010 - 110 1000 0110 0000 1100 1100

The latest decimal numbers converted from base ten to 32 bit single precision IEEE 754 floating point binary standard representation

Number 404.3 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard May 03 07:42 UTC (GMT)
Number 400 000 000 017 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard May 03 07:42 UTC (GMT)
Number 14 863 102 839 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard May 03 07:42 UTC (GMT)
Number 3 023 930 060 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard May 03 07:42 UTC (GMT)
Number 103 210.12 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard May 03 07:42 UTC (GMT)
Number 1 676 100 074 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard May 03 07:42 UTC (GMT)
Number 290 350 579 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard May 03 07:42 UTC (GMT)
Number 2.333 333 333 333 333 333 333 333 333 333 2 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard May 03 07:42 UTC (GMT)
Number 199 311 985 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard May 03 07:42 UTC (GMT)
Number 93.165 544 34 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard May 03 07:42 UTC (GMT)
All base ten decimal numbers converted to 32 bit single precision IEEE 754 binary floating point

How to convert decimal numbers from base ten to 32 bit single precision IEEE 754 binary floating point standard

Follow the steps below to convert a base 10 decimal number to 32 bit single precision IEEE 754 binary floating point:

  • 1. If the number to be converted is negative, start with its the positive version.
  • 2. First convert the integer part. Divide repeatedly by 2 the base ten positive representation of the integer number that is to be converted to binary, until we get a quotient that is equal to zero, keeping track of each remainder.
  • 3. Construct the base 2 representation of the positive integer part of the number, by taking all the remainders of the previous dividing operations, starting from the bottom of the list constructed above. Thus, the last remainder of the divisions becomes the first symbol (the leftmost) of the base two number, while the first remainder becomes the last symbol (the rightmost).
  • 4. Then convert the fractional part. Multiply the number repeatedly by 2, until we get a fractional part that is equal to zero, keeping track of each integer part of the results.
  • 5. Construct the base 2 representation of the fractional part of the number by taking all the integer parts of the previous multiplying operations, starting from the top of the constructed list above (they should appear in the binary representation, from left to right, in the order they have been calculated).
  • 6. Normalize the binary representation of the number, by shifting the decimal point (or if you prefer, the decimal mark) "n" positions either to the left or to the right, so that only one non zero digit remains to the left of the decimal point.
  • 7. Adjust the exponent in 8 bit excess/bias notation and then convert it from decimal (base 10) to 8 bit binary, by using the same technique of repeatedly dividing by 2, as shown above:
    Exponent (adjusted) = Exponent (unadjusted) + 2(8-1) - 1
  • 8. Normalize mantissa, remove the leading (leftmost) bit, since it's allways '1' (and the decimal sign if the case) and adjust its length to 23 bits, either by removing the excess bits from the right (losing precision...) or by adding extra '0' bits to the right.
  • 9. Sign (it takes 1 bit) is either 1 for a negative or 0 for a positive number.

Example: convert the negative number -25.347 from decimal system (base ten) to 32 bit single precision IEEE 754 binary floating point:

  • 1. Start with the positive version of the number:

    |-25.347| = 25.347

  • 2. First convert the integer part, 25. Divide it repeatedly by 2, keeping track of each remainder, until we get a quotient that is equal to zero:
    • division = quotient + remainder;
    • 25 ÷ 2 = 12 + 1;
    • 12 ÷ 2 = 6 + 0;
    • 6 ÷ 2 = 3 + 0;
    • 3 ÷ 2 = 1 + 1;
    • 1 ÷ 2 = 0 + 1;
    • We have encountered a quotient that is ZERO => FULL STOP
  • 3. Construct the base 2 representation of the integer part of the number by taking all the remainders of the previous dividing operations, starting from the bottom of the list constructed above:

    25(10) = 1 1001(2)

  • 4. Then convert the fractional part, 0.347. Multiply repeatedly by 2, keeping track of each integer part of the results, until we get a fractional part that is equal to zero:
    • #) multiplying = integer + fractional part;
    • 1) 0.347 × 2 = 0 + 0.694;
    • 2) 0.694 × 2 = 1 + 0.388;
    • 3) 0.388 × 2 = 0 + 0.776;
    • 4) 0.776 × 2 = 1 + 0.552;
    • 5) 0.552 × 2 = 1 + 0.104;
    • 6) 0.104 × 2 = 0 + 0.208;
    • 7) 0.208 × 2 = 0 + 0.416;
    • 8) 0.416 × 2 = 0 + 0.832;
    • 9) 0.832 × 2 = 1 + 0.664;
    • 10) 0.664 × 2 = 1 + 0.328;
    • 11) 0.328 × 2 = 0 + 0.656;
    • 12) 0.656 × 2 = 1 + 0.312;
    • 13) 0.312 × 2 = 0 + 0.624;
    • 14) 0.624 × 2 = 1 + 0.248;
    • 15) 0.248 × 2 = 0 + 0.496;
    • 16) 0.496 × 2 = 0 + 0.992;
    • 17) 0.992 × 2 = 1 + 0.984;
    • 18) 0.984 × 2 = 1 + 0.968;
    • 19) 0.968 × 2 = 1 + 0.936;
    • 20) 0.936 × 2 = 1 + 0.872;
    • 21) 0.872 × 2 = 1 + 0.744;
    • 22) 0.744 × 2 = 1 + 0.488;
    • 23) 0.488 × 2 = 0 + 0.976;
    • 24) 0.976 × 2 = 1 + 0.952;
    • We didn't get any fractional part that was equal to zero. But we had enough iterations (over Mantissa limit = 23) and at least one integer part that was different from zero => FULL STOP (losing precision...).
  • 5. Construct the base 2 representation of the fractional part of the number, by taking all the integer parts of the previous multiplying operations, starting from the top of the constructed list above:

    0.347(10) = 0.0101 1000 1101 0100 1111 1101(2)

  • 6. Summarizing - the positive number before normalization:

    25.347(10) = 1 1001.0101 1000 1101 0100 1111 1101(2)

  • 7. Normalize the binary representation of the number, shifting the decimal point 4 positions to the left so that only one non-zero digit stays to the left of the decimal point:

    25.347(10) =
    1 1001.0101 1000 1101 0100 1111 1101(2) =
    1 1001.0101 1000 1101 0100 1111 1101(2) × 20 =
    1.1001 0101 1000 1101 0100 1111 1101(2) × 24

  • 8. Up to this moment, there are the following elements that would feed into the 32 bit single precision IEEE 754 binary floating point:

    Sign: 1 (a negative number)

    Exponent (unadjusted): 4

    Mantissa (not-normalized): 1.1001 0101 1000 1101 0100 1111 1101

  • 9. Adjust the exponent in 8 bit excess/bias notation and then convert it from decimal (base 10) to 8 bit binary (base 2), by using the same technique of repeatedly dividing it by 2, as already demonstrated above:

    Exponent (adjusted) = Exponent (unadjusted) + 2(8-1) - 1 = (4 + 127)(10) = 131(10) =
    1000 0011(2)

  • 10. Normalize the mantissa, remove the leading (leftmost) bit, since it's allways '1' (and the decimal point) and adjust its length to 23 bits, by removing the excess bits from the right (losing precision...):

    Mantissa (not-normalized): 1.1001 0101 1000 1101 0100 1111 1101

    Mantissa (normalized): 100 1010 1100 0110 1010 0111

  • Conclusion:

    Sign (1 bit) = 1 (a negative number)

    Exponent (8 bits) = 1000 0011

    Mantissa (23 bits) = 100 1010 1100 0110 1010 0111

  • Number -25.347, converted from the decimal system (base 10) to 32 bit single precision IEEE 754 binary floating point =
    1 - 1000 0011 - 100 1010 1100 0110 1010 0111