32bit IEEE 754: Decimal ↗ Single Precision Floating Point Binary: 300 000 000 000 000 000 105 Convert the Number to 32 Bit Single Precision IEEE 754 Binary Floating Point Representation Standard, From a Base 10 Decimal System Number

Number 300 000 000 000 000 000 105(10) converted and written in 32 bit single precision IEEE 754 binary floating point representation (1 bit for sign, 8 bits for exponent, 23 bits for mantissa)

1. Divide the number repeatedly by 2.

Keep track of each remainder.

We stop when we get a quotient that is equal to zero.


  • division = quotient + remainder;
  • 300 000 000 000 000 000 105 ÷ 2 = 150 000 000 000 000 000 052 + 1;
  • 150 000 000 000 000 000 052 ÷ 2 = 75 000 000 000 000 000 026 + 0;
  • 75 000 000 000 000 000 026 ÷ 2 = 37 500 000 000 000 000 013 + 0;
  • 37 500 000 000 000 000 013 ÷ 2 = 18 750 000 000 000 000 006 + 1;
  • 18 750 000 000 000 000 006 ÷ 2 = 9 375 000 000 000 000 003 + 0;
  • 9 375 000 000 000 000 003 ÷ 2 = 4 687 500 000 000 000 001 + 1;
  • 4 687 500 000 000 000 001 ÷ 2 = 2 343 750 000 000 000 000 + 1;
  • 2 343 750 000 000 000 000 ÷ 2 = 1 171 875 000 000 000 000 + 0;
  • 1 171 875 000 000 000 000 ÷ 2 = 585 937 500 000 000 000 + 0;
  • 585 937 500 000 000 000 ÷ 2 = 292 968 750 000 000 000 + 0;
  • 292 968 750 000 000 000 ÷ 2 = 146 484 375 000 000 000 + 0;
  • 146 484 375 000 000 000 ÷ 2 = 73 242 187 500 000 000 + 0;
  • 73 242 187 500 000 000 ÷ 2 = 36 621 093 750 000 000 + 0;
  • 36 621 093 750 000 000 ÷ 2 = 18 310 546 875 000 000 + 0;
  • 18 310 546 875 000 000 ÷ 2 = 9 155 273 437 500 000 + 0;
  • 9 155 273 437 500 000 ÷ 2 = 4 577 636 718 750 000 + 0;
  • 4 577 636 718 750 000 ÷ 2 = 2 288 818 359 375 000 + 0;
  • 2 288 818 359 375 000 ÷ 2 = 1 144 409 179 687 500 + 0;
  • 1 144 409 179 687 500 ÷ 2 = 572 204 589 843 750 + 0;
  • 572 204 589 843 750 ÷ 2 = 286 102 294 921 875 + 0;
  • 286 102 294 921 875 ÷ 2 = 143 051 147 460 937 + 1;
  • 143 051 147 460 937 ÷ 2 = 71 525 573 730 468 + 1;
  • 71 525 573 730 468 ÷ 2 = 35 762 786 865 234 + 0;
  • 35 762 786 865 234 ÷ 2 = 17 881 393 432 617 + 0;
  • 17 881 393 432 617 ÷ 2 = 8 940 696 716 308 + 1;
  • 8 940 696 716 308 ÷ 2 = 4 470 348 358 154 + 0;
  • 4 470 348 358 154 ÷ 2 = 2 235 174 179 077 + 0;
  • 2 235 174 179 077 ÷ 2 = 1 117 587 089 538 + 1;
  • 1 117 587 089 538 ÷ 2 = 558 793 544 769 + 0;
  • 558 793 544 769 ÷ 2 = 279 396 772 384 + 1;
  • 279 396 772 384 ÷ 2 = 139 698 386 192 + 0;
  • 139 698 386 192 ÷ 2 = 69 849 193 096 + 0;
  • 69 849 193 096 ÷ 2 = 34 924 596 548 + 0;
  • 34 924 596 548 ÷ 2 = 17 462 298 274 + 0;
  • 17 462 298 274 ÷ 2 = 8 731 149 137 + 0;
  • 8 731 149 137 ÷ 2 = 4 365 574 568 + 1;
  • 4 365 574 568 ÷ 2 = 2 182 787 284 + 0;
  • 2 182 787 284 ÷ 2 = 1 091 393 642 + 0;
  • 1 091 393 642 ÷ 2 = 545 696 821 + 0;
  • 545 696 821 ÷ 2 = 272 848 410 + 1;
  • 272 848 410 ÷ 2 = 136 424 205 + 0;
  • 136 424 205 ÷ 2 = 68 212 102 + 1;
  • 68 212 102 ÷ 2 = 34 106 051 + 0;
  • 34 106 051 ÷ 2 = 17 053 025 + 1;
  • 17 053 025 ÷ 2 = 8 526 512 + 1;
  • 8 526 512 ÷ 2 = 4 263 256 + 0;
  • 4 263 256 ÷ 2 = 2 131 628 + 0;
  • 2 131 628 ÷ 2 = 1 065 814 + 0;
  • 1 065 814 ÷ 2 = 532 907 + 0;
  • 532 907 ÷ 2 = 266 453 + 1;
  • 266 453 ÷ 2 = 133 226 + 1;
  • 133 226 ÷ 2 = 66 613 + 0;
  • 66 613 ÷ 2 = 33 306 + 1;
  • 33 306 ÷ 2 = 16 653 + 0;
  • 16 653 ÷ 2 = 8 326 + 1;
  • 8 326 ÷ 2 = 4 163 + 0;
  • 4 163 ÷ 2 = 2 081 + 1;
  • 2 081 ÷ 2 = 1 040 + 1;
  • 1 040 ÷ 2 = 520 + 0;
  • 520 ÷ 2 = 260 + 0;
  • 260 ÷ 2 = 130 + 0;
  • 130 ÷ 2 = 65 + 0;
  • 65 ÷ 2 = 32 + 1;
  • 32 ÷ 2 = 16 + 0;
  • 16 ÷ 2 = 8 + 0;
  • 8 ÷ 2 = 4 + 0;
  • 4 ÷ 2 = 2 + 0;
  • 2 ÷ 2 = 1 + 0;
  • 1 ÷ 2 = 0 + 1;

2. Construct the base 2 representation of the positive number.

Take all the remainders starting from the bottom of the list constructed above.


300 000 000 000 000 000 105(10) =


1 0000 0100 0011 0101 0110 0001 1010 1000 1000 0010 1001 0011 0000 0000 0000 0110 1001(2)


3. Normalize the binary representation of the number.

Shift the decimal mark 68 positions to the left, so that only one non zero digit remains to the left of it:


300 000 000 000 000 000 105(10) =


1 0000 0100 0011 0101 0110 0001 1010 1000 1000 0010 1001 0011 0000 0000 0000 0110 1001(2) =


1 0000 0100 0011 0101 0110 0001 1010 1000 1000 0010 1001 0011 0000 0000 0000 0110 1001(2) × 20 =


1.0000 0100 0011 0101 0110 0001 1010 1000 1000 0010 1001 0011 0000 0000 0000 0110 1001(2) × 268


4. Up to this moment, there are the following elements that would feed into the 32 bit single precision IEEE 754 binary floating point representation:

Sign 0 (a positive number)


Exponent (unadjusted): 68


Mantissa (not normalized):
1.0000 0100 0011 0101 0110 0001 1010 1000 1000 0010 1001 0011 0000 0000 0000 0110 1001


5. Adjust the exponent.

Use the 8 bit excess/bias notation:


Exponent (adjusted) =


Exponent (unadjusted) + 2(8-1) - 1 =


68 + 2(8-1) - 1 =


(68 + 127)(10) =


195(10)


6. Convert the adjusted exponent from the decimal (base 10) to 8 bit binary.

Use the same technique of repeatedly dividing by 2:


  • division = quotient + remainder;
  • 195 ÷ 2 = 97 + 1;
  • 97 ÷ 2 = 48 + 1;
  • 48 ÷ 2 = 24 + 0;
  • 24 ÷ 2 = 12 + 0;
  • 12 ÷ 2 = 6 + 0;
  • 6 ÷ 2 = 3 + 0;
  • 3 ÷ 2 = 1 + 1;
  • 1 ÷ 2 = 0 + 1;

7. Construct the base 2 representation of the adjusted exponent.

Take all the remainders starting from the bottom of the list constructed above.


Exponent (adjusted) =


195(10) =


1100 0011(2)


8. Normalize the mantissa.

a) Remove the leading (the leftmost) bit, since it's allways 1, and the decimal point, if the case.


b) Adjust its length to 23 bits, by removing the excess bits, from the right (if any of the excess bits is set on 1, we are losing precision...).


Mantissa (normalized) =


1. 000 0010 0001 1010 1011 0000 1 1010 1000 1000 0010 1001 0011 0000 0000 0000 0110 1001 =


000 0010 0001 1010 1011 0000


9. The three elements that make up the number's 32 bit single precision IEEE 754 binary floating point representation:

Sign (1 bit) =
0 (a positive number)


Exponent (8 bits) =
1100 0011


Mantissa (23 bits) =
000 0010 0001 1010 1011 0000


The base ten decimal number 300 000 000 000 000 000 105 converted and written in 32 bit single precision IEEE 754 binary floating point representation:
0 - 1100 0011 - 000 0010 0001 1010 1011 0000

The latest decimal numbers converted from base ten to 32 bit single precision IEEE 754 floating point binary standard representation

Number 2 147 306 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard May 01 11:02 UTC (GMT)
Number 196.51 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard May 01 11:02 UTC (GMT)
Number 212 725 437 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard May 01 11:02 UTC (GMT)
Number -23.562 2 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard May 01 11:02 UTC (GMT)
Number 1 258 485 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard May 01 11:02 UTC (GMT)
Number 114.34 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard May 01 11:02 UTC (GMT)
Number 283.66 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard May 01 11:02 UTC (GMT)
Number 1 076 346 897 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard May 01 11:02 UTC (GMT)
Number 1 067 320 052 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard May 01 11:02 UTC (GMT)
Number 16.8 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard May 01 11:02 UTC (GMT)
All base ten decimal numbers converted to 32 bit single precision IEEE 754 binary floating point

How to convert decimal numbers from base ten to 32 bit single precision IEEE 754 binary floating point standard

Follow the steps below to convert a base 10 decimal number to 32 bit single precision IEEE 754 binary floating point:

  • 1. If the number to be converted is negative, start with its the positive version.
  • 2. First convert the integer part. Divide repeatedly by 2 the base ten positive representation of the integer number that is to be converted to binary, until we get a quotient that is equal to zero, keeping track of each remainder.
  • 3. Construct the base 2 representation of the positive integer part of the number, by taking all the remainders of the previous dividing operations, starting from the bottom of the list constructed above. Thus, the last remainder of the divisions becomes the first symbol (the leftmost) of the base two number, while the first remainder becomes the last symbol (the rightmost).
  • 4. Then convert the fractional part. Multiply the number repeatedly by 2, until we get a fractional part that is equal to zero, keeping track of each integer part of the results.
  • 5. Construct the base 2 representation of the fractional part of the number by taking all the integer parts of the previous multiplying operations, starting from the top of the constructed list above (they should appear in the binary representation, from left to right, in the order they have been calculated).
  • 6. Normalize the binary representation of the number, by shifting the decimal point (or if you prefer, the decimal mark) "n" positions either to the left or to the right, so that only one non zero digit remains to the left of the decimal point.
  • 7. Adjust the exponent in 8 bit excess/bias notation and then convert it from decimal (base 10) to 8 bit binary, by using the same technique of repeatedly dividing by 2, as shown above:
    Exponent (adjusted) = Exponent (unadjusted) + 2(8-1) - 1
  • 8. Normalize mantissa, remove the leading (leftmost) bit, since it's allways '1' (and the decimal sign if the case) and adjust its length to 23 bits, either by removing the excess bits from the right (losing precision...) or by adding extra '0' bits to the right.
  • 9. Sign (it takes 1 bit) is either 1 for a negative or 0 for a positive number.

Example: convert the negative number -25.347 from decimal system (base ten) to 32 bit single precision IEEE 754 binary floating point:

  • 1. Start with the positive version of the number:

    |-25.347| = 25.347

  • 2. First convert the integer part, 25. Divide it repeatedly by 2, keeping track of each remainder, until we get a quotient that is equal to zero:
    • division = quotient + remainder;
    • 25 ÷ 2 = 12 + 1;
    • 12 ÷ 2 = 6 + 0;
    • 6 ÷ 2 = 3 + 0;
    • 3 ÷ 2 = 1 + 1;
    • 1 ÷ 2 = 0 + 1;
    • We have encountered a quotient that is ZERO => FULL STOP
  • 3. Construct the base 2 representation of the integer part of the number by taking all the remainders of the previous dividing operations, starting from the bottom of the list constructed above:

    25(10) = 1 1001(2)

  • 4. Then convert the fractional part, 0.347. Multiply repeatedly by 2, keeping track of each integer part of the results, until we get a fractional part that is equal to zero:
    • #) multiplying = integer + fractional part;
    • 1) 0.347 × 2 = 0 + 0.694;
    • 2) 0.694 × 2 = 1 + 0.388;
    • 3) 0.388 × 2 = 0 + 0.776;
    • 4) 0.776 × 2 = 1 + 0.552;
    • 5) 0.552 × 2 = 1 + 0.104;
    • 6) 0.104 × 2 = 0 + 0.208;
    • 7) 0.208 × 2 = 0 + 0.416;
    • 8) 0.416 × 2 = 0 + 0.832;
    • 9) 0.832 × 2 = 1 + 0.664;
    • 10) 0.664 × 2 = 1 + 0.328;
    • 11) 0.328 × 2 = 0 + 0.656;
    • 12) 0.656 × 2 = 1 + 0.312;
    • 13) 0.312 × 2 = 0 + 0.624;
    • 14) 0.624 × 2 = 1 + 0.248;
    • 15) 0.248 × 2 = 0 + 0.496;
    • 16) 0.496 × 2 = 0 + 0.992;
    • 17) 0.992 × 2 = 1 + 0.984;
    • 18) 0.984 × 2 = 1 + 0.968;
    • 19) 0.968 × 2 = 1 + 0.936;
    • 20) 0.936 × 2 = 1 + 0.872;
    • 21) 0.872 × 2 = 1 + 0.744;
    • 22) 0.744 × 2 = 1 + 0.488;
    • 23) 0.488 × 2 = 0 + 0.976;
    • 24) 0.976 × 2 = 1 + 0.952;
    • We didn't get any fractional part that was equal to zero. But we had enough iterations (over Mantissa limit = 23) and at least one integer part that was different from zero => FULL STOP (losing precision...).
  • 5. Construct the base 2 representation of the fractional part of the number, by taking all the integer parts of the previous multiplying operations, starting from the top of the constructed list above:

    0.347(10) = 0.0101 1000 1101 0100 1111 1101(2)

  • 6. Summarizing - the positive number before normalization:

    25.347(10) = 1 1001.0101 1000 1101 0100 1111 1101(2)

  • 7. Normalize the binary representation of the number, shifting the decimal point 4 positions to the left so that only one non-zero digit stays to the left of the decimal point:

    25.347(10) =
    1 1001.0101 1000 1101 0100 1111 1101(2) =
    1 1001.0101 1000 1101 0100 1111 1101(2) × 20 =
    1.1001 0101 1000 1101 0100 1111 1101(2) × 24

  • 8. Up to this moment, there are the following elements that would feed into the 32 bit single precision IEEE 754 binary floating point:

    Sign: 1 (a negative number)

    Exponent (unadjusted): 4

    Mantissa (not-normalized): 1.1001 0101 1000 1101 0100 1111 1101

  • 9. Adjust the exponent in 8 bit excess/bias notation and then convert it from decimal (base 10) to 8 bit binary (base 2), by using the same technique of repeatedly dividing it by 2, as already demonstrated above:

    Exponent (adjusted) = Exponent (unadjusted) + 2(8-1) - 1 = (4 + 127)(10) = 131(10) =
    1000 0011(2)

  • 10. Normalize the mantissa, remove the leading (leftmost) bit, since it's allways '1' (and the decimal point) and adjust its length to 23 bits, by removing the excess bits from the right (losing precision...):

    Mantissa (not-normalized): 1.1001 0101 1000 1101 0100 1111 1101

    Mantissa (normalized): 100 1010 1100 0110 1010 0111

  • Conclusion:

    Sign (1 bit) = 1 (a negative number)

    Exponent (8 bits) = 1000 0011

    Mantissa (23 bits) = 100 1010 1100 0110 1010 0111

  • Number -25.347, converted from the decimal system (base 10) to 32 bit single precision IEEE 754 binary floating point =
    1 - 1000 0011 - 100 1010 1100 0110 1010 0111