2 831 853 071 795 864 769 252 868 662 Converted to 32 Bit Single Precision IEEE 754 Binary Floating Point Representation Standard

Convert decimal 2 831 853 071 795 864 769 252 868 662(10) to 32 bit single precision IEEE 754 binary floating point representation standard (1 bit for sign, 8 bits for exponent, 23 bits for mantissa)

What are the steps to convert decimal number
2 831 853 071 795 864 769 252 868 662(10) to 32 bit single precision IEEE 754 binary floating point representation (1 bit for sign, 8 bits for exponent, 23 bits for mantissa)

1. Divide the number repeatedly by 2.

Keep track of each remainder.

We stop when we get a quotient that is equal to zero.


  • division = quotient + remainder;
  • 2 831 853 071 795 864 769 252 868 662 ÷ 2 = 1 415 926 535 897 932 384 626 434 331 + 0;
  • 1 415 926 535 897 932 384 626 434 331 ÷ 2 = 707 963 267 948 966 192 313 217 165 + 1;
  • 707 963 267 948 966 192 313 217 165 ÷ 2 = 353 981 633 974 483 096 156 608 582 + 1;
  • 353 981 633 974 483 096 156 608 582 ÷ 2 = 176 990 816 987 241 548 078 304 291 + 0;
  • 176 990 816 987 241 548 078 304 291 ÷ 2 = 88 495 408 493 620 774 039 152 145 + 1;
  • 88 495 408 493 620 774 039 152 145 ÷ 2 = 44 247 704 246 810 387 019 576 072 + 1;
  • 44 247 704 246 810 387 019 576 072 ÷ 2 = 22 123 852 123 405 193 509 788 036 + 0;
  • 22 123 852 123 405 193 509 788 036 ÷ 2 = 11 061 926 061 702 596 754 894 018 + 0;
  • 11 061 926 061 702 596 754 894 018 ÷ 2 = 5 530 963 030 851 298 377 447 009 + 0;
  • 5 530 963 030 851 298 377 447 009 ÷ 2 = 2 765 481 515 425 649 188 723 504 + 1;
  • 2 765 481 515 425 649 188 723 504 ÷ 2 = 1 382 740 757 712 824 594 361 752 + 0;
  • 1 382 740 757 712 824 594 361 752 ÷ 2 = 691 370 378 856 412 297 180 876 + 0;
  • 691 370 378 856 412 297 180 876 ÷ 2 = 345 685 189 428 206 148 590 438 + 0;
  • 345 685 189 428 206 148 590 438 ÷ 2 = 172 842 594 714 103 074 295 219 + 0;
  • 172 842 594 714 103 074 295 219 ÷ 2 = 86 421 297 357 051 537 147 609 + 1;
  • 86 421 297 357 051 537 147 609 ÷ 2 = 43 210 648 678 525 768 573 804 + 1;
  • 43 210 648 678 525 768 573 804 ÷ 2 = 21 605 324 339 262 884 286 902 + 0;
  • 21 605 324 339 262 884 286 902 ÷ 2 = 10 802 662 169 631 442 143 451 + 0;
  • 10 802 662 169 631 442 143 451 ÷ 2 = 5 401 331 084 815 721 071 725 + 1;
  • 5 401 331 084 815 721 071 725 ÷ 2 = 2 700 665 542 407 860 535 862 + 1;
  • 2 700 665 542 407 860 535 862 ÷ 2 = 1 350 332 771 203 930 267 931 + 0;
  • 1 350 332 771 203 930 267 931 ÷ 2 = 675 166 385 601 965 133 965 + 1;
  • 675 166 385 601 965 133 965 ÷ 2 = 337 583 192 800 982 566 982 + 1;
  • 337 583 192 800 982 566 982 ÷ 2 = 168 791 596 400 491 283 491 + 0;
  • 168 791 596 400 491 283 491 ÷ 2 = 84 395 798 200 245 641 745 + 1;
  • 84 395 798 200 245 641 745 ÷ 2 = 42 197 899 100 122 820 872 + 1;
  • 42 197 899 100 122 820 872 ÷ 2 = 21 098 949 550 061 410 436 + 0;
  • 21 098 949 550 061 410 436 ÷ 2 = 10 549 474 775 030 705 218 + 0;
  • 10 549 474 775 030 705 218 ÷ 2 = 5 274 737 387 515 352 609 + 0;
  • 5 274 737 387 515 352 609 ÷ 2 = 2 637 368 693 757 676 304 + 1;
  • 2 637 368 693 757 676 304 ÷ 2 = 1 318 684 346 878 838 152 + 0;
  • 1 318 684 346 878 838 152 ÷ 2 = 659 342 173 439 419 076 + 0;
  • 659 342 173 439 419 076 ÷ 2 = 329 671 086 719 709 538 + 0;
  • 329 671 086 719 709 538 ÷ 2 = 164 835 543 359 854 769 + 0;
  • 164 835 543 359 854 769 ÷ 2 = 82 417 771 679 927 384 + 1;
  • 82 417 771 679 927 384 ÷ 2 = 41 208 885 839 963 692 + 0;
  • 41 208 885 839 963 692 ÷ 2 = 20 604 442 919 981 846 + 0;
  • 20 604 442 919 981 846 ÷ 2 = 10 302 221 459 990 923 + 0;
  • 10 302 221 459 990 923 ÷ 2 = 5 151 110 729 995 461 + 1;
  • 5 151 110 729 995 461 ÷ 2 = 2 575 555 364 997 730 + 1;
  • 2 575 555 364 997 730 ÷ 2 = 1 287 777 682 498 865 + 0;
  • 1 287 777 682 498 865 ÷ 2 = 643 888 841 249 432 + 1;
  • 643 888 841 249 432 ÷ 2 = 321 944 420 624 716 + 0;
  • 321 944 420 624 716 ÷ 2 = 160 972 210 312 358 + 0;
  • 160 972 210 312 358 ÷ 2 = 80 486 105 156 179 + 0;
  • 80 486 105 156 179 ÷ 2 = 40 243 052 578 089 + 1;
  • 40 243 052 578 089 ÷ 2 = 20 121 526 289 044 + 1;
  • 20 121 526 289 044 ÷ 2 = 10 060 763 144 522 + 0;
  • 10 060 763 144 522 ÷ 2 = 5 030 381 572 261 + 0;
  • 5 030 381 572 261 ÷ 2 = 2 515 190 786 130 + 1;
  • 2 515 190 786 130 ÷ 2 = 1 257 595 393 065 + 0;
  • 1 257 595 393 065 ÷ 2 = 628 797 696 532 + 1;
  • 628 797 696 532 ÷ 2 = 314 398 848 266 + 0;
  • 314 398 848 266 ÷ 2 = 157 199 424 133 + 0;
  • 157 199 424 133 ÷ 2 = 78 599 712 066 + 1;
  • 78 599 712 066 ÷ 2 = 39 299 856 033 + 0;
  • 39 299 856 033 ÷ 2 = 19 649 928 016 + 1;
  • 19 649 928 016 ÷ 2 = 9 824 964 008 + 0;
  • 9 824 964 008 ÷ 2 = 4 912 482 004 + 0;
  • 4 912 482 004 ÷ 2 = 2 456 241 002 + 0;
  • 2 456 241 002 ÷ 2 = 1 228 120 501 + 0;
  • 1 228 120 501 ÷ 2 = 614 060 250 + 1;
  • 614 060 250 ÷ 2 = 307 030 125 + 0;
  • 307 030 125 ÷ 2 = 153 515 062 + 1;
  • 153 515 062 ÷ 2 = 76 757 531 + 0;
  • 76 757 531 ÷ 2 = 38 378 765 + 1;
  • 38 378 765 ÷ 2 = 19 189 382 + 1;
  • 19 189 382 ÷ 2 = 9 594 691 + 0;
  • 9 594 691 ÷ 2 = 4 797 345 + 1;
  • 4 797 345 ÷ 2 = 2 398 672 + 1;
  • 2 398 672 ÷ 2 = 1 199 336 + 0;
  • 1 199 336 ÷ 2 = 599 668 + 0;
  • 599 668 ÷ 2 = 299 834 + 0;
  • 299 834 ÷ 2 = 149 917 + 0;
  • 149 917 ÷ 2 = 74 958 + 1;
  • 74 958 ÷ 2 = 37 479 + 0;
  • 37 479 ÷ 2 = 18 739 + 1;
  • 18 739 ÷ 2 = 9 369 + 1;
  • 9 369 ÷ 2 = 4 684 + 1;
  • 4 684 ÷ 2 = 2 342 + 0;
  • 2 342 ÷ 2 = 1 171 + 0;
  • 1 171 ÷ 2 = 585 + 1;
  • 585 ÷ 2 = 292 + 1;
  • 292 ÷ 2 = 146 + 0;
  • 146 ÷ 2 = 73 + 0;
  • 73 ÷ 2 = 36 + 1;
  • 36 ÷ 2 = 18 + 0;
  • 18 ÷ 2 = 9 + 0;
  • 9 ÷ 2 = 4 + 1;
  • 4 ÷ 2 = 2 + 0;
  • 2 ÷ 2 = 1 + 0;
  • 1 ÷ 2 = 0 + 1;

2. Construct the base 2 representation of the positive number.

Take all the remainders starting from the bottom of the list constructed above.

2 831 853 071 795 864 769 252 868 662(10) =


1001 0010 0110 0111 0100 0011 0110 1010 0001 0100 1010 0110 0010 1100 0100 0010 0011 0110 1100 1100 0010 0011 0110(2)


3. Normalize the binary representation of the number.

Shift the decimal mark 91 positions to the left, so that only one non zero digit remains to the left of it:


2 831 853 071 795 864 769 252 868 662(10) =


1001 0010 0110 0111 0100 0011 0110 1010 0001 0100 1010 0110 0010 1100 0100 0010 0011 0110 1100 1100 0010 0011 0110(2) =


1001 0010 0110 0111 0100 0011 0110 1010 0001 0100 1010 0110 0010 1100 0100 0010 0011 0110 1100 1100 0010 0011 0110(2) × 20 =


1.0010 0100 1100 1110 1000 0110 1101 0100 0010 1001 0100 1100 0101 1000 1000 0100 0110 1101 1001 1000 0100 0110 110(2) × 291


4. Up to this moment, there are the following elements that would feed into the 32 bit single precision IEEE 754 binary floating point representation:

Sign 0 (a positive number)


Exponent (unadjusted): 91


Mantissa (not normalized):
1.0010 0100 1100 1110 1000 0110 1101 0100 0010 1001 0100 1100 0101 1000 1000 0100 0110 1101 1001 1000 0100 0110 110


5. Adjust the exponent.

Use the 8 bit excess/bias notation:


Exponent (adjusted) =


Exponent (unadjusted) + 2(8-1) - 1 =


91 + 2(8-1) - 1 =


(91 + 127)(10) =


218(10)


6. Convert the adjusted exponent from the decimal (base 10) to 8 bit binary.

Use the same technique of repeatedly dividing by 2:


  • division = quotient + remainder;
  • 218 ÷ 2 = 109 + 0;
  • 109 ÷ 2 = 54 + 1;
  • 54 ÷ 2 = 27 + 0;
  • 27 ÷ 2 = 13 + 1;
  • 13 ÷ 2 = 6 + 1;
  • 6 ÷ 2 = 3 + 0;
  • 3 ÷ 2 = 1 + 1;
  • 1 ÷ 2 = 0 + 1;

7. Construct the base 2 representation of the adjusted exponent.

Take all the remainders starting from the bottom of the list constructed above.


Exponent (adjusted) =


218(10) =


1101 1010(2)


8. Normalize the mantissa.

a) Remove the leading (the leftmost) bit, since it's allways 1, and the decimal point, if the case.


b) Adjust its length to 23 bits, by removing the excess bits, from the right (if any of the excess bits is set on 1, we are losing precision...).


Mantissa (normalized) =


1. 001 0010 0110 0111 0100 0011 0110 1010 0001 0100 1010 0110 0010 1100 0100 0010 0011 0110 1100 1100 0010 0011 0110 =


001 0010 0110 0111 0100 0011


9. The three elements that make up the number's 32 bit single precision IEEE 754 binary floating point representation:

Sign (1 bit) =
0 (a positive number)


Exponent (8 bits) =
1101 1010


Mantissa (23 bits) =
001 0010 0110 0111 0100 0011


Decimal number 2 831 853 071 795 864 769 252 868 662 converted to 32 bit single precision IEEE 754 binary floating point representation:

0 - 1101 1010 - 001 0010 0110 0111 0100 0011


How to convert decimal numbers from base ten to 32 bit single precision IEEE 754 binary floating point standard

Follow the steps below to convert a base 10 decimal number to 32 bit single precision IEEE 754 binary floating point:

  • 1. If the number to be converted is negative, start with its the positive version.
  • 2. First convert the integer part. Divide repeatedly by 2 the base ten positive representation of the integer number that is to be converted to binary, until we get a quotient that is equal to zero, keeping track of each remainder.
  • 3. Construct the base 2 representation of the positive integer part of the number, by taking all the remainders of the previous dividing operations, starting from the bottom of the list constructed above. Thus, the last remainder of the divisions becomes the first symbol (the leftmost) of the base two number, while the first remainder becomes the last symbol (the rightmost).
  • 4. Then convert the fractional part. Multiply the number repeatedly by 2, until we get a fractional part that is equal to zero, keeping track of each integer part of the results.
  • 5. Construct the base 2 representation of the fractional part of the number by taking all the integer parts of the previous multiplying operations, starting from the top of the constructed list above (they should appear in the binary representation, from left to right, in the order they have been calculated).
  • 6. Normalize the binary representation of the number, by shifting the decimal point (or if you prefer, the decimal mark) "n" positions either to the left or to the right, so that only one non zero digit remains to the left of the decimal point.
  • 7. Adjust the exponent in 8 bit excess/bias notation and then convert it from decimal (base 10) to 8 bit binary, by using the same technique of repeatedly dividing by 2, as shown above:
    Exponent (adjusted) = Exponent (unadjusted) + 2(8-1) - 1
  • 8. Normalize mantissa, remove the leading (leftmost) bit, since it's allways '1' (and the decimal sign if the case) and adjust its length to 23 bits, either by removing the excess bits from the right (losing precision...) or by adding extra '0' bits to the right.
  • 9. Sign (it takes 1 bit) is either 1 for a negative or 0 for a positive number.

Example: convert the negative number -25.347 from decimal system (base ten) to 32 bit single precision IEEE 754 binary floating point:

  • 1. Start with the positive version of the number:

    |-25.347| = 25.347

  • 2. First convert the integer part, 25. Divide it repeatedly by 2, keeping track of each remainder, until we get a quotient that is equal to zero:
    • division = quotient + remainder;
    • 25 ÷ 2 = 12 + 1;
    • 12 ÷ 2 = 6 + 0;
    • 6 ÷ 2 = 3 + 0;
    • 3 ÷ 2 = 1 + 1;
    • 1 ÷ 2 = 0 + 1;
    • We have encountered a quotient that is ZERO => FULL STOP
  • 3. Construct the base 2 representation of the integer part of the number by taking all the remainders of the previous dividing operations, starting from the bottom of the list constructed above:

    25(10) = 1 1001(2)

  • 4. Then convert the fractional part, 0.347. Multiply repeatedly by 2, keeping track of each integer part of the results, until we get a fractional part that is equal to zero:
    • #) multiplying = integer + fractional part;
    • 1) 0.347 × 2 = 0 + 0.694;
    • 2) 0.694 × 2 = 1 + 0.388;
    • 3) 0.388 × 2 = 0 + 0.776;
    • 4) 0.776 × 2 = 1 + 0.552;
    • 5) 0.552 × 2 = 1 + 0.104;
    • 6) 0.104 × 2 = 0 + 0.208;
    • 7) 0.208 × 2 = 0 + 0.416;
    • 8) 0.416 × 2 = 0 + 0.832;
    • 9) 0.832 × 2 = 1 + 0.664;
    • 10) 0.664 × 2 = 1 + 0.328;
    • 11) 0.328 × 2 = 0 + 0.656;
    • 12) 0.656 × 2 = 1 + 0.312;
    • 13) 0.312 × 2 = 0 + 0.624;
    • 14) 0.624 × 2 = 1 + 0.248;
    • 15) 0.248 × 2 = 0 + 0.496;
    • 16) 0.496 × 2 = 0 + 0.992;
    • 17) 0.992 × 2 = 1 + 0.984;
    • 18) 0.984 × 2 = 1 + 0.968;
    • 19) 0.968 × 2 = 1 + 0.936;
    • 20) 0.936 × 2 = 1 + 0.872;
    • 21) 0.872 × 2 = 1 + 0.744;
    • 22) 0.744 × 2 = 1 + 0.488;
    • 23) 0.488 × 2 = 0 + 0.976;
    • 24) 0.976 × 2 = 1 + 0.952;
    • We didn't get any fractional part that was equal to zero. But we had enough iterations (over Mantissa limit = 23) and at least one integer part that was different from zero => FULL STOP (losing precision...).
  • 5. Construct the base 2 representation of the fractional part of the number, by taking all the integer parts of the previous multiplying operations, starting from the top of the constructed list above:

    0.347(10) = 0.0101 1000 1101 0100 1111 1101(2)

  • 6. Summarizing - the positive number before normalization:

    25.347(10) = 1 1001.0101 1000 1101 0100 1111 1101(2)

  • 7. Normalize the binary representation of the number, shifting the decimal point 4 positions to the left so that only one non-zero digit stays to the left of the decimal point:

    25.347(10) =
    1 1001.0101 1000 1101 0100 1111 1101(2) =
    1 1001.0101 1000 1101 0100 1111 1101(2) × 20 =
    1.1001 0101 1000 1101 0100 1111 1101(2) × 24

  • 8. Up to this moment, there are the following elements that would feed into the 32 bit single precision IEEE 754 binary floating point:

    Sign: 1 (a negative number)

    Exponent (unadjusted): 4

    Mantissa (not-normalized): 1.1001 0101 1000 1101 0100 1111 1101

  • 9. Adjust the exponent in 8 bit excess/bias notation and then convert it from decimal (base 10) to 8 bit binary (base 2), by using the same technique of repeatedly dividing it by 2, as already demonstrated above:

    Exponent (adjusted) = Exponent (unadjusted) + 2(8-1) - 1 = (4 + 127)(10) = 131(10) =
    1000 0011(2)

  • 10. Normalize the mantissa, remove the leading (leftmost) bit, since it's allways '1' (and the decimal point) and adjust its length to 23 bits, by removing the excess bits from the right (losing precision...):

    Mantissa (not-normalized): 1.1001 0101 1000 1101 0100 1111 1101

    Mantissa (normalized): 100 1010 1100 0110 1010 0111

  • Conclusion:

    Sign (1 bit) = 1 (a negative number)

    Exponent (8 bits) = 1000 0011

    Mantissa (23 bits) = 100 1010 1100 0110 1010 0111

  • Number -25.347, converted from the decimal system (base 10) to 32 bit single precision IEEE 754 binary floating point =
    1 - 1000 0011 - 100 1010 1100 0110 1010 0111