16 147 133 535 028 767 839 Converted to 32 Bit Single Precision IEEE 754 Binary Floating Point Representation Standard

Convert decimal 16 147 133 535 028 767 839(10) to 32 bit single precision IEEE 754 binary floating point representation standard (1 bit for sign, 8 bits for exponent, 23 bits for mantissa)

What are the steps to convert decimal number
16 147 133 535 028 767 839(10) to 32 bit single precision IEEE 754 binary floating point representation (1 bit for sign, 8 bits for exponent, 23 bits for mantissa)

1. Divide the number repeatedly by 2.

Keep track of each remainder.

We stop when we get a quotient that is equal to zero.


  • division = quotient + remainder;
  • 16 147 133 535 028 767 839 ÷ 2 = 8 073 566 767 514 383 919 + 1;
  • 8 073 566 767 514 383 919 ÷ 2 = 4 036 783 383 757 191 959 + 1;
  • 4 036 783 383 757 191 959 ÷ 2 = 2 018 391 691 878 595 979 + 1;
  • 2 018 391 691 878 595 979 ÷ 2 = 1 009 195 845 939 297 989 + 1;
  • 1 009 195 845 939 297 989 ÷ 2 = 504 597 922 969 648 994 + 1;
  • 504 597 922 969 648 994 ÷ 2 = 252 298 961 484 824 497 + 0;
  • 252 298 961 484 824 497 ÷ 2 = 126 149 480 742 412 248 + 1;
  • 126 149 480 742 412 248 ÷ 2 = 63 074 740 371 206 124 + 0;
  • 63 074 740 371 206 124 ÷ 2 = 31 537 370 185 603 062 + 0;
  • 31 537 370 185 603 062 ÷ 2 = 15 768 685 092 801 531 + 0;
  • 15 768 685 092 801 531 ÷ 2 = 7 884 342 546 400 765 + 1;
  • 7 884 342 546 400 765 ÷ 2 = 3 942 171 273 200 382 + 1;
  • 3 942 171 273 200 382 ÷ 2 = 1 971 085 636 600 191 + 0;
  • 1 971 085 636 600 191 ÷ 2 = 985 542 818 300 095 + 1;
  • 985 542 818 300 095 ÷ 2 = 492 771 409 150 047 + 1;
  • 492 771 409 150 047 ÷ 2 = 246 385 704 575 023 + 1;
  • 246 385 704 575 023 ÷ 2 = 123 192 852 287 511 + 1;
  • 123 192 852 287 511 ÷ 2 = 61 596 426 143 755 + 1;
  • 61 596 426 143 755 ÷ 2 = 30 798 213 071 877 + 1;
  • 30 798 213 071 877 ÷ 2 = 15 399 106 535 938 + 1;
  • 15 399 106 535 938 ÷ 2 = 7 699 553 267 969 + 0;
  • 7 699 553 267 969 ÷ 2 = 3 849 776 633 984 + 1;
  • 3 849 776 633 984 ÷ 2 = 1 924 888 316 992 + 0;
  • 1 924 888 316 992 ÷ 2 = 962 444 158 496 + 0;
  • 962 444 158 496 ÷ 2 = 481 222 079 248 + 0;
  • 481 222 079 248 ÷ 2 = 240 611 039 624 + 0;
  • 240 611 039 624 ÷ 2 = 120 305 519 812 + 0;
  • 120 305 519 812 ÷ 2 = 60 152 759 906 + 0;
  • 60 152 759 906 ÷ 2 = 30 076 379 953 + 0;
  • 30 076 379 953 ÷ 2 = 15 038 189 976 + 1;
  • 15 038 189 976 ÷ 2 = 7 519 094 988 + 0;
  • 7 519 094 988 ÷ 2 = 3 759 547 494 + 0;
  • 3 759 547 494 ÷ 2 = 1 879 773 747 + 0;
  • 1 879 773 747 ÷ 2 = 939 886 873 + 1;
  • 939 886 873 ÷ 2 = 469 943 436 + 1;
  • 469 943 436 ÷ 2 = 234 971 718 + 0;
  • 234 971 718 ÷ 2 = 117 485 859 + 0;
  • 117 485 859 ÷ 2 = 58 742 929 + 1;
  • 58 742 929 ÷ 2 = 29 371 464 + 1;
  • 29 371 464 ÷ 2 = 14 685 732 + 0;
  • 14 685 732 ÷ 2 = 7 342 866 + 0;
  • 7 342 866 ÷ 2 = 3 671 433 + 0;
  • 3 671 433 ÷ 2 = 1 835 716 + 1;
  • 1 835 716 ÷ 2 = 917 858 + 0;
  • 917 858 ÷ 2 = 458 929 + 0;
  • 458 929 ÷ 2 = 229 464 + 1;
  • 229 464 ÷ 2 = 114 732 + 0;
  • 114 732 ÷ 2 = 57 366 + 0;
  • 57 366 ÷ 2 = 28 683 + 0;
  • 28 683 ÷ 2 = 14 341 + 1;
  • 14 341 ÷ 2 = 7 170 + 1;
  • 7 170 ÷ 2 = 3 585 + 0;
  • 3 585 ÷ 2 = 1 792 + 1;
  • 1 792 ÷ 2 = 896 + 0;
  • 896 ÷ 2 = 448 + 0;
  • 448 ÷ 2 = 224 + 0;
  • 224 ÷ 2 = 112 + 0;
  • 112 ÷ 2 = 56 + 0;
  • 56 ÷ 2 = 28 + 0;
  • 28 ÷ 2 = 14 + 0;
  • 14 ÷ 2 = 7 + 0;
  • 7 ÷ 2 = 3 + 1;
  • 3 ÷ 2 = 1 + 1;
  • 1 ÷ 2 = 0 + 1;

2. Construct the base 2 representation of the positive number.

Take all the remainders starting from the bottom of the list constructed above.

16 147 133 535 028 767 839(10) =


1110 0000 0001 0110 0010 0100 0110 0110 0010 0000 0010 1111 1110 1100 0101 1111(2)


3. Normalize the binary representation of the number.

Shift the decimal mark 63 positions to the left, so that only one non zero digit remains to the left of it:


16 147 133 535 028 767 839(10) =


1110 0000 0001 0110 0010 0100 0110 0110 0010 0000 0010 1111 1110 1100 0101 1111(2) =


1110 0000 0001 0110 0010 0100 0110 0110 0010 0000 0010 1111 1110 1100 0101 1111(2) × 20 =


1.1100 0000 0010 1100 0100 1000 1100 1100 0100 0000 0101 1111 1101 1000 1011 111(2) × 263


4. Up to this moment, there are the following elements that would feed into the 32 bit single precision IEEE 754 binary floating point representation:

Sign 0 (a positive number)


Exponent (unadjusted): 63


Mantissa (not normalized):
1.1100 0000 0010 1100 0100 1000 1100 1100 0100 0000 0101 1111 1101 1000 1011 111


5. Adjust the exponent.

Use the 8 bit excess/bias notation:


Exponent (adjusted) =


Exponent (unadjusted) + 2(8-1) - 1 =


63 + 2(8-1) - 1 =


(63 + 127)(10) =


190(10)


6. Convert the adjusted exponent from the decimal (base 10) to 8 bit binary.

Use the same technique of repeatedly dividing by 2:


  • division = quotient + remainder;
  • 190 ÷ 2 = 95 + 0;
  • 95 ÷ 2 = 47 + 1;
  • 47 ÷ 2 = 23 + 1;
  • 23 ÷ 2 = 11 + 1;
  • 11 ÷ 2 = 5 + 1;
  • 5 ÷ 2 = 2 + 1;
  • 2 ÷ 2 = 1 + 0;
  • 1 ÷ 2 = 0 + 1;

7. Construct the base 2 representation of the adjusted exponent.

Take all the remainders starting from the bottom of the list constructed above.


Exponent (adjusted) =


190(10) =


1011 1110(2)


8. Normalize the mantissa.

a) Remove the leading (the leftmost) bit, since it's allways 1, and the decimal point, if the case.


b) Adjust its length to 23 bits, by removing the excess bits, from the right (if any of the excess bits is set on 1, we are losing precision...).


Mantissa (normalized) =


1. 110 0000 0001 0110 0010 0100 0110 0110 0010 0000 0010 1111 1110 1100 0101 1111 =


110 0000 0001 0110 0010 0100


9. The three elements that make up the number's 32 bit single precision IEEE 754 binary floating point representation:

Sign (1 bit) =
0 (a positive number)


Exponent (8 bits) =
1011 1110


Mantissa (23 bits) =
110 0000 0001 0110 0010 0100


Decimal number 16 147 133 535 028 767 839 converted to 32 bit single precision IEEE 754 binary floating point representation:

0 - 1011 1110 - 110 0000 0001 0110 0010 0100


How to convert decimal numbers from base ten to 32 bit single precision IEEE 754 binary floating point standard

Follow the steps below to convert a base 10 decimal number to 32 bit single precision IEEE 754 binary floating point:

  • 1. If the number to be converted is negative, start with its the positive version.
  • 2. First convert the integer part. Divide repeatedly by 2 the base ten positive representation of the integer number that is to be converted to binary, until we get a quotient that is equal to zero, keeping track of each remainder.
  • 3. Construct the base 2 representation of the positive integer part of the number, by taking all the remainders of the previous dividing operations, starting from the bottom of the list constructed above. Thus, the last remainder of the divisions becomes the first symbol (the leftmost) of the base two number, while the first remainder becomes the last symbol (the rightmost).
  • 4. Then convert the fractional part. Multiply the number repeatedly by 2, until we get a fractional part that is equal to zero, keeping track of each integer part of the results.
  • 5. Construct the base 2 representation of the fractional part of the number by taking all the integer parts of the previous multiplying operations, starting from the top of the constructed list above (they should appear in the binary representation, from left to right, in the order they have been calculated).
  • 6. Normalize the binary representation of the number, by shifting the decimal point (or if you prefer, the decimal mark) "n" positions either to the left or to the right, so that only one non zero digit remains to the left of the decimal point.
  • 7. Adjust the exponent in 8 bit excess/bias notation and then convert it from decimal (base 10) to 8 bit binary, by using the same technique of repeatedly dividing by 2, as shown above:
    Exponent (adjusted) = Exponent (unadjusted) + 2(8-1) - 1
  • 8. Normalize mantissa, remove the leading (leftmost) bit, since it's allways '1' (and the decimal sign if the case) and adjust its length to 23 bits, either by removing the excess bits from the right (losing precision...) or by adding extra '0' bits to the right.
  • 9. Sign (it takes 1 bit) is either 1 for a negative or 0 for a positive number.

Example: convert the negative number -25.347 from decimal system (base ten) to 32 bit single precision IEEE 754 binary floating point:

  • 1. Start with the positive version of the number:

    |-25.347| = 25.347

  • 2. First convert the integer part, 25. Divide it repeatedly by 2, keeping track of each remainder, until we get a quotient that is equal to zero:
    • division = quotient + remainder;
    • 25 ÷ 2 = 12 + 1;
    • 12 ÷ 2 = 6 + 0;
    • 6 ÷ 2 = 3 + 0;
    • 3 ÷ 2 = 1 + 1;
    • 1 ÷ 2 = 0 + 1;
    • We have encountered a quotient that is ZERO => FULL STOP
  • 3. Construct the base 2 representation of the integer part of the number by taking all the remainders of the previous dividing operations, starting from the bottom of the list constructed above:

    25(10) = 1 1001(2)

  • 4. Then convert the fractional part, 0.347. Multiply repeatedly by 2, keeping track of each integer part of the results, until we get a fractional part that is equal to zero:
    • #) multiplying = integer + fractional part;
    • 1) 0.347 × 2 = 0 + 0.694;
    • 2) 0.694 × 2 = 1 + 0.388;
    • 3) 0.388 × 2 = 0 + 0.776;
    • 4) 0.776 × 2 = 1 + 0.552;
    • 5) 0.552 × 2 = 1 + 0.104;
    • 6) 0.104 × 2 = 0 + 0.208;
    • 7) 0.208 × 2 = 0 + 0.416;
    • 8) 0.416 × 2 = 0 + 0.832;
    • 9) 0.832 × 2 = 1 + 0.664;
    • 10) 0.664 × 2 = 1 + 0.328;
    • 11) 0.328 × 2 = 0 + 0.656;
    • 12) 0.656 × 2 = 1 + 0.312;
    • 13) 0.312 × 2 = 0 + 0.624;
    • 14) 0.624 × 2 = 1 + 0.248;
    • 15) 0.248 × 2 = 0 + 0.496;
    • 16) 0.496 × 2 = 0 + 0.992;
    • 17) 0.992 × 2 = 1 + 0.984;
    • 18) 0.984 × 2 = 1 + 0.968;
    • 19) 0.968 × 2 = 1 + 0.936;
    • 20) 0.936 × 2 = 1 + 0.872;
    • 21) 0.872 × 2 = 1 + 0.744;
    • 22) 0.744 × 2 = 1 + 0.488;
    • 23) 0.488 × 2 = 0 + 0.976;
    • 24) 0.976 × 2 = 1 + 0.952;
    • We didn't get any fractional part that was equal to zero. But we had enough iterations (over Mantissa limit = 23) and at least one integer part that was different from zero => FULL STOP (losing precision...).
  • 5. Construct the base 2 representation of the fractional part of the number, by taking all the integer parts of the previous multiplying operations, starting from the top of the constructed list above:

    0.347(10) = 0.0101 1000 1101 0100 1111 1101(2)

  • 6. Summarizing - the positive number before normalization:

    25.347(10) = 1 1001.0101 1000 1101 0100 1111 1101(2)

  • 7. Normalize the binary representation of the number, shifting the decimal point 4 positions to the left so that only one non-zero digit stays to the left of the decimal point:

    25.347(10) =
    1 1001.0101 1000 1101 0100 1111 1101(2) =
    1 1001.0101 1000 1101 0100 1111 1101(2) × 20 =
    1.1001 0101 1000 1101 0100 1111 1101(2) × 24

  • 8. Up to this moment, there are the following elements that would feed into the 32 bit single precision IEEE 754 binary floating point:

    Sign: 1 (a negative number)

    Exponent (unadjusted): 4

    Mantissa (not-normalized): 1.1001 0101 1000 1101 0100 1111 1101

  • 9. Adjust the exponent in 8 bit excess/bias notation and then convert it from decimal (base 10) to 8 bit binary (base 2), by using the same technique of repeatedly dividing it by 2, as already demonstrated above:

    Exponent (adjusted) = Exponent (unadjusted) + 2(8-1) - 1 = (4 + 127)(10) = 131(10) =
    1000 0011(2)

  • 10. Normalize the mantissa, remove the leading (leftmost) bit, since it's allways '1' (and the decimal point) and adjust its length to 23 bits, by removing the excess bits from the right (losing precision...):

    Mantissa (not-normalized): 1.1001 0101 1000 1101 0100 1111 1101

    Mantissa (normalized): 100 1010 1100 0110 1010 0111

  • Conclusion:

    Sign (1 bit) = 1 (a negative number)

    Exponent (8 bits) = 1000 0011

    Mantissa (23 bits) = 100 1010 1100 0110 1010 0111

  • Number -25.347, converted from the decimal system (base 10) to 32 bit single precision IEEE 754 binary floating point =
    1 - 1000 0011 - 100 1010 1100 0110 1010 0111