14 891 783 458 341 282 887 Converted to 32 Bit Single Precision IEEE 754 Binary Floating Point Representation Standard

Convert decimal 14 891 783 458 341 282 887(10) to 32 bit single precision IEEE 754 binary floating point representation standard (1 bit for sign, 8 bits for exponent, 23 bits for mantissa)

What are the steps to convert decimal number
14 891 783 458 341 282 887(10) to 32 bit single precision IEEE 754 binary floating point representation (1 bit for sign, 8 bits for exponent, 23 bits for mantissa)

1. Divide the number repeatedly by 2.

Keep track of each remainder.

We stop when we get a quotient that is equal to zero.


  • division = quotient + remainder;
  • 14 891 783 458 341 282 887 ÷ 2 = 7 445 891 729 170 641 443 + 1;
  • 7 445 891 729 170 641 443 ÷ 2 = 3 722 945 864 585 320 721 + 1;
  • 3 722 945 864 585 320 721 ÷ 2 = 1 861 472 932 292 660 360 + 1;
  • 1 861 472 932 292 660 360 ÷ 2 = 930 736 466 146 330 180 + 0;
  • 930 736 466 146 330 180 ÷ 2 = 465 368 233 073 165 090 + 0;
  • 465 368 233 073 165 090 ÷ 2 = 232 684 116 536 582 545 + 0;
  • 232 684 116 536 582 545 ÷ 2 = 116 342 058 268 291 272 + 1;
  • 116 342 058 268 291 272 ÷ 2 = 58 171 029 134 145 636 + 0;
  • 58 171 029 134 145 636 ÷ 2 = 29 085 514 567 072 818 + 0;
  • 29 085 514 567 072 818 ÷ 2 = 14 542 757 283 536 409 + 0;
  • 14 542 757 283 536 409 ÷ 2 = 7 271 378 641 768 204 + 1;
  • 7 271 378 641 768 204 ÷ 2 = 3 635 689 320 884 102 + 0;
  • 3 635 689 320 884 102 ÷ 2 = 1 817 844 660 442 051 + 0;
  • 1 817 844 660 442 051 ÷ 2 = 908 922 330 221 025 + 1;
  • 908 922 330 221 025 ÷ 2 = 454 461 165 110 512 + 1;
  • 454 461 165 110 512 ÷ 2 = 227 230 582 555 256 + 0;
  • 227 230 582 555 256 ÷ 2 = 113 615 291 277 628 + 0;
  • 113 615 291 277 628 ÷ 2 = 56 807 645 638 814 + 0;
  • 56 807 645 638 814 ÷ 2 = 28 403 822 819 407 + 0;
  • 28 403 822 819 407 ÷ 2 = 14 201 911 409 703 + 1;
  • 14 201 911 409 703 ÷ 2 = 7 100 955 704 851 + 1;
  • 7 100 955 704 851 ÷ 2 = 3 550 477 852 425 + 1;
  • 3 550 477 852 425 ÷ 2 = 1 775 238 926 212 + 1;
  • 1 775 238 926 212 ÷ 2 = 887 619 463 106 + 0;
  • 887 619 463 106 ÷ 2 = 443 809 731 553 + 0;
  • 443 809 731 553 ÷ 2 = 221 904 865 776 + 1;
  • 221 904 865 776 ÷ 2 = 110 952 432 888 + 0;
  • 110 952 432 888 ÷ 2 = 55 476 216 444 + 0;
  • 55 476 216 444 ÷ 2 = 27 738 108 222 + 0;
  • 27 738 108 222 ÷ 2 = 13 869 054 111 + 0;
  • 13 869 054 111 ÷ 2 = 6 934 527 055 + 1;
  • 6 934 527 055 ÷ 2 = 3 467 263 527 + 1;
  • 3 467 263 527 ÷ 2 = 1 733 631 763 + 1;
  • 1 733 631 763 ÷ 2 = 866 815 881 + 1;
  • 866 815 881 ÷ 2 = 433 407 940 + 1;
  • 433 407 940 ÷ 2 = 216 703 970 + 0;
  • 216 703 970 ÷ 2 = 108 351 985 + 0;
  • 108 351 985 ÷ 2 = 54 175 992 + 1;
  • 54 175 992 ÷ 2 = 27 087 996 + 0;
  • 27 087 996 ÷ 2 = 13 543 998 + 0;
  • 13 543 998 ÷ 2 = 6 771 999 + 0;
  • 6 771 999 ÷ 2 = 3 385 999 + 1;
  • 3 385 999 ÷ 2 = 1 692 999 + 1;
  • 1 692 999 ÷ 2 = 846 499 + 1;
  • 846 499 ÷ 2 = 423 249 + 1;
  • 423 249 ÷ 2 = 211 624 + 1;
  • 211 624 ÷ 2 = 105 812 + 0;
  • 105 812 ÷ 2 = 52 906 + 0;
  • 52 906 ÷ 2 = 26 453 + 0;
  • 26 453 ÷ 2 = 13 226 + 1;
  • 13 226 ÷ 2 = 6 613 + 0;
  • 6 613 ÷ 2 = 3 306 + 1;
  • 3 306 ÷ 2 = 1 653 + 0;
  • 1 653 ÷ 2 = 826 + 1;
  • 826 ÷ 2 = 413 + 0;
  • 413 ÷ 2 = 206 + 1;
  • 206 ÷ 2 = 103 + 0;
  • 103 ÷ 2 = 51 + 1;
  • 51 ÷ 2 = 25 + 1;
  • 25 ÷ 2 = 12 + 1;
  • 12 ÷ 2 = 6 + 0;
  • 6 ÷ 2 = 3 + 0;
  • 3 ÷ 2 = 1 + 1;
  • 1 ÷ 2 = 0 + 1;

2. Construct the base 2 representation of the positive number.

Take all the remainders starting from the bottom of the list constructed above.

14 891 783 458 341 282 887(10) =


1100 1110 1010 1010 0011 1110 0010 0111 1100 0010 0111 1000 0110 0100 0100 0111(2)


3. Normalize the binary representation of the number.

Shift the decimal mark 63 positions to the left, so that only one non zero digit remains to the left of it:


14 891 783 458 341 282 887(10) =


1100 1110 1010 1010 0011 1110 0010 0111 1100 0010 0111 1000 0110 0100 0100 0111(2) =


1100 1110 1010 1010 0011 1110 0010 0111 1100 0010 0111 1000 0110 0100 0100 0111(2) × 20 =


1.1001 1101 0101 0100 0111 1100 0100 1111 1000 0100 1111 0000 1100 1000 1000 111(2) × 263


4. Up to this moment, there are the following elements that would feed into the 32 bit single precision IEEE 754 binary floating point representation:

Sign 0 (a positive number)


Exponent (unadjusted): 63


Mantissa (not normalized):
1.1001 1101 0101 0100 0111 1100 0100 1111 1000 0100 1111 0000 1100 1000 1000 111


5. Adjust the exponent.

Use the 8 bit excess/bias notation:


Exponent (adjusted) =


Exponent (unadjusted) + 2(8-1) - 1 =


63 + 2(8-1) - 1 =


(63 + 127)(10) =


190(10)


6. Convert the adjusted exponent from the decimal (base 10) to 8 bit binary.

Use the same technique of repeatedly dividing by 2:


  • division = quotient + remainder;
  • 190 ÷ 2 = 95 + 0;
  • 95 ÷ 2 = 47 + 1;
  • 47 ÷ 2 = 23 + 1;
  • 23 ÷ 2 = 11 + 1;
  • 11 ÷ 2 = 5 + 1;
  • 5 ÷ 2 = 2 + 1;
  • 2 ÷ 2 = 1 + 0;
  • 1 ÷ 2 = 0 + 1;

7. Construct the base 2 representation of the adjusted exponent.

Take all the remainders starting from the bottom of the list constructed above.


Exponent (adjusted) =


190(10) =


1011 1110(2)


8. Normalize the mantissa.

a) Remove the leading (the leftmost) bit, since it's allways 1, and the decimal point, if the case.


b) Adjust its length to 23 bits, by removing the excess bits, from the right (if any of the excess bits is set on 1, we are losing precision...).


Mantissa (normalized) =


1. 100 1110 1010 1010 0011 1110 0010 0111 1100 0010 0111 1000 0110 0100 0100 0111 =


100 1110 1010 1010 0011 1110


9. The three elements that make up the number's 32 bit single precision IEEE 754 binary floating point representation:

Sign (1 bit) =
0 (a positive number)


Exponent (8 bits) =
1011 1110


Mantissa (23 bits) =
100 1110 1010 1010 0011 1110


Decimal number 14 891 783 458 341 282 887 converted to 32 bit single precision IEEE 754 binary floating point representation:

0 - 1011 1110 - 100 1110 1010 1010 0011 1110


How to convert decimal numbers from base ten to 32 bit single precision IEEE 754 binary floating point standard

Follow the steps below to convert a base 10 decimal number to 32 bit single precision IEEE 754 binary floating point:

  • 1. If the number to be converted is negative, start with its the positive version.
  • 2. First convert the integer part. Divide repeatedly by 2 the base ten positive representation of the integer number that is to be converted to binary, until we get a quotient that is equal to zero, keeping track of each remainder.
  • 3. Construct the base 2 representation of the positive integer part of the number, by taking all the remainders of the previous dividing operations, starting from the bottom of the list constructed above. Thus, the last remainder of the divisions becomes the first symbol (the leftmost) of the base two number, while the first remainder becomes the last symbol (the rightmost).
  • 4. Then convert the fractional part. Multiply the number repeatedly by 2, until we get a fractional part that is equal to zero, keeping track of each integer part of the results.
  • 5. Construct the base 2 representation of the fractional part of the number by taking all the integer parts of the previous multiplying operations, starting from the top of the constructed list above (they should appear in the binary representation, from left to right, in the order they have been calculated).
  • 6. Normalize the binary representation of the number, by shifting the decimal point (or if you prefer, the decimal mark) "n" positions either to the left or to the right, so that only one non zero digit remains to the left of the decimal point.
  • 7. Adjust the exponent in 8 bit excess/bias notation and then convert it from decimal (base 10) to 8 bit binary, by using the same technique of repeatedly dividing by 2, as shown above:
    Exponent (adjusted) = Exponent (unadjusted) + 2(8-1) - 1
  • 8. Normalize mantissa, remove the leading (leftmost) bit, since it's allways '1' (and the decimal sign if the case) and adjust its length to 23 bits, either by removing the excess bits from the right (losing precision...) or by adding extra '0' bits to the right.
  • 9. Sign (it takes 1 bit) is either 1 for a negative or 0 for a positive number.

Example: convert the negative number -25.347 from decimal system (base ten) to 32 bit single precision IEEE 754 binary floating point:

  • 1. Start with the positive version of the number:

    |-25.347| = 25.347

  • 2. First convert the integer part, 25. Divide it repeatedly by 2, keeping track of each remainder, until we get a quotient that is equal to zero:
    • division = quotient + remainder;
    • 25 ÷ 2 = 12 + 1;
    • 12 ÷ 2 = 6 + 0;
    • 6 ÷ 2 = 3 + 0;
    • 3 ÷ 2 = 1 + 1;
    • 1 ÷ 2 = 0 + 1;
    • We have encountered a quotient that is ZERO => FULL STOP
  • 3. Construct the base 2 representation of the integer part of the number by taking all the remainders of the previous dividing operations, starting from the bottom of the list constructed above:

    25(10) = 1 1001(2)

  • 4. Then convert the fractional part, 0.347. Multiply repeatedly by 2, keeping track of each integer part of the results, until we get a fractional part that is equal to zero:
    • #) multiplying = integer + fractional part;
    • 1) 0.347 × 2 = 0 + 0.694;
    • 2) 0.694 × 2 = 1 + 0.388;
    • 3) 0.388 × 2 = 0 + 0.776;
    • 4) 0.776 × 2 = 1 + 0.552;
    • 5) 0.552 × 2 = 1 + 0.104;
    • 6) 0.104 × 2 = 0 + 0.208;
    • 7) 0.208 × 2 = 0 + 0.416;
    • 8) 0.416 × 2 = 0 + 0.832;
    • 9) 0.832 × 2 = 1 + 0.664;
    • 10) 0.664 × 2 = 1 + 0.328;
    • 11) 0.328 × 2 = 0 + 0.656;
    • 12) 0.656 × 2 = 1 + 0.312;
    • 13) 0.312 × 2 = 0 + 0.624;
    • 14) 0.624 × 2 = 1 + 0.248;
    • 15) 0.248 × 2 = 0 + 0.496;
    • 16) 0.496 × 2 = 0 + 0.992;
    • 17) 0.992 × 2 = 1 + 0.984;
    • 18) 0.984 × 2 = 1 + 0.968;
    • 19) 0.968 × 2 = 1 + 0.936;
    • 20) 0.936 × 2 = 1 + 0.872;
    • 21) 0.872 × 2 = 1 + 0.744;
    • 22) 0.744 × 2 = 1 + 0.488;
    • 23) 0.488 × 2 = 0 + 0.976;
    • 24) 0.976 × 2 = 1 + 0.952;
    • We didn't get any fractional part that was equal to zero. But we had enough iterations (over Mantissa limit = 23) and at least one integer part that was different from zero => FULL STOP (losing precision...).
  • 5. Construct the base 2 representation of the fractional part of the number, by taking all the integer parts of the previous multiplying operations, starting from the top of the constructed list above:

    0.347(10) = 0.0101 1000 1101 0100 1111 1101(2)

  • 6. Summarizing - the positive number before normalization:

    25.347(10) = 1 1001.0101 1000 1101 0100 1111 1101(2)

  • 7. Normalize the binary representation of the number, shifting the decimal point 4 positions to the left so that only one non-zero digit stays to the left of the decimal point:

    25.347(10) =
    1 1001.0101 1000 1101 0100 1111 1101(2) =
    1 1001.0101 1000 1101 0100 1111 1101(2) × 20 =
    1.1001 0101 1000 1101 0100 1111 1101(2) × 24

  • 8. Up to this moment, there are the following elements that would feed into the 32 bit single precision IEEE 754 binary floating point:

    Sign: 1 (a negative number)

    Exponent (unadjusted): 4

    Mantissa (not-normalized): 1.1001 0101 1000 1101 0100 1111 1101

  • 9. Adjust the exponent in 8 bit excess/bias notation and then convert it from decimal (base 10) to 8 bit binary (base 2), by using the same technique of repeatedly dividing it by 2, as already demonstrated above:

    Exponent (adjusted) = Exponent (unadjusted) + 2(8-1) - 1 = (4 + 127)(10) = 131(10) =
    1000 0011(2)

  • 10. Normalize the mantissa, remove the leading (leftmost) bit, since it's allways '1' (and the decimal point) and adjust its length to 23 bits, by removing the excess bits from the right (losing precision...):

    Mantissa (not-normalized): 1.1001 0101 1000 1101 0100 1111 1101

    Mantissa (normalized): 100 1010 1100 0110 1010 0111

  • Conclusion:

    Sign (1 bit) = 1 (a negative number)

    Exponent (8 bits) = 1000 0011

    Mantissa (23 bits) = 100 1010 1100 0110 1010 0111

  • Number -25.347, converted from the decimal system (base 10) to 32 bit single precision IEEE 754 binary floating point =
    1 - 1000 0011 - 100 1010 1100 0110 1010 0111