112 986 307 451 471 003 753 Converted to 32 Bit Single Precision IEEE 754 Binary Floating Point Representation Standard

Convert decimal 112 986 307 451 471 003 753(10) to 32 bit single precision IEEE 754 binary floating point representation standard (1 bit for sign, 8 bits for exponent, 23 bits for mantissa)

What are the steps to convert decimal number
112 986 307 451 471 003 753(10) to 32 bit single precision IEEE 754 binary floating point representation (1 bit for sign, 8 bits for exponent, 23 bits for mantissa)

1. Divide the number repeatedly by 2.

Keep track of each remainder.

We stop when we get a quotient that is equal to zero.


  • division = quotient + remainder;
  • 112 986 307 451 471 003 753 ÷ 2 = 56 493 153 725 735 501 876 + 1;
  • 56 493 153 725 735 501 876 ÷ 2 = 28 246 576 862 867 750 938 + 0;
  • 28 246 576 862 867 750 938 ÷ 2 = 14 123 288 431 433 875 469 + 0;
  • 14 123 288 431 433 875 469 ÷ 2 = 7 061 644 215 716 937 734 + 1;
  • 7 061 644 215 716 937 734 ÷ 2 = 3 530 822 107 858 468 867 + 0;
  • 3 530 822 107 858 468 867 ÷ 2 = 1 765 411 053 929 234 433 + 1;
  • 1 765 411 053 929 234 433 ÷ 2 = 882 705 526 964 617 216 + 1;
  • 882 705 526 964 617 216 ÷ 2 = 441 352 763 482 308 608 + 0;
  • 441 352 763 482 308 608 ÷ 2 = 220 676 381 741 154 304 + 0;
  • 220 676 381 741 154 304 ÷ 2 = 110 338 190 870 577 152 + 0;
  • 110 338 190 870 577 152 ÷ 2 = 55 169 095 435 288 576 + 0;
  • 55 169 095 435 288 576 ÷ 2 = 27 584 547 717 644 288 + 0;
  • 27 584 547 717 644 288 ÷ 2 = 13 792 273 858 822 144 + 0;
  • 13 792 273 858 822 144 ÷ 2 = 6 896 136 929 411 072 + 0;
  • 6 896 136 929 411 072 ÷ 2 = 3 448 068 464 705 536 + 0;
  • 3 448 068 464 705 536 ÷ 2 = 1 724 034 232 352 768 + 0;
  • 1 724 034 232 352 768 ÷ 2 = 862 017 116 176 384 + 0;
  • 862 017 116 176 384 ÷ 2 = 431 008 558 088 192 + 0;
  • 431 008 558 088 192 ÷ 2 = 215 504 279 044 096 + 0;
  • 215 504 279 044 096 ÷ 2 = 107 752 139 522 048 + 0;
  • 107 752 139 522 048 ÷ 2 = 53 876 069 761 024 + 0;
  • 53 876 069 761 024 ÷ 2 = 26 938 034 880 512 + 0;
  • 26 938 034 880 512 ÷ 2 = 13 469 017 440 256 + 0;
  • 13 469 017 440 256 ÷ 2 = 6 734 508 720 128 + 0;
  • 6 734 508 720 128 ÷ 2 = 3 367 254 360 064 + 0;
  • 3 367 254 360 064 ÷ 2 = 1 683 627 180 032 + 0;
  • 1 683 627 180 032 ÷ 2 = 841 813 590 016 + 0;
  • 841 813 590 016 ÷ 2 = 420 906 795 008 + 0;
  • 420 906 795 008 ÷ 2 = 210 453 397 504 + 0;
  • 210 453 397 504 ÷ 2 = 105 226 698 752 + 0;
  • 105 226 698 752 ÷ 2 = 52 613 349 376 + 0;
  • 52 613 349 376 ÷ 2 = 26 306 674 688 + 0;
  • 26 306 674 688 ÷ 2 = 13 153 337 344 + 0;
  • 13 153 337 344 ÷ 2 = 6 576 668 672 + 0;
  • 6 576 668 672 ÷ 2 = 3 288 334 336 + 0;
  • 3 288 334 336 ÷ 2 = 1 644 167 168 + 0;
  • 1 644 167 168 ÷ 2 = 822 083 584 + 0;
  • 822 083 584 ÷ 2 = 411 041 792 + 0;
  • 411 041 792 ÷ 2 = 205 520 896 + 0;
  • 205 520 896 ÷ 2 = 102 760 448 + 0;
  • 102 760 448 ÷ 2 = 51 380 224 + 0;
  • 51 380 224 ÷ 2 = 25 690 112 + 0;
  • 25 690 112 ÷ 2 = 12 845 056 + 0;
  • 12 845 056 ÷ 2 = 6 422 528 + 0;
  • 6 422 528 ÷ 2 = 3 211 264 + 0;
  • 3 211 264 ÷ 2 = 1 605 632 + 0;
  • 1 605 632 ÷ 2 = 802 816 + 0;
  • 802 816 ÷ 2 = 401 408 + 0;
  • 401 408 ÷ 2 = 200 704 + 0;
  • 200 704 ÷ 2 = 100 352 + 0;
  • 100 352 ÷ 2 = 50 176 + 0;
  • 50 176 ÷ 2 = 25 088 + 0;
  • 25 088 ÷ 2 = 12 544 + 0;
  • 12 544 ÷ 2 = 6 272 + 0;
  • 6 272 ÷ 2 = 3 136 + 0;
  • 3 136 ÷ 2 = 1 568 + 0;
  • 1 568 ÷ 2 = 784 + 0;
  • 784 ÷ 2 = 392 + 0;
  • 392 ÷ 2 = 196 + 0;
  • 196 ÷ 2 = 98 + 0;
  • 98 ÷ 2 = 49 + 0;
  • 49 ÷ 2 = 24 + 1;
  • 24 ÷ 2 = 12 + 0;
  • 12 ÷ 2 = 6 + 0;
  • 6 ÷ 2 = 3 + 0;
  • 3 ÷ 2 = 1 + 1;
  • 1 ÷ 2 = 0 + 1;

2. Construct the base 2 representation of the positive number.

Take all the remainders starting from the bottom of the list constructed above.

112 986 307 451 471 003 753(10) =


110 0010 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0110 1001(2)


3. Normalize the binary representation of the number.

Shift the decimal mark 66 positions to the left, so that only one non zero digit remains to the left of it:


112 986 307 451 471 003 753(10) =


110 0010 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0110 1001(2) =


110 0010 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0110 1001(2) × 20 =


1.1000 1000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0001 1010 01(2) × 266


4. Up to this moment, there are the following elements that would feed into the 32 bit single precision IEEE 754 binary floating point representation:

Sign 0 (a positive number)


Exponent (unadjusted): 66


Mantissa (not normalized):
1.1000 1000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0001 1010 01


5. Adjust the exponent.

Use the 8 bit excess/bias notation:


Exponent (adjusted) =


Exponent (unadjusted) + 2(8-1) - 1 =


66 + 2(8-1) - 1 =


(66 + 127)(10) =


193(10)


6. Convert the adjusted exponent from the decimal (base 10) to 8 bit binary.

Use the same technique of repeatedly dividing by 2:


  • division = quotient + remainder;
  • 193 ÷ 2 = 96 + 1;
  • 96 ÷ 2 = 48 + 0;
  • 48 ÷ 2 = 24 + 0;
  • 24 ÷ 2 = 12 + 0;
  • 12 ÷ 2 = 6 + 0;
  • 6 ÷ 2 = 3 + 0;
  • 3 ÷ 2 = 1 + 1;
  • 1 ÷ 2 = 0 + 1;

7. Construct the base 2 representation of the adjusted exponent.

Take all the remainders starting from the bottom of the list constructed above.


Exponent (adjusted) =


193(10) =


1100 0001(2)


8. Normalize the mantissa.

a) Remove the leading (the leftmost) bit, since it's allways 1, and the decimal point, if the case.


b) Adjust its length to 23 bits, by removing the excess bits, from the right (if any of the excess bits is set on 1, we are losing precision...).


Mantissa (normalized) =


1. 100 0100 0000 0000 0000 0000 000 0000 0000 0000 0000 0000 0000 0000 0000 0110 1001 =


100 0100 0000 0000 0000 0000


9. The three elements that make up the number's 32 bit single precision IEEE 754 binary floating point representation:

Sign (1 bit) =
0 (a positive number)


Exponent (8 bits) =
1100 0001


Mantissa (23 bits) =
100 0100 0000 0000 0000 0000


Decimal number 112 986 307 451 471 003 753 converted to 32 bit single precision IEEE 754 binary floating point representation:

0 - 1100 0001 - 100 0100 0000 0000 0000 0000


How to convert decimal numbers from base ten to 32 bit single precision IEEE 754 binary floating point standard

Follow the steps below to convert a base 10 decimal number to 32 bit single precision IEEE 754 binary floating point:

  • 1. If the number to be converted is negative, start with its the positive version.
  • 2. First convert the integer part. Divide repeatedly by 2 the base ten positive representation of the integer number that is to be converted to binary, until we get a quotient that is equal to zero, keeping track of each remainder.
  • 3. Construct the base 2 representation of the positive integer part of the number, by taking all the remainders of the previous dividing operations, starting from the bottom of the list constructed above. Thus, the last remainder of the divisions becomes the first symbol (the leftmost) of the base two number, while the first remainder becomes the last symbol (the rightmost).
  • 4. Then convert the fractional part. Multiply the number repeatedly by 2, until we get a fractional part that is equal to zero, keeping track of each integer part of the results.
  • 5. Construct the base 2 representation of the fractional part of the number by taking all the integer parts of the previous multiplying operations, starting from the top of the constructed list above (they should appear in the binary representation, from left to right, in the order they have been calculated).
  • 6. Normalize the binary representation of the number, by shifting the decimal point (or if you prefer, the decimal mark) "n" positions either to the left or to the right, so that only one non zero digit remains to the left of the decimal point.
  • 7. Adjust the exponent in 8 bit excess/bias notation and then convert it from decimal (base 10) to 8 bit binary, by using the same technique of repeatedly dividing by 2, as shown above:
    Exponent (adjusted) = Exponent (unadjusted) + 2(8-1) - 1
  • 8. Normalize mantissa, remove the leading (leftmost) bit, since it's allways '1' (and the decimal sign if the case) and adjust its length to 23 bits, either by removing the excess bits from the right (losing precision...) or by adding extra '0' bits to the right.
  • 9. Sign (it takes 1 bit) is either 1 for a negative or 0 for a positive number.

Example: convert the negative number -25.347 from decimal system (base ten) to 32 bit single precision IEEE 754 binary floating point:

  • 1. Start with the positive version of the number:

    |-25.347| = 25.347

  • 2. First convert the integer part, 25. Divide it repeatedly by 2, keeping track of each remainder, until we get a quotient that is equal to zero:
    • division = quotient + remainder;
    • 25 ÷ 2 = 12 + 1;
    • 12 ÷ 2 = 6 + 0;
    • 6 ÷ 2 = 3 + 0;
    • 3 ÷ 2 = 1 + 1;
    • 1 ÷ 2 = 0 + 1;
    • We have encountered a quotient that is ZERO => FULL STOP
  • 3. Construct the base 2 representation of the integer part of the number by taking all the remainders of the previous dividing operations, starting from the bottom of the list constructed above:

    25(10) = 1 1001(2)

  • 4. Then convert the fractional part, 0.347. Multiply repeatedly by 2, keeping track of each integer part of the results, until we get a fractional part that is equal to zero:
    • #) multiplying = integer + fractional part;
    • 1) 0.347 × 2 = 0 + 0.694;
    • 2) 0.694 × 2 = 1 + 0.388;
    • 3) 0.388 × 2 = 0 + 0.776;
    • 4) 0.776 × 2 = 1 + 0.552;
    • 5) 0.552 × 2 = 1 + 0.104;
    • 6) 0.104 × 2 = 0 + 0.208;
    • 7) 0.208 × 2 = 0 + 0.416;
    • 8) 0.416 × 2 = 0 + 0.832;
    • 9) 0.832 × 2 = 1 + 0.664;
    • 10) 0.664 × 2 = 1 + 0.328;
    • 11) 0.328 × 2 = 0 + 0.656;
    • 12) 0.656 × 2 = 1 + 0.312;
    • 13) 0.312 × 2 = 0 + 0.624;
    • 14) 0.624 × 2 = 1 + 0.248;
    • 15) 0.248 × 2 = 0 + 0.496;
    • 16) 0.496 × 2 = 0 + 0.992;
    • 17) 0.992 × 2 = 1 + 0.984;
    • 18) 0.984 × 2 = 1 + 0.968;
    • 19) 0.968 × 2 = 1 + 0.936;
    • 20) 0.936 × 2 = 1 + 0.872;
    • 21) 0.872 × 2 = 1 + 0.744;
    • 22) 0.744 × 2 = 1 + 0.488;
    • 23) 0.488 × 2 = 0 + 0.976;
    • 24) 0.976 × 2 = 1 + 0.952;
    • We didn't get any fractional part that was equal to zero. But we had enough iterations (over Mantissa limit = 23) and at least one integer part that was different from zero => FULL STOP (losing precision...).
  • 5. Construct the base 2 representation of the fractional part of the number, by taking all the integer parts of the previous multiplying operations, starting from the top of the constructed list above:

    0.347(10) = 0.0101 1000 1101 0100 1111 1101(2)

  • 6. Summarizing - the positive number before normalization:

    25.347(10) = 1 1001.0101 1000 1101 0100 1111 1101(2)

  • 7. Normalize the binary representation of the number, shifting the decimal point 4 positions to the left so that only one non-zero digit stays to the left of the decimal point:

    25.347(10) =
    1 1001.0101 1000 1101 0100 1111 1101(2) =
    1 1001.0101 1000 1101 0100 1111 1101(2) × 20 =
    1.1001 0101 1000 1101 0100 1111 1101(2) × 24

  • 8. Up to this moment, there are the following elements that would feed into the 32 bit single precision IEEE 754 binary floating point:

    Sign: 1 (a negative number)

    Exponent (unadjusted): 4

    Mantissa (not-normalized): 1.1001 0101 1000 1101 0100 1111 1101

  • 9. Adjust the exponent in 8 bit excess/bias notation and then convert it from decimal (base 10) to 8 bit binary (base 2), by using the same technique of repeatedly dividing it by 2, as already demonstrated above:

    Exponent (adjusted) = Exponent (unadjusted) + 2(8-1) - 1 = (4 + 127)(10) = 131(10) =
    1000 0011(2)

  • 10. Normalize the mantissa, remove the leading (leftmost) bit, since it's allways '1' (and the decimal point) and adjust its length to 23 bits, by removing the excess bits from the right (losing precision...):

    Mantissa (not-normalized): 1.1001 0101 1000 1101 0100 1111 1101

    Mantissa (normalized): 100 1010 1100 0110 1010 0111

  • Conclusion:

    Sign (1 bit) = 1 (a negative number)

    Exponent (8 bits) = 1000 0011

    Mantissa (23 bits) = 100 1010 1100 0110 1010 0111

  • Number -25.347, converted from the decimal system (base 10) to 32 bit single precision IEEE 754 binary floating point =
    1 - 1000 0011 - 100 1010 1100 0110 1010 0111