111 110 010 011 111 111 111 111 112 160 Converted to 32 Bit Single Precision IEEE 754 Binary Floating Point Representation Standard

Convert decimal 111 110 010 011 111 111 111 111 112 160(10) to 32 bit single precision IEEE 754 binary floating point representation standard (1 bit for sign, 8 bits for exponent, 23 bits for mantissa)

What are the steps to convert decimal number
111 110 010 011 111 111 111 111 112 160(10) to 32 bit single precision IEEE 754 binary floating point representation (1 bit for sign, 8 bits for exponent, 23 bits for mantissa)

1. Divide the number repeatedly by 2.

Keep track of each remainder.

We stop when we get a quotient that is equal to zero.


  • division = quotient + remainder;
  • 111 110 010 011 111 111 111 111 112 160 ÷ 2 = 55 555 005 005 555 555 555 555 556 080 + 0;
  • 55 555 005 005 555 555 555 555 556 080 ÷ 2 = 27 777 502 502 777 777 777 777 778 040 + 0;
  • 27 777 502 502 777 777 777 777 778 040 ÷ 2 = 13 888 751 251 388 888 888 888 889 020 + 0;
  • 13 888 751 251 388 888 888 888 889 020 ÷ 2 = 6 944 375 625 694 444 444 444 444 510 + 0;
  • 6 944 375 625 694 444 444 444 444 510 ÷ 2 = 3 472 187 812 847 222 222 222 222 255 + 0;
  • 3 472 187 812 847 222 222 222 222 255 ÷ 2 = 1 736 093 906 423 611 111 111 111 127 + 1;
  • 1 736 093 906 423 611 111 111 111 127 ÷ 2 = 868 046 953 211 805 555 555 555 563 + 1;
  • 868 046 953 211 805 555 555 555 563 ÷ 2 = 434 023 476 605 902 777 777 777 781 + 1;
  • 434 023 476 605 902 777 777 777 781 ÷ 2 = 217 011 738 302 951 388 888 888 890 + 1;
  • 217 011 738 302 951 388 888 888 890 ÷ 2 = 108 505 869 151 475 694 444 444 445 + 0;
  • 108 505 869 151 475 694 444 444 445 ÷ 2 = 54 252 934 575 737 847 222 222 222 + 1;
  • 54 252 934 575 737 847 222 222 222 ÷ 2 = 27 126 467 287 868 923 611 111 111 + 0;
  • 27 126 467 287 868 923 611 111 111 ÷ 2 = 13 563 233 643 934 461 805 555 555 + 1;
  • 13 563 233 643 934 461 805 555 555 ÷ 2 = 6 781 616 821 967 230 902 777 777 + 1;
  • 6 781 616 821 967 230 902 777 777 ÷ 2 = 3 390 808 410 983 615 451 388 888 + 1;
  • 3 390 808 410 983 615 451 388 888 ÷ 2 = 1 695 404 205 491 807 725 694 444 + 0;
  • 1 695 404 205 491 807 725 694 444 ÷ 2 = 847 702 102 745 903 862 847 222 + 0;
  • 847 702 102 745 903 862 847 222 ÷ 2 = 423 851 051 372 951 931 423 611 + 0;
  • 423 851 051 372 951 931 423 611 ÷ 2 = 211 925 525 686 475 965 711 805 + 1;
  • 211 925 525 686 475 965 711 805 ÷ 2 = 105 962 762 843 237 982 855 902 + 1;
  • 105 962 762 843 237 982 855 902 ÷ 2 = 52 981 381 421 618 991 427 951 + 0;
  • 52 981 381 421 618 991 427 951 ÷ 2 = 26 490 690 710 809 495 713 975 + 1;
  • 26 490 690 710 809 495 713 975 ÷ 2 = 13 245 345 355 404 747 856 987 + 1;
  • 13 245 345 355 404 747 856 987 ÷ 2 = 6 622 672 677 702 373 928 493 + 1;
  • 6 622 672 677 702 373 928 493 ÷ 2 = 3 311 336 338 851 186 964 246 + 1;
  • 3 311 336 338 851 186 964 246 ÷ 2 = 1 655 668 169 425 593 482 123 + 0;
  • 1 655 668 169 425 593 482 123 ÷ 2 = 827 834 084 712 796 741 061 + 1;
  • 827 834 084 712 796 741 061 ÷ 2 = 413 917 042 356 398 370 530 + 1;
  • 413 917 042 356 398 370 530 ÷ 2 = 206 958 521 178 199 185 265 + 0;
  • 206 958 521 178 199 185 265 ÷ 2 = 103 479 260 589 099 592 632 + 1;
  • 103 479 260 589 099 592 632 ÷ 2 = 51 739 630 294 549 796 316 + 0;
  • 51 739 630 294 549 796 316 ÷ 2 = 25 869 815 147 274 898 158 + 0;
  • 25 869 815 147 274 898 158 ÷ 2 = 12 934 907 573 637 449 079 + 0;
  • 12 934 907 573 637 449 079 ÷ 2 = 6 467 453 786 818 724 539 + 1;
  • 6 467 453 786 818 724 539 ÷ 2 = 3 233 726 893 409 362 269 + 1;
  • 3 233 726 893 409 362 269 ÷ 2 = 1 616 863 446 704 681 134 + 1;
  • 1 616 863 446 704 681 134 ÷ 2 = 808 431 723 352 340 567 + 0;
  • 808 431 723 352 340 567 ÷ 2 = 404 215 861 676 170 283 + 1;
  • 404 215 861 676 170 283 ÷ 2 = 202 107 930 838 085 141 + 1;
  • 202 107 930 838 085 141 ÷ 2 = 101 053 965 419 042 570 + 1;
  • 101 053 965 419 042 570 ÷ 2 = 50 526 982 709 521 285 + 0;
  • 50 526 982 709 521 285 ÷ 2 = 25 263 491 354 760 642 + 1;
  • 25 263 491 354 760 642 ÷ 2 = 12 631 745 677 380 321 + 0;
  • 12 631 745 677 380 321 ÷ 2 = 6 315 872 838 690 160 + 1;
  • 6 315 872 838 690 160 ÷ 2 = 3 157 936 419 345 080 + 0;
  • 3 157 936 419 345 080 ÷ 2 = 1 578 968 209 672 540 + 0;
  • 1 578 968 209 672 540 ÷ 2 = 789 484 104 836 270 + 0;
  • 789 484 104 836 270 ÷ 2 = 394 742 052 418 135 + 0;
  • 394 742 052 418 135 ÷ 2 = 197 371 026 209 067 + 1;
  • 197 371 026 209 067 ÷ 2 = 98 685 513 104 533 + 1;
  • 98 685 513 104 533 ÷ 2 = 49 342 756 552 266 + 1;
  • 49 342 756 552 266 ÷ 2 = 24 671 378 276 133 + 0;
  • 24 671 378 276 133 ÷ 2 = 12 335 689 138 066 + 1;
  • 12 335 689 138 066 ÷ 2 = 6 167 844 569 033 + 0;
  • 6 167 844 569 033 ÷ 2 = 3 083 922 284 516 + 1;
  • 3 083 922 284 516 ÷ 2 = 1 541 961 142 258 + 0;
  • 1 541 961 142 258 ÷ 2 = 770 980 571 129 + 0;
  • 770 980 571 129 ÷ 2 = 385 490 285 564 + 1;
  • 385 490 285 564 ÷ 2 = 192 745 142 782 + 0;
  • 192 745 142 782 ÷ 2 = 96 372 571 391 + 0;
  • 96 372 571 391 ÷ 2 = 48 186 285 695 + 1;
  • 48 186 285 695 ÷ 2 = 24 093 142 847 + 1;
  • 24 093 142 847 ÷ 2 = 12 046 571 423 + 1;
  • 12 046 571 423 ÷ 2 = 6 023 285 711 + 1;
  • 6 023 285 711 ÷ 2 = 3 011 642 855 + 1;
  • 3 011 642 855 ÷ 2 = 1 505 821 427 + 1;
  • 1 505 821 427 ÷ 2 = 752 910 713 + 1;
  • 752 910 713 ÷ 2 = 376 455 356 + 1;
  • 376 455 356 ÷ 2 = 188 227 678 + 0;
  • 188 227 678 ÷ 2 = 94 113 839 + 0;
  • 94 113 839 ÷ 2 = 47 056 919 + 1;
  • 47 056 919 ÷ 2 = 23 528 459 + 1;
  • 23 528 459 ÷ 2 = 11 764 229 + 1;
  • 11 764 229 ÷ 2 = 5 882 114 + 1;
  • 5 882 114 ÷ 2 = 2 941 057 + 0;
  • 2 941 057 ÷ 2 = 1 470 528 + 1;
  • 1 470 528 ÷ 2 = 735 264 + 0;
  • 735 264 ÷ 2 = 367 632 + 0;
  • 367 632 ÷ 2 = 183 816 + 0;
  • 183 816 ÷ 2 = 91 908 + 0;
  • 91 908 ÷ 2 = 45 954 + 0;
  • 45 954 ÷ 2 = 22 977 + 0;
  • 22 977 ÷ 2 = 11 488 + 1;
  • 11 488 ÷ 2 = 5 744 + 0;
  • 5 744 ÷ 2 = 2 872 + 0;
  • 2 872 ÷ 2 = 1 436 + 0;
  • 1 436 ÷ 2 = 718 + 0;
  • 718 ÷ 2 = 359 + 0;
  • 359 ÷ 2 = 179 + 1;
  • 179 ÷ 2 = 89 + 1;
  • 89 ÷ 2 = 44 + 1;
  • 44 ÷ 2 = 22 + 0;
  • 22 ÷ 2 = 11 + 0;
  • 11 ÷ 2 = 5 + 1;
  • 5 ÷ 2 = 2 + 1;
  • 2 ÷ 2 = 1 + 0;
  • 1 ÷ 2 = 0 + 1;

2. Construct the base 2 representation of the positive number.

Take all the remainders starting from the bottom of the list constructed above.

111 110 010 011 111 111 111 111 112 160(10) =


1 0110 0111 0000 0100 0000 1011 1100 1111 1111 0010 0101 0111 0000 1010 1110 1110 0010 1101 1110 1100 0111 0101 1110 0000(2)


3. Normalize the binary representation of the number.

Shift the decimal mark 96 positions to the left, so that only one non zero digit remains to the left of it:


111 110 010 011 111 111 111 111 112 160(10) =


1 0110 0111 0000 0100 0000 1011 1100 1111 1111 0010 0101 0111 0000 1010 1110 1110 0010 1101 1110 1100 0111 0101 1110 0000(2) =


1 0110 0111 0000 0100 0000 1011 1100 1111 1111 0010 0101 0111 0000 1010 1110 1110 0010 1101 1110 1100 0111 0101 1110 0000(2) × 20 =


1.0110 0111 0000 0100 0000 1011 1100 1111 1111 0010 0101 0111 0000 1010 1110 1110 0010 1101 1110 1100 0111 0101 1110 0000(2) × 296


4. Up to this moment, there are the following elements that would feed into the 32 bit single precision IEEE 754 binary floating point representation:

Sign 0 (a positive number)


Exponent (unadjusted): 96


Mantissa (not normalized):
1.0110 0111 0000 0100 0000 1011 1100 1111 1111 0010 0101 0111 0000 1010 1110 1110 0010 1101 1110 1100 0111 0101 1110 0000


5. Adjust the exponent.

Use the 8 bit excess/bias notation:


Exponent (adjusted) =


Exponent (unadjusted) + 2(8-1) - 1 =


96 + 2(8-1) - 1 =


(96 + 127)(10) =


223(10)


6. Convert the adjusted exponent from the decimal (base 10) to 8 bit binary.

Use the same technique of repeatedly dividing by 2:


  • division = quotient + remainder;
  • 223 ÷ 2 = 111 + 1;
  • 111 ÷ 2 = 55 + 1;
  • 55 ÷ 2 = 27 + 1;
  • 27 ÷ 2 = 13 + 1;
  • 13 ÷ 2 = 6 + 1;
  • 6 ÷ 2 = 3 + 0;
  • 3 ÷ 2 = 1 + 1;
  • 1 ÷ 2 = 0 + 1;

7. Construct the base 2 representation of the adjusted exponent.

Take all the remainders starting from the bottom of the list constructed above.


Exponent (adjusted) =


223(10) =


1101 1111(2)


8. Normalize the mantissa.

a) Remove the leading (the leftmost) bit, since it's allways 1, and the decimal point, if the case.


b) Adjust its length to 23 bits, by removing the excess bits, from the right (if any of the excess bits is set on 1, we are losing precision...).


Mantissa (normalized) =


1. 011 0011 1000 0010 0000 0101 1 1100 1111 1111 0010 0101 0111 0000 1010 1110 1110 0010 1101 1110 1100 0111 0101 1110 0000 =


011 0011 1000 0010 0000 0101


9. The three elements that make up the number's 32 bit single precision IEEE 754 binary floating point representation:

Sign (1 bit) =
0 (a positive number)


Exponent (8 bits) =
1101 1111


Mantissa (23 bits) =
011 0011 1000 0010 0000 0101


Decimal number 111 110 010 011 111 111 111 111 112 160 converted to 32 bit single precision IEEE 754 binary floating point representation:

0 - 1101 1111 - 011 0011 1000 0010 0000 0101


How to convert decimal numbers from base ten to 32 bit single precision IEEE 754 binary floating point standard

Follow the steps below to convert a base 10 decimal number to 32 bit single precision IEEE 754 binary floating point:

  • 1. If the number to be converted is negative, start with its the positive version.
  • 2. First convert the integer part. Divide repeatedly by 2 the base ten positive representation of the integer number that is to be converted to binary, until we get a quotient that is equal to zero, keeping track of each remainder.
  • 3. Construct the base 2 representation of the positive integer part of the number, by taking all the remainders of the previous dividing operations, starting from the bottom of the list constructed above. Thus, the last remainder of the divisions becomes the first symbol (the leftmost) of the base two number, while the first remainder becomes the last symbol (the rightmost).
  • 4. Then convert the fractional part. Multiply the number repeatedly by 2, until we get a fractional part that is equal to zero, keeping track of each integer part of the results.
  • 5. Construct the base 2 representation of the fractional part of the number by taking all the integer parts of the previous multiplying operations, starting from the top of the constructed list above (they should appear in the binary representation, from left to right, in the order they have been calculated).
  • 6. Normalize the binary representation of the number, by shifting the decimal point (or if you prefer, the decimal mark) "n" positions either to the left or to the right, so that only one non zero digit remains to the left of the decimal point.
  • 7. Adjust the exponent in 8 bit excess/bias notation and then convert it from decimal (base 10) to 8 bit binary, by using the same technique of repeatedly dividing by 2, as shown above:
    Exponent (adjusted) = Exponent (unadjusted) + 2(8-1) - 1
  • 8. Normalize mantissa, remove the leading (leftmost) bit, since it's allways '1' (and the decimal sign if the case) and adjust its length to 23 bits, either by removing the excess bits from the right (losing precision...) or by adding extra '0' bits to the right.
  • 9. Sign (it takes 1 bit) is either 1 for a negative or 0 for a positive number.

Example: convert the negative number -25.347 from decimal system (base ten) to 32 bit single precision IEEE 754 binary floating point:

  • 1. Start with the positive version of the number:

    |-25.347| = 25.347

  • 2. First convert the integer part, 25. Divide it repeatedly by 2, keeping track of each remainder, until we get a quotient that is equal to zero:
    • division = quotient + remainder;
    • 25 ÷ 2 = 12 + 1;
    • 12 ÷ 2 = 6 + 0;
    • 6 ÷ 2 = 3 + 0;
    • 3 ÷ 2 = 1 + 1;
    • 1 ÷ 2 = 0 + 1;
    • We have encountered a quotient that is ZERO => FULL STOP
  • 3. Construct the base 2 representation of the integer part of the number by taking all the remainders of the previous dividing operations, starting from the bottom of the list constructed above:

    25(10) = 1 1001(2)

  • 4. Then convert the fractional part, 0.347. Multiply repeatedly by 2, keeping track of each integer part of the results, until we get a fractional part that is equal to zero:
    • #) multiplying = integer + fractional part;
    • 1) 0.347 × 2 = 0 + 0.694;
    • 2) 0.694 × 2 = 1 + 0.388;
    • 3) 0.388 × 2 = 0 + 0.776;
    • 4) 0.776 × 2 = 1 + 0.552;
    • 5) 0.552 × 2 = 1 + 0.104;
    • 6) 0.104 × 2 = 0 + 0.208;
    • 7) 0.208 × 2 = 0 + 0.416;
    • 8) 0.416 × 2 = 0 + 0.832;
    • 9) 0.832 × 2 = 1 + 0.664;
    • 10) 0.664 × 2 = 1 + 0.328;
    • 11) 0.328 × 2 = 0 + 0.656;
    • 12) 0.656 × 2 = 1 + 0.312;
    • 13) 0.312 × 2 = 0 + 0.624;
    • 14) 0.624 × 2 = 1 + 0.248;
    • 15) 0.248 × 2 = 0 + 0.496;
    • 16) 0.496 × 2 = 0 + 0.992;
    • 17) 0.992 × 2 = 1 + 0.984;
    • 18) 0.984 × 2 = 1 + 0.968;
    • 19) 0.968 × 2 = 1 + 0.936;
    • 20) 0.936 × 2 = 1 + 0.872;
    • 21) 0.872 × 2 = 1 + 0.744;
    • 22) 0.744 × 2 = 1 + 0.488;
    • 23) 0.488 × 2 = 0 + 0.976;
    • 24) 0.976 × 2 = 1 + 0.952;
    • We didn't get any fractional part that was equal to zero. But we had enough iterations (over Mantissa limit = 23) and at least one integer part that was different from zero => FULL STOP (losing precision...).
  • 5. Construct the base 2 representation of the fractional part of the number, by taking all the integer parts of the previous multiplying operations, starting from the top of the constructed list above:

    0.347(10) = 0.0101 1000 1101 0100 1111 1101(2)

  • 6. Summarizing - the positive number before normalization:

    25.347(10) = 1 1001.0101 1000 1101 0100 1111 1101(2)

  • 7. Normalize the binary representation of the number, shifting the decimal point 4 positions to the left so that only one non-zero digit stays to the left of the decimal point:

    25.347(10) =
    1 1001.0101 1000 1101 0100 1111 1101(2) =
    1 1001.0101 1000 1101 0100 1111 1101(2) × 20 =
    1.1001 0101 1000 1101 0100 1111 1101(2) × 24

  • 8. Up to this moment, there are the following elements that would feed into the 32 bit single precision IEEE 754 binary floating point:

    Sign: 1 (a negative number)

    Exponent (unadjusted): 4

    Mantissa (not-normalized): 1.1001 0101 1000 1101 0100 1111 1101

  • 9. Adjust the exponent in 8 bit excess/bias notation and then convert it from decimal (base 10) to 8 bit binary (base 2), by using the same technique of repeatedly dividing it by 2, as already demonstrated above:

    Exponent (adjusted) = Exponent (unadjusted) + 2(8-1) - 1 = (4 + 127)(10) = 131(10) =
    1000 0011(2)

  • 10. Normalize the mantissa, remove the leading (leftmost) bit, since it's allways '1' (and the decimal point) and adjust its length to 23 bits, by removing the excess bits from the right (losing precision...):

    Mantissa (not-normalized): 1.1001 0101 1000 1101 0100 1111 1101

    Mantissa (normalized): 100 1010 1100 0110 1010 0111

  • Conclusion:

    Sign (1 bit) = 1 (a negative number)

    Exponent (8 bits) = 1000 0011

    Mantissa (23 bits) = 100 1010 1100 0110 1010 0111

  • Number -25.347, converted from the decimal system (base 10) to 32 bit single precision IEEE 754 binary floating point =
    1 - 1000 0011 - 100 1010 1100 0110 1010 0111