32bit IEEE 754: Decimal ↗ Single Precision Floating Point Binary: 1 111 000 009 999 999 999 999 999 999 937 Convert the Number to 32 Bit Single Precision IEEE 754 Binary Floating Point Representation Standard, From a Base 10 Decimal System Number

Number 1 111 000 009 999 999 999 999 999 999 937(10) converted and written in 32 bit single precision IEEE 754 binary floating point representation (1 bit for sign, 8 bits for exponent, 23 bits for mantissa)

1. Divide the number repeatedly by 2.

Keep track of each remainder.

We stop when we get a quotient that is equal to zero.


  • division = quotient + remainder;
  • 1 111 000 009 999 999 999 999 999 999 937 ÷ 2 = 555 500 004 999 999 999 999 999 999 968 + 1;
  • 555 500 004 999 999 999 999 999 999 968 ÷ 2 = 277 750 002 499 999 999 999 999 999 984 + 0;
  • 277 750 002 499 999 999 999 999 999 984 ÷ 2 = 138 875 001 249 999 999 999 999 999 992 + 0;
  • 138 875 001 249 999 999 999 999 999 992 ÷ 2 = 69 437 500 624 999 999 999 999 999 996 + 0;
  • 69 437 500 624 999 999 999 999 999 996 ÷ 2 = 34 718 750 312 499 999 999 999 999 998 + 0;
  • 34 718 750 312 499 999 999 999 999 998 ÷ 2 = 17 359 375 156 249 999 999 999 999 999 + 0;
  • 17 359 375 156 249 999 999 999 999 999 ÷ 2 = 8 679 687 578 124 999 999 999 999 999 + 1;
  • 8 679 687 578 124 999 999 999 999 999 ÷ 2 = 4 339 843 789 062 499 999 999 999 999 + 1;
  • 4 339 843 789 062 499 999 999 999 999 ÷ 2 = 2 169 921 894 531 249 999 999 999 999 + 1;
  • 2 169 921 894 531 249 999 999 999 999 ÷ 2 = 1 084 960 947 265 624 999 999 999 999 + 1;
  • 1 084 960 947 265 624 999 999 999 999 ÷ 2 = 542 480 473 632 812 499 999 999 999 + 1;
  • 542 480 473 632 812 499 999 999 999 ÷ 2 = 271 240 236 816 406 249 999 999 999 + 1;
  • 271 240 236 816 406 249 999 999 999 ÷ 2 = 135 620 118 408 203 124 999 999 999 + 1;
  • 135 620 118 408 203 124 999 999 999 ÷ 2 = 67 810 059 204 101 562 499 999 999 + 1;
  • 67 810 059 204 101 562 499 999 999 ÷ 2 = 33 905 029 602 050 781 249 999 999 + 1;
  • 33 905 029 602 050 781 249 999 999 ÷ 2 = 16 952 514 801 025 390 624 999 999 + 1;
  • 16 952 514 801 025 390 624 999 999 ÷ 2 = 8 476 257 400 512 695 312 499 999 + 1;
  • 8 476 257 400 512 695 312 499 999 ÷ 2 = 4 238 128 700 256 347 656 249 999 + 1;
  • 4 238 128 700 256 347 656 249 999 ÷ 2 = 2 119 064 350 128 173 828 124 999 + 1;
  • 2 119 064 350 128 173 828 124 999 ÷ 2 = 1 059 532 175 064 086 914 062 499 + 1;
  • 1 059 532 175 064 086 914 062 499 ÷ 2 = 529 766 087 532 043 457 031 249 + 1;
  • 529 766 087 532 043 457 031 249 ÷ 2 = 264 883 043 766 021 728 515 624 + 1;
  • 264 883 043 766 021 728 515 624 ÷ 2 = 132 441 521 883 010 864 257 812 + 0;
  • 132 441 521 883 010 864 257 812 ÷ 2 = 66 220 760 941 505 432 128 906 + 0;
  • 66 220 760 941 505 432 128 906 ÷ 2 = 33 110 380 470 752 716 064 453 + 0;
  • 33 110 380 470 752 716 064 453 ÷ 2 = 16 555 190 235 376 358 032 226 + 1;
  • 16 555 190 235 376 358 032 226 ÷ 2 = 8 277 595 117 688 179 016 113 + 0;
  • 8 277 595 117 688 179 016 113 ÷ 2 = 4 138 797 558 844 089 508 056 + 1;
  • 4 138 797 558 844 089 508 056 ÷ 2 = 2 069 398 779 422 044 754 028 + 0;
  • 2 069 398 779 422 044 754 028 ÷ 2 = 1 034 699 389 711 022 377 014 + 0;
  • 1 034 699 389 711 022 377 014 ÷ 2 = 517 349 694 855 511 188 507 + 0;
  • 517 349 694 855 511 188 507 ÷ 2 = 258 674 847 427 755 594 253 + 1;
  • 258 674 847 427 755 594 253 ÷ 2 = 129 337 423 713 877 797 126 + 1;
  • 129 337 423 713 877 797 126 ÷ 2 = 64 668 711 856 938 898 563 + 0;
  • 64 668 711 856 938 898 563 ÷ 2 = 32 334 355 928 469 449 281 + 1;
  • 32 334 355 928 469 449 281 ÷ 2 = 16 167 177 964 234 724 640 + 1;
  • 16 167 177 964 234 724 640 ÷ 2 = 8 083 588 982 117 362 320 + 0;
  • 8 083 588 982 117 362 320 ÷ 2 = 4 041 794 491 058 681 160 + 0;
  • 4 041 794 491 058 681 160 ÷ 2 = 2 020 897 245 529 340 580 + 0;
  • 2 020 897 245 529 340 580 ÷ 2 = 1 010 448 622 764 670 290 + 0;
  • 1 010 448 622 764 670 290 ÷ 2 = 505 224 311 382 335 145 + 0;
  • 505 224 311 382 335 145 ÷ 2 = 252 612 155 691 167 572 + 1;
  • 252 612 155 691 167 572 ÷ 2 = 126 306 077 845 583 786 + 0;
  • 126 306 077 845 583 786 ÷ 2 = 63 153 038 922 791 893 + 0;
  • 63 153 038 922 791 893 ÷ 2 = 31 576 519 461 395 946 + 1;
  • 31 576 519 461 395 946 ÷ 2 = 15 788 259 730 697 973 + 0;
  • 15 788 259 730 697 973 ÷ 2 = 7 894 129 865 348 986 + 1;
  • 7 894 129 865 348 986 ÷ 2 = 3 947 064 932 674 493 + 0;
  • 3 947 064 932 674 493 ÷ 2 = 1 973 532 466 337 246 + 1;
  • 1 973 532 466 337 246 ÷ 2 = 986 766 233 168 623 + 0;
  • 986 766 233 168 623 ÷ 2 = 493 383 116 584 311 + 1;
  • 493 383 116 584 311 ÷ 2 = 246 691 558 292 155 + 1;
  • 246 691 558 292 155 ÷ 2 = 123 345 779 146 077 + 1;
  • 123 345 779 146 077 ÷ 2 = 61 672 889 573 038 + 1;
  • 61 672 889 573 038 ÷ 2 = 30 836 444 786 519 + 0;
  • 30 836 444 786 519 ÷ 2 = 15 418 222 393 259 + 1;
  • 15 418 222 393 259 ÷ 2 = 7 709 111 196 629 + 1;
  • 7 709 111 196 629 ÷ 2 = 3 854 555 598 314 + 1;
  • 3 854 555 598 314 ÷ 2 = 1 927 277 799 157 + 0;
  • 1 927 277 799 157 ÷ 2 = 963 638 899 578 + 1;
  • 963 638 899 578 ÷ 2 = 481 819 449 789 + 0;
  • 481 819 449 789 ÷ 2 = 240 909 724 894 + 1;
  • 240 909 724 894 ÷ 2 = 120 454 862 447 + 0;
  • 120 454 862 447 ÷ 2 = 60 227 431 223 + 1;
  • 60 227 431 223 ÷ 2 = 30 113 715 611 + 1;
  • 30 113 715 611 ÷ 2 = 15 056 857 805 + 1;
  • 15 056 857 805 ÷ 2 = 7 528 428 902 + 1;
  • 7 528 428 902 ÷ 2 = 3 764 214 451 + 0;
  • 3 764 214 451 ÷ 2 = 1 882 107 225 + 1;
  • 1 882 107 225 ÷ 2 = 941 053 612 + 1;
  • 941 053 612 ÷ 2 = 470 526 806 + 0;
  • 470 526 806 ÷ 2 = 235 263 403 + 0;
  • 235 263 403 ÷ 2 = 117 631 701 + 1;
  • 117 631 701 ÷ 2 = 58 815 850 + 1;
  • 58 815 850 ÷ 2 = 29 407 925 + 0;
  • 29 407 925 ÷ 2 = 14 703 962 + 1;
  • 14 703 962 ÷ 2 = 7 351 981 + 0;
  • 7 351 981 ÷ 2 = 3 675 990 + 1;
  • 3 675 990 ÷ 2 = 1 837 995 + 0;
  • 1 837 995 ÷ 2 = 918 997 + 1;
  • 918 997 ÷ 2 = 459 498 + 1;
  • 459 498 ÷ 2 = 229 749 + 0;
  • 229 749 ÷ 2 = 114 874 + 1;
  • 114 874 ÷ 2 = 57 437 + 0;
  • 57 437 ÷ 2 = 28 718 + 1;
  • 28 718 ÷ 2 = 14 359 + 0;
  • 14 359 ÷ 2 = 7 179 + 1;
  • 7 179 ÷ 2 = 3 589 + 1;
  • 3 589 ÷ 2 = 1 794 + 1;
  • 1 794 ÷ 2 = 897 + 0;
  • 897 ÷ 2 = 448 + 1;
  • 448 ÷ 2 = 224 + 0;
  • 224 ÷ 2 = 112 + 0;
  • 112 ÷ 2 = 56 + 0;
  • 56 ÷ 2 = 28 + 0;
  • 28 ÷ 2 = 14 + 0;
  • 14 ÷ 2 = 7 + 0;
  • 7 ÷ 2 = 3 + 1;
  • 3 ÷ 2 = 1 + 1;
  • 1 ÷ 2 = 0 + 1;

2. Construct the base 2 representation of the positive number.

Take all the remainders starting from the bottom of the list constructed above.


1 111 000 009 999 999 999 999 999 999 937(10) =


1110 0000 0101 1101 0101 1010 1011 0011 0111 1010 1011 1011 1101 0101 0010 0000 1101 1000 1010 0011 1111 1111 1111 1100 0001(2)


3. Normalize the binary representation of the number.

Shift the decimal mark 99 positions to the left, so that only one non zero digit remains to the left of it:


1 111 000 009 999 999 999 999 999 999 937(10) =


1110 0000 0101 1101 0101 1010 1011 0011 0111 1010 1011 1011 1101 0101 0010 0000 1101 1000 1010 0011 1111 1111 1111 1100 0001(2) =


1110 0000 0101 1101 0101 1010 1011 0011 0111 1010 1011 1011 1101 0101 0010 0000 1101 1000 1010 0011 1111 1111 1111 1100 0001(2) × 20 =


1.1100 0000 1011 1010 1011 0101 0110 0110 1111 0101 0111 0111 1010 1010 0100 0001 1011 0001 0100 0111 1111 1111 1111 1000 001(2) × 299


4. Up to this moment, there are the following elements that would feed into the 32 bit single precision IEEE 754 binary floating point representation:

Sign 0 (a positive number)


Exponent (unadjusted): 99


Mantissa (not normalized):
1.1100 0000 1011 1010 1011 0101 0110 0110 1111 0101 0111 0111 1010 1010 0100 0001 1011 0001 0100 0111 1111 1111 1111 1000 001


5. Adjust the exponent.

Use the 8 bit excess/bias notation:


Exponent (adjusted) =


Exponent (unadjusted) + 2(8-1) - 1 =


99 + 2(8-1) - 1 =


(99 + 127)(10) =


226(10)


6. Convert the adjusted exponent from the decimal (base 10) to 8 bit binary.

Use the same technique of repeatedly dividing by 2:


  • division = quotient + remainder;
  • 226 ÷ 2 = 113 + 0;
  • 113 ÷ 2 = 56 + 1;
  • 56 ÷ 2 = 28 + 0;
  • 28 ÷ 2 = 14 + 0;
  • 14 ÷ 2 = 7 + 0;
  • 7 ÷ 2 = 3 + 1;
  • 3 ÷ 2 = 1 + 1;
  • 1 ÷ 2 = 0 + 1;

7. Construct the base 2 representation of the adjusted exponent.

Take all the remainders starting from the bottom of the list constructed above.


Exponent (adjusted) =


226(10) =


1110 0010(2)


8. Normalize the mantissa.

a) Remove the leading (the leftmost) bit, since it's allways 1, and the decimal point, if the case.


b) Adjust its length to 23 bits, by removing the excess bits, from the right (if any of the excess bits is set on 1, we are losing precision...).


Mantissa (normalized) =


1. 110 0000 0101 1101 0101 1010 1011 0011 0111 1010 1011 1011 1101 0101 0010 0000 1101 1000 1010 0011 1111 1111 1111 1100 0001 =


110 0000 0101 1101 0101 1010


9. The three elements that make up the number's 32 bit single precision IEEE 754 binary floating point representation:

Sign (1 bit) =
0 (a positive number)


Exponent (8 bits) =
1110 0010


Mantissa (23 bits) =
110 0000 0101 1101 0101 1010


The base ten decimal number 1 111 000 009 999 999 999 999 999 999 937 converted and written in 32 bit single precision IEEE 754 binary floating point representation:
0 - 1110 0010 - 110 0000 0101 1101 0101 1010

The latest decimal numbers converted from base ten to 32 bit single precision IEEE 754 floating point binary standard representation

Number -106.88 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard May 05 17:37 UTC (GMT)
Number 1 930 069 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard May 05 17:37 UTC (GMT)
Number 0.459 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard May 05 17:37 UTC (GMT)
Number 637 391 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard May 05 17:37 UTC (GMT)
Number 157.43 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard May 05 17:36 UTC (GMT)
Number -324.41 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard May 05 17:36 UTC (GMT)
Number 9 393 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard May 05 17:36 UTC (GMT)
Number 522.225 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard May 05 17:36 UTC (GMT)
Number 0.55 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard May 05 17:36 UTC (GMT)
Number 13.656 2 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard May 05 17:36 UTC (GMT)
All base ten decimal numbers converted to 32 bit single precision IEEE 754 binary floating point

How to convert decimal numbers from base ten to 32 bit single precision IEEE 754 binary floating point standard

Follow the steps below to convert a base 10 decimal number to 32 bit single precision IEEE 754 binary floating point:

  • 1. If the number to be converted is negative, start with its the positive version.
  • 2. First convert the integer part. Divide repeatedly by 2 the base ten positive representation of the integer number that is to be converted to binary, until we get a quotient that is equal to zero, keeping track of each remainder.
  • 3. Construct the base 2 representation of the positive integer part of the number, by taking all the remainders of the previous dividing operations, starting from the bottom of the list constructed above. Thus, the last remainder of the divisions becomes the first symbol (the leftmost) of the base two number, while the first remainder becomes the last symbol (the rightmost).
  • 4. Then convert the fractional part. Multiply the number repeatedly by 2, until we get a fractional part that is equal to zero, keeping track of each integer part of the results.
  • 5. Construct the base 2 representation of the fractional part of the number by taking all the integer parts of the previous multiplying operations, starting from the top of the constructed list above (they should appear in the binary representation, from left to right, in the order they have been calculated).
  • 6. Normalize the binary representation of the number, by shifting the decimal point (or if you prefer, the decimal mark) "n" positions either to the left or to the right, so that only one non zero digit remains to the left of the decimal point.
  • 7. Adjust the exponent in 8 bit excess/bias notation and then convert it from decimal (base 10) to 8 bit binary, by using the same technique of repeatedly dividing by 2, as shown above:
    Exponent (adjusted) = Exponent (unadjusted) + 2(8-1) - 1
  • 8. Normalize mantissa, remove the leading (leftmost) bit, since it's allways '1' (and the decimal sign if the case) and adjust its length to 23 bits, either by removing the excess bits from the right (losing precision...) or by adding extra '0' bits to the right.
  • 9. Sign (it takes 1 bit) is either 1 for a negative or 0 for a positive number.

Example: convert the negative number -25.347 from decimal system (base ten) to 32 bit single precision IEEE 754 binary floating point:

  • 1. Start with the positive version of the number:

    |-25.347| = 25.347

  • 2. First convert the integer part, 25. Divide it repeatedly by 2, keeping track of each remainder, until we get a quotient that is equal to zero:
    • division = quotient + remainder;
    • 25 ÷ 2 = 12 + 1;
    • 12 ÷ 2 = 6 + 0;
    • 6 ÷ 2 = 3 + 0;
    • 3 ÷ 2 = 1 + 1;
    • 1 ÷ 2 = 0 + 1;
    • We have encountered a quotient that is ZERO => FULL STOP
  • 3. Construct the base 2 representation of the integer part of the number by taking all the remainders of the previous dividing operations, starting from the bottom of the list constructed above:

    25(10) = 1 1001(2)

  • 4. Then convert the fractional part, 0.347. Multiply repeatedly by 2, keeping track of each integer part of the results, until we get a fractional part that is equal to zero:
    • #) multiplying = integer + fractional part;
    • 1) 0.347 × 2 = 0 + 0.694;
    • 2) 0.694 × 2 = 1 + 0.388;
    • 3) 0.388 × 2 = 0 + 0.776;
    • 4) 0.776 × 2 = 1 + 0.552;
    • 5) 0.552 × 2 = 1 + 0.104;
    • 6) 0.104 × 2 = 0 + 0.208;
    • 7) 0.208 × 2 = 0 + 0.416;
    • 8) 0.416 × 2 = 0 + 0.832;
    • 9) 0.832 × 2 = 1 + 0.664;
    • 10) 0.664 × 2 = 1 + 0.328;
    • 11) 0.328 × 2 = 0 + 0.656;
    • 12) 0.656 × 2 = 1 + 0.312;
    • 13) 0.312 × 2 = 0 + 0.624;
    • 14) 0.624 × 2 = 1 + 0.248;
    • 15) 0.248 × 2 = 0 + 0.496;
    • 16) 0.496 × 2 = 0 + 0.992;
    • 17) 0.992 × 2 = 1 + 0.984;
    • 18) 0.984 × 2 = 1 + 0.968;
    • 19) 0.968 × 2 = 1 + 0.936;
    • 20) 0.936 × 2 = 1 + 0.872;
    • 21) 0.872 × 2 = 1 + 0.744;
    • 22) 0.744 × 2 = 1 + 0.488;
    • 23) 0.488 × 2 = 0 + 0.976;
    • 24) 0.976 × 2 = 1 + 0.952;
    • We didn't get any fractional part that was equal to zero. But we had enough iterations (over Mantissa limit = 23) and at least one integer part that was different from zero => FULL STOP (losing precision...).
  • 5. Construct the base 2 representation of the fractional part of the number, by taking all the integer parts of the previous multiplying operations, starting from the top of the constructed list above:

    0.347(10) = 0.0101 1000 1101 0100 1111 1101(2)

  • 6. Summarizing - the positive number before normalization:

    25.347(10) = 1 1001.0101 1000 1101 0100 1111 1101(2)

  • 7. Normalize the binary representation of the number, shifting the decimal point 4 positions to the left so that only one non-zero digit stays to the left of the decimal point:

    25.347(10) =
    1 1001.0101 1000 1101 0100 1111 1101(2) =
    1 1001.0101 1000 1101 0100 1111 1101(2) × 20 =
    1.1001 0101 1000 1101 0100 1111 1101(2) × 24

  • 8. Up to this moment, there are the following elements that would feed into the 32 bit single precision IEEE 754 binary floating point:

    Sign: 1 (a negative number)

    Exponent (unadjusted): 4

    Mantissa (not-normalized): 1.1001 0101 1000 1101 0100 1111 1101

  • 9. Adjust the exponent in 8 bit excess/bias notation and then convert it from decimal (base 10) to 8 bit binary (base 2), by using the same technique of repeatedly dividing it by 2, as already demonstrated above:

    Exponent (adjusted) = Exponent (unadjusted) + 2(8-1) - 1 = (4 + 127)(10) = 131(10) =
    1000 0011(2)

  • 10. Normalize the mantissa, remove the leading (leftmost) bit, since it's allways '1' (and the decimal point) and adjust its length to 23 bits, by removing the excess bits from the right (losing precision...):

    Mantissa (not-normalized): 1.1001 0101 1000 1101 0100 1111 1101

    Mantissa (normalized): 100 1010 1100 0110 1010 0111

  • Conclusion:

    Sign (1 bit) = 1 (a negative number)

    Exponent (8 bits) = 1000 0011

    Mantissa (23 bits) = 100 1010 1100 0110 1010 0111

  • Number -25.347, converted from the decimal system (base 10) to 32 bit single precision IEEE 754 binary floating point =
    1 - 1000 0011 - 100 1010 1100 0110 1010 0111