32bit IEEE 754: Decimal ↗ Single Precision Floating Point Binary: 111 001 110 100 000 000 000 000 007 Convert the Number to 32 Bit Single Precision IEEE 754 Binary Floating Point Representation Standard, From a Base 10 Decimal System Number

Number 111 001 110 100 000 000 000 000 007(10) converted and written in 32 bit single precision IEEE 754 binary floating point representation (1 bit for sign, 8 bits for exponent, 23 bits for mantissa)

1. Divide the number repeatedly by 2.

Keep track of each remainder.

We stop when we get a quotient that is equal to zero.


  • division = quotient + remainder;
  • 111 001 110 100 000 000 000 000 007 ÷ 2 = 55 500 555 050 000 000 000 000 003 + 1;
  • 55 500 555 050 000 000 000 000 003 ÷ 2 = 27 750 277 525 000 000 000 000 001 + 1;
  • 27 750 277 525 000 000 000 000 001 ÷ 2 = 13 875 138 762 500 000 000 000 000 + 1;
  • 13 875 138 762 500 000 000 000 000 ÷ 2 = 6 937 569 381 250 000 000 000 000 + 0;
  • 6 937 569 381 250 000 000 000 000 ÷ 2 = 3 468 784 690 625 000 000 000 000 + 0;
  • 3 468 784 690 625 000 000 000 000 ÷ 2 = 1 734 392 345 312 500 000 000 000 + 0;
  • 1 734 392 345 312 500 000 000 000 ÷ 2 = 867 196 172 656 250 000 000 000 + 0;
  • 867 196 172 656 250 000 000 000 ÷ 2 = 433 598 086 328 125 000 000 000 + 0;
  • 433 598 086 328 125 000 000 000 ÷ 2 = 216 799 043 164 062 500 000 000 + 0;
  • 216 799 043 164 062 500 000 000 ÷ 2 = 108 399 521 582 031 250 000 000 + 0;
  • 108 399 521 582 031 250 000 000 ÷ 2 = 54 199 760 791 015 625 000 000 + 0;
  • 54 199 760 791 015 625 000 000 ÷ 2 = 27 099 880 395 507 812 500 000 + 0;
  • 27 099 880 395 507 812 500 000 ÷ 2 = 13 549 940 197 753 906 250 000 + 0;
  • 13 549 940 197 753 906 250 000 ÷ 2 = 6 774 970 098 876 953 125 000 + 0;
  • 6 774 970 098 876 953 125 000 ÷ 2 = 3 387 485 049 438 476 562 500 + 0;
  • 3 387 485 049 438 476 562 500 ÷ 2 = 1 693 742 524 719 238 281 250 + 0;
  • 1 693 742 524 719 238 281 250 ÷ 2 = 846 871 262 359 619 140 625 + 0;
  • 846 871 262 359 619 140 625 ÷ 2 = 423 435 631 179 809 570 312 + 1;
  • 423 435 631 179 809 570 312 ÷ 2 = 211 717 815 589 904 785 156 + 0;
  • 211 717 815 589 904 785 156 ÷ 2 = 105 858 907 794 952 392 578 + 0;
  • 105 858 907 794 952 392 578 ÷ 2 = 52 929 453 897 476 196 289 + 0;
  • 52 929 453 897 476 196 289 ÷ 2 = 26 464 726 948 738 098 144 + 1;
  • 26 464 726 948 738 098 144 ÷ 2 = 13 232 363 474 369 049 072 + 0;
  • 13 232 363 474 369 049 072 ÷ 2 = 6 616 181 737 184 524 536 + 0;
  • 6 616 181 737 184 524 536 ÷ 2 = 3 308 090 868 592 262 268 + 0;
  • 3 308 090 868 592 262 268 ÷ 2 = 1 654 045 434 296 131 134 + 0;
  • 1 654 045 434 296 131 134 ÷ 2 = 827 022 717 148 065 567 + 0;
  • 827 022 717 148 065 567 ÷ 2 = 413 511 358 574 032 783 + 1;
  • 413 511 358 574 032 783 ÷ 2 = 206 755 679 287 016 391 + 1;
  • 206 755 679 287 016 391 ÷ 2 = 103 377 839 643 508 195 + 1;
  • 103 377 839 643 508 195 ÷ 2 = 51 688 919 821 754 097 + 1;
  • 51 688 919 821 754 097 ÷ 2 = 25 844 459 910 877 048 + 1;
  • 25 844 459 910 877 048 ÷ 2 = 12 922 229 955 438 524 + 0;
  • 12 922 229 955 438 524 ÷ 2 = 6 461 114 977 719 262 + 0;
  • 6 461 114 977 719 262 ÷ 2 = 3 230 557 488 859 631 + 0;
  • 3 230 557 488 859 631 ÷ 2 = 1 615 278 744 429 815 + 1;
  • 1 615 278 744 429 815 ÷ 2 = 807 639 372 214 907 + 1;
  • 807 639 372 214 907 ÷ 2 = 403 819 686 107 453 + 1;
  • 403 819 686 107 453 ÷ 2 = 201 909 843 053 726 + 1;
  • 201 909 843 053 726 ÷ 2 = 100 954 921 526 863 + 0;
  • 100 954 921 526 863 ÷ 2 = 50 477 460 763 431 + 1;
  • 50 477 460 763 431 ÷ 2 = 25 238 730 381 715 + 1;
  • 25 238 730 381 715 ÷ 2 = 12 619 365 190 857 + 1;
  • 12 619 365 190 857 ÷ 2 = 6 309 682 595 428 + 1;
  • 6 309 682 595 428 ÷ 2 = 3 154 841 297 714 + 0;
  • 3 154 841 297 714 ÷ 2 = 1 577 420 648 857 + 0;
  • 1 577 420 648 857 ÷ 2 = 788 710 324 428 + 1;
  • 788 710 324 428 ÷ 2 = 394 355 162 214 + 0;
  • 394 355 162 214 ÷ 2 = 197 177 581 107 + 0;
  • 197 177 581 107 ÷ 2 = 98 588 790 553 + 1;
  • 98 588 790 553 ÷ 2 = 49 294 395 276 + 1;
  • 49 294 395 276 ÷ 2 = 24 647 197 638 + 0;
  • 24 647 197 638 ÷ 2 = 12 323 598 819 + 0;
  • 12 323 598 819 ÷ 2 = 6 161 799 409 + 1;
  • 6 161 799 409 ÷ 2 = 3 080 899 704 + 1;
  • 3 080 899 704 ÷ 2 = 1 540 449 852 + 0;
  • 1 540 449 852 ÷ 2 = 770 224 926 + 0;
  • 770 224 926 ÷ 2 = 385 112 463 + 0;
  • 385 112 463 ÷ 2 = 192 556 231 + 1;
  • 192 556 231 ÷ 2 = 96 278 115 + 1;
  • 96 278 115 ÷ 2 = 48 139 057 + 1;
  • 48 139 057 ÷ 2 = 24 069 528 + 1;
  • 24 069 528 ÷ 2 = 12 034 764 + 0;
  • 12 034 764 ÷ 2 = 6 017 382 + 0;
  • 6 017 382 ÷ 2 = 3 008 691 + 0;
  • 3 008 691 ÷ 2 = 1 504 345 + 1;
  • 1 504 345 ÷ 2 = 752 172 + 1;
  • 752 172 ÷ 2 = 376 086 + 0;
  • 376 086 ÷ 2 = 188 043 + 0;
  • 188 043 ÷ 2 = 94 021 + 1;
  • 94 021 ÷ 2 = 47 010 + 1;
  • 47 010 ÷ 2 = 23 505 + 0;
  • 23 505 ÷ 2 = 11 752 + 1;
  • 11 752 ÷ 2 = 5 876 + 0;
  • 5 876 ÷ 2 = 2 938 + 0;
  • 2 938 ÷ 2 = 1 469 + 0;
  • 1 469 ÷ 2 = 734 + 1;
  • 734 ÷ 2 = 367 + 0;
  • 367 ÷ 2 = 183 + 1;
  • 183 ÷ 2 = 91 + 1;
  • 91 ÷ 2 = 45 + 1;
  • 45 ÷ 2 = 22 + 1;
  • 22 ÷ 2 = 11 + 0;
  • 11 ÷ 2 = 5 + 1;
  • 5 ÷ 2 = 2 + 1;
  • 2 ÷ 2 = 1 + 0;
  • 1 ÷ 2 = 0 + 1;

2. Construct the base 2 representation of the positive number.

Take all the remainders starting from the bottom of the list constructed above.


111 001 110 100 000 000 000 000 007(10) =


101 1011 1101 0001 0110 0110 0011 1100 0110 0110 0100 1111 0111 1000 1111 1000 0010 0010 0000 0000 0000 0111(2)


3. Normalize the binary representation of the number.

Shift the decimal mark 86 positions to the left, so that only one non zero digit remains to the left of it:


111 001 110 100 000 000 000 000 007(10) =


101 1011 1101 0001 0110 0110 0011 1100 0110 0110 0100 1111 0111 1000 1111 1000 0010 0010 0000 0000 0000 0111(2) =


101 1011 1101 0001 0110 0110 0011 1100 0110 0110 0100 1111 0111 1000 1111 1000 0010 0010 0000 0000 0000 0111(2) × 20 =


1.0110 1111 0100 0101 1001 1000 1111 0001 1001 1001 0011 1101 1110 0011 1110 0000 1000 1000 0000 0000 0001 11(2) × 286


4. Up to this moment, there are the following elements that would feed into the 32 bit single precision IEEE 754 binary floating point representation:

Sign 0 (a positive number)


Exponent (unadjusted): 86


Mantissa (not normalized):
1.0110 1111 0100 0101 1001 1000 1111 0001 1001 1001 0011 1101 1110 0011 1110 0000 1000 1000 0000 0000 0001 11


5. Adjust the exponent.

Use the 8 bit excess/bias notation:


Exponent (adjusted) =


Exponent (unadjusted) + 2(8-1) - 1 =


86 + 2(8-1) - 1 =


(86 + 127)(10) =


213(10)


6. Convert the adjusted exponent from the decimal (base 10) to 8 bit binary.

Use the same technique of repeatedly dividing by 2:


  • division = quotient + remainder;
  • 213 ÷ 2 = 106 + 1;
  • 106 ÷ 2 = 53 + 0;
  • 53 ÷ 2 = 26 + 1;
  • 26 ÷ 2 = 13 + 0;
  • 13 ÷ 2 = 6 + 1;
  • 6 ÷ 2 = 3 + 0;
  • 3 ÷ 2 = 1 + 1;
  • 1 ÷ 2 = 0 + 1;

7. Construct the base 2 representation of the adjusted exponent.

Take all the remainders starting from the bottom of the list constructed above.


Exponent (adjusted) =


213(10) =


1101 0101(2)


8. Normalize the mantissa.

a) Remove the leading (the leftmost) bit, since it's allways 1, and the decimal point, if the case.


b) Adjust its length to 23 bits, by removing the excess bits, from the right (if any of the excess bits is set on 1, we are losing precision...).


Mantissa (normalized) =


1. 011 0111 1010 0010 1100 1100 011 1100 0110 0110 0100 1111 0111 1000 1111 1000 0010 0010 0000 0000 0000 0111 =


011 0111 1010 0010 1100 1100


9. The three elements that make up the number's 32 bit single precision IEEE 754 binary floating point representation:

Sign (1 bit) =
0 (a positive number)


Exponent (8 bits) =
1101 0101


Mantissa (23 bits) =
011 0111 1010 0010 1100 1100


The base ten decimal number 111 001 110 100 000 000 000 000 007 converted and written in 32 bit single precision IEEE 754 binary floating point representation:
0 - 1101 0101 - 011 0111 1010 0010 1100 1100

The latest decimal numbers converted from base ten to 32 bit single precision IEEE 754 floating point binary standard representation

Number 10 111 001 000 000 110 001 001 001 101 017 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard May 19 17:26 UTC (GMT)
Number 0.108 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard May 19 17:26 UTC (GMT)
Number 42 333 132 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard May 19 17:26 UTC (GMT)
Number -11 690 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard May 19 17:25 UTC (GMT)
Number 13 367 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard May 19 17:25 UTC (GMT)
Number 4 212 400 021 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard May 19 17:25 UTC (GMT)
Number 101 637 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard May 19 17:25 UTC (GMT)
Number 621 319 732 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard May 19 17:25 UTC (GMT)
Number 34 031 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard May 19 17:25 UTC (GMT)
Number 187.176 757 812 5 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard May 19 17:25 UTC (GMT)
All base ten decimal numbers converted to 32 bit single precision IEEE 754 binary floating point

How to convert decimal numbers from base ten to 32 bit single precision IEEE 754 binary floating point standard

Follow the steps below to convert a base 10 decimal number to 32 bit single precision IEEE 754 binary floating point:

  • 1. If the number to be converted is negative, start with its the positive version.
  • 2. First convert the integer part. Divide repeatedly by 2 the base ten positive representation of the integer number that is to be converted to binary, until we get a quotient that is equal to zero, keeping track of each remainder.
  • 3. Construct the base 2 representation of the positive integer part of the number, by taking all the remainders of the previous dividing operations, starting from the bottom of the list constructed above. Thus, the last remainder of the divisions becomes the first symbol (the leftmost) of the base two number, while the first remainder becomes the last symbol (the rightmost).
  • 4. Then convert the fractional part. Multiply the number repeatedly by 2, until we get a fractional part that is equal to zero, keeping track of each integer part of the results.
  • 5. Construct the base 2 representation of the fractional part of the number by taking all the integer parts of the previous multiplying operations, starting from the top of the constructed list above (they should appear in the binary representation, from left to right, in the order they have been calculated).
  • 6. Normalize the binary representation of the number, by shifting the decimal point (or if you prefer, the decimal mark) "n" positions either to the left or to the right, so that only one non zero digit remains to the left of the decimal point.
  • 7. Adjust the exponent in 8 bit excess/bias notation and then convert it from decimal (base 10) to 8 bit binary, by using the same technique of repeatedly dividing by 2, as shown above:
    Exponent (adjusted) = Exponent (unadjusted) + 2(8-1) - 1
  • 8. Normalize mantissa, remove the leading (leftmost) bit, since it's allways '1' (and the decimal sign if the case) and adjust its length to 23 bits, either by removing the excess bits from the right (losing precision...) or by adding extra '0' bits to the right.
  • 9. Sign (it takes 1 bit) is either 1 for a negative or 0 for a positive number.

Example: convert the negative number -25.347 from decimal system (base ten) to 32 bit single precision IEEE 754 binary floating point:

  • 1. Start with the positive version of the number:

    |-25.347| = 25.347

  • 2. First convert the integer part, 25. Divide it repeatedly by 2, keeping track of each remainder, until we get a quotient that is equal to zero:
    • division = quotient + remainder;
    • 25 ÷ 2 = 12 + 1;
    • 12 ÷ 2 = 6 + 0;
    • 6 ÷ 2 = 3 + 0;
    • 3 ÷ 2 = 1 + 1;
    • 1 ÷ 2 = 0 + 1;
    • We have encountered a quotient that is ZERO => FULL STOP
  • 3. Construct the base 2 representation of the integer part of the number by taking all the remainders of the previous dividing operations, starting from the bottom of the list constructed above:

    25(10) = 1 1001(2)

  • 4. Then convert the fractional part, 0.347. Multiply repeatedly by 2, keeping track of each integer part of the results, until we get a fractional part that is equal to zero:
    • #) multiplying = integer + fractional part;
    • 1) 0.347 × 2 = 0 + 0.694;
    • 2) 0.694 × 2 = 1 + 0.388;
    • 3) 0.388 × 2 = 0 + 0.776;
    • 4) 0.776 × 2 = 1 + 0.552;
    • 5) 0.552 × 2 = 1 + 0.104;
    • 6) 0.104 × 2 = 0 + 0.208;
    • 7) 0.208 × 2 = 0 + 0.416;
    • 8) 0.416 × 2 = 0 + 0.832;
    • 9) 0.832 × 2 = 1 + 0.664;
    • 10) 0.664 × 2 = 1 + 0.328;
    • 11) 0.328 × 2 = 0 + 0.656;
    • 12) 0.656 × 2 = 1 + 0.312;
    • 13) 0.312 × 2 = 0 + 0.624;
    • 14) 0.624 × 2 = 1 + 0.248;
    • 15) 0.248 × 2 = 0 + 0.496;
    • 16) 0.496 × 2 = 0 + 0.992;
    • 17) 0.992 × 2 = 1 + 0.984;
    • 18) 0.984 × 2 = 1 + 0.968;
    • 19) 0.968 × 2 = 1 + 0.936;
    • 20) 0.936 × 2 = 1 + 0.872;
    • 21) 0.872 × 2 = 1 + 0.744;
    • 22) 0.744 × 2 = 1 + 0.488;
    • 23) 0.488 × 2 = 0 + 0.976;
    • 24) 0.976 × 2 = 1 + 0.952;
    • We didn't get any fractional part that was equal to zero. But we had enough iterations (over Mantissa limit = 23) and at least one integer part that was different from zero => FULL STOP (losing precision...).
  • 5. Construct the base 2 representation of the fractional part of the number, by taking all the integer parts of the previous multiplying operations, starting from the top of the constructed list above:

    0.347(10) = 0.0101 1000 1101 0100 1111 1101(2)

  • 6. Summarizing - the positive number before normalization:

    25.347(10) = 1 1001.0101 1000 1101 0100 1111 1101(2)

  • 7. Normalize the binary representation of the number, shifting the decimal point 4 positions to the left so that only one non-zero digit stays to the left of the decimal point:

    25.347(10) =
    1 1001.0101 1000 1101 0100 1111 1101(2) =
    1 1001.0101 1000 1101 0100 1111 1101(2) × 20 =
    1.1001 0101 1000 1101 0100 1111 1101(2) × 24

  • 8. Up to this moment, there are the following elements that would feed into the 32 bit single precision IEEE 754 binary floating point:

    Sign: 1 (a negative number)

    Exponent (unadjusted): 4

    Mantissa (not-normalized): 1.1001 0101 1000 1101 0100 1111 1101

  • 9. Adjust the exponent in 8 bit excess/bias notation and then convert it from decimal (base 10) to 8 bit binary (base 2), by using the same technique of repeatedly dividing it by 2, as already demonstrated above:

    Exponent (adjusted) = Exponent (unadjusted) + 2(8-1) - 1 = (4 + 127)(10) = 131(10) =
    1000 0011(2)

  • 10. Normalize the mantissa, remove the leading (leftmost) bit, since it's allways '1' (and the decimal point) and adjust its length to 23 bits, by removing the excess bits from the right (losing precision...):

    Mantissa (not-normalized): 1.1001 0101 1000 1101 0100 1111 1101

    Mantissa (normalized): 100 1010 1100 0110 1010 0111

  • Conclusion:

    Sign (1 bit) = 1 (a negative number)

    Exponent (8 bits) = 1000 0011

    Mantissa (23 bits) = 100 1010 1100 0110 1010 0111

  • Number -25.347, converted from the decimal system (base 10) to 32 bit single precision IEEE 754 binary floating point =
    1 - 1000 0011 - 100 1010 1100 0110 1010 0111