32bit IEEE 754: Decimal ↗ Single Precision Floating Point Binary: 1 110 000 110 010 111 111 022 Convert the Number to 32 Bit Single Precision IEEE 754 Binary Floating Point Representation Standard, From a Base 10 Decimal System Number

Number 1 110 000 110 010 111 111 022(10) converted and written in 32 bit single precision IEEE 754 binary floating point representation (1 bit for sign, 8 bits for exponent, 23 bits for mantissa)

1. Divide the number repeatedly by 2.

Keep track of each remainder.

We stop when we get a quotient that is equal to zero.


  • division = quotient + remainder;
  • 1 110 000 110 010 111 111 022 ÷ 2 = 555 000 055 005 055 555 511 + 0;
  • 555 000 055 005 055 555 511 ÷ 2 = 277 500 027 502 527 777 755 + 1;
  • 277 500 027 502 527 777 755 ÷ 2 = 138 750 013 751 263 888 877 + 1;
  • 138 750 013 751 263 888 877 ÷ 2 = 69 375 006 875 631 944 438 + 1;
  • 69 375 006 875 631 944 438 ÷ 2 = 34 687 503 437 815 972 219 + 0;
  • 34 687 503 437 815 972 219 ÷ 2 = 17 343 751 718 907 986 109 + 1;
  • 17 343 751 718 907 986 109 ÷ 2 = 8 671 875 859 453 993 054 + 1;
  • 8 671 875 859 453 993 054 ÷ 2 = 4 335 937 929 726 996 527 + 0;
  • 4 335 937 929 726 996 527 ÷ 2 = 2 167 968 964 863 498 263 + 1;
  • 2 167 968 964 863 498 263 ÷ 2 = 1 083 984 482 431 749 131 + 1;
  • 1 083 984 482 431 749 131 ÷ 2 = 541 992 241 215 874 565 + 1;
  • 541 992 241 215 874 565 ÷ 2 = 270 996 120 607 937 282 + 1;
  • 270 996 120 607 937 282 ÷ 2 = 135 498 060 303 968 641 + 0;
  • 135 498 060 303 968 641 ÷ 2 = 67 749 030 151 984 320 + 1;
  • 67 749 030 151 984 320 ÷ 2 = 33 874 515 075 992 160 + 0;
  • 33 874 515 075 992 160 ÷ 2 = 16 937 257 537 996 080 + 0;
  • 16 937 257 537 996 080 ÷ 2 = 8 468 628 768 998 040 + 0;
  • 8 468 628 768 998 040 ÷ 2 = 4 234 314 384 499 020 + 0;
  • 4 234 314 384 499 020 ÷ 2 = 2 117 157 192 249 510 + 0;
  • 2 117 157 192 249 510 ÷ 2 = 1 058 578 596 124 755 + 0;
  • 1 058 578 596 124 755 ÷ 2 = 529 289 298 062 377 + 1;
  • 529 289 298 062 377 ÷ 2 = 264 644 649 031 188 + 1;
  • 264 644 649 031 188 ÷ 2 = 132 322 324 515 594 + 0;
  • 132 322 324 515 594 ÷ 2 = 66 161 162 257 797 + 0;
  • 66 161 162 257 797 ÷ 2 = 33 080 581 128 898 + 1;
  • 33 080 581 128 898 ÷ 2 = 16 540 290 564 449 + 0;
  • 16 540 290 564 449 ÷ 2 = 8 270 145 282 224 + 1;
  • 8 270 145 282 224 ÷ 2 = 4 135 072 641 112 + 0;
  • 4 135 072 641 112 ÷ 2 = 2 067 536 320 556 + 0;
  • 2 067 536 320 556 ÷ 2 = 1 033 768 160 278 + 0;
  • 1 033 768 160 278 ÷ 2 = 516 884 080 139 + 0;
  • 516 884 080 139 ÷ 2 = 258 442 040 069 + 1;
  • 258 442 040 069 ÷ 2 = 129 221 020 034 + 1;
  • 129 221 020 034 ÷ 2 = 64 610 510 017 + 0;
  • 64 610 510 017 ÷ 2 = 32 305 255 008 + 1;
  • 32 305 255 008 ÷ 2 = 16 152 627 504 + 0;
  • 16 152 627 504 ÷ 2 = 8 076 313 752 + 0;
  • 8 076 313 752 ÷ 2 = 4 038 156 876 + 0;
  • 4 038 156 876 ÷ 2 = 2 019 078 438 + 0;
  • 2 019 078 438 ÷ 2 = 1 009 539 219 + 0;
  • 1 009 539 219 ÷ 2 = 504 769 609 + 1;
  • 504 769 609 ÷ 2 = 252 384 804 + 1;
  • 252 384 804 ÷ 2 = 126 192 402 + 0;
  • 126 192 402 ÷ 2 = 63 096 201 + 0;
  • 63 096 201 ÷ 2 = 31 548 100 + 1;
  • 31 548 100 ÷ 2 = 15 774 050 + 0;
  • 15 774 050 ÷ 2 = 7 887 025 + 0;
  • 7 887 025 ÷ 2 = 3 943 512 + 1;
  • 3 943 512 ÷ 2 = 1 971 756 + 0;
  • 1 971 756 ÷ 2 = 985 878 + 0;
  • 985 878 ÷ 2 = 492 939 + 0;
  • 492 939 ÷ 2 = 246 469 + 1;
  • 246 469 ÷ 2 = 123 234 + 1;
  • 123 234 ÷ 2 = 61 617 + 0;
  • 61 617 ÷ 2 = 30 808 + 1;
  • 30 808 ÷ 2 = 15 404 + 0;
  • 15 404 ÷ 2 = 7 702 + 0;
  • 7 702 ÷ 2 = 3 851 + 0;
  • 3 851 ÷ 2 = 1 925 + 1;
  • 1 925 ÷ 2 = 962 + 1;
  • 962 ÷ 2 = 481 + 0;
  • 481 ÷ 2 = 240 + 1;
  • 240 ÷ 2 = 120 + 0;
  • 120 ÷ 2 = 60 + 0;
  • 60 ÷ 2 = 30 + 0;
  • 30 ÷ 2 = 15 + 0;
  • 15 ÷ 2 = 7 + 1;
  • 7 ÷ 2 = 3 + 1;
  • 3 ÷ 2 = 1 + 1;
  • 1 ÷ 2 = 0 + 1;

2. Construct the base 2 representation of the positive number.

Take all the remainders starting from the bottom of the list constructed above.


1 110 000 110 010 111 111 022(10) =


11 1100 0010 1100 0101 1000 1001 0011 0000 0101 1000 0101 0011 0000 0010 1111 0110 1110(2)


3. Normalize the binary representation of the number.

Shift the decimal mark 69 positions to the left, so that only one non zero digit remains to the left of it:


1 110 000 110 010 111 111 022(10) =


11 1100 0010 1100 0101 1000 1001 0011 0000 0101 1000 0101 0011 0000 0010 1111 0110 1110(2) =


11 1100 0010 1100 0101 1000 1001 0011 0000 0101 1000 0101 0011 0000 0010 1111 0110 1110(2) × 20 =


1.1110 0001 0110 0010 1100 0100 1001 1000 0010 1100 0010 1001 1000 0001 0111 1011 0111 0(2) × 269


4. Up to this moment, there are the following elements that would feed into the 32 bit single precision IEEE 754 binary floating point representation:

Sign 0 (a positive number)


Exponent (unadjusted): 69


Mantissa (not normalized):
1.1110 0001 0110 0010 1100 0100 1001 1000 0010 1100 0010 1001 1000 0001 0111 1011 0111 0


5. Adjust the exponent.

Use the 8 bit excess/bias notation:


Exponent (adjusted) =


Exponent (unadjusted) + 2(8-1) - 1 =


69 + 2(8-1) - 1 =


(69 + 127)(10) =


196(10)


6. Convert the adjusted exponent from the decimal (base 10) to 8 bit binary.

Use the same technique of repeatedly dividing by 2:


  • division = quotient + remainder;
  • 196 ÷ 2 = 98 + 0;
  • 98 ÷ 2 = 49 + 0;
  • 49 ÷ 2 = 24 + 1;
  • 24 ÷ 2 = 12 + 0;
  • 12 ÷ 2 = 6 + 0;
  • 6 ÷ 2 = 3 + 0;
  • 3 ÷ 2 = 1 + 1;
  • 1 ÷ 2 = 0 + 1;

7. Construct the base 2 representation of the adjusted exponent.

Take all the remainders starting from the bottom of the list constructed above.


Exponent (adjusted) =


196(10) =


1100 0100(2)


8. Normalize the mantissa.

a) Remove the leading (the leftmost) bit, since it's allways 1, and the decimal point, if the case.


b) Adjust its length to 23 bits, by removing the excess bits, from the right (if any of the excess bits is set on 1, we are losing precision...).


Mantissa (normalized) =


1. 111 0000 1011 0001 0110 0010 01 0011 0000 0101 1000 0101 0011 0000 0010 1111 0110 1110 =


111 0000 1011 0001 0110 0010


9. The three elements that make up the number's 32 bit single precision IEEE 754 binary floating point representation:

Sign (1 bit) =
0 (a positive number)


Exponent (8 bits) =
1100 0100


Mantissa (23 bits) =
111 0000 1011 0001 0110 0010


The base ten decimal number 1 110 000 110 010 111 111 022 converted and written in 32 bit single precision IEEE 754 binary floating point representation:
0 - 1100 0100 - 111 0000 1011 0001 0110 0010

The latest decimal numbers converted from base ten to 32 bit single precision IEEE 754 floating point binary standard representation

Number 1 027 648 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard Apr 30 16:50 UTC (GMT)
Number 1.110 001 6 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard Apr 30 16:50 UTC (GMT)
Number 18.547 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard Apr 30 16:50 UTC (GMT)
Number 100 101.105 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard Apr 30 16:50 UTC (GMT)
Number 31.75 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard Apr 30 16:50 UTC (GMT)
Number 15 625 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard Apr 30 16:50 UTC (GMT)
Number 2 150 294 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard Apr 30 16:50 UTC (GMT)
Number 9 823 783 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard Apr 30 16:50 UTC (GMT)
Number 91.408 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard Apr 30 16:50 UTC (GMT)
Number 116 107 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard Apr 30 16:50 UTC (GMT)
All base ten decimal numbers converted to 32 bit single precision IEEE 754 binary floating point

How to convert decimal numbers from base ten to 32 bit single precision IEEE 754 binary floating point standard

Follow the steps below to convert a base 10 decimal number to 32 bit single precision IEEE 754 binary floating point:

  • 1. If the number to be converted is negative, start with its the positive version.
  • 2. First convert the integer part. Divide repeatedly by 2 the base ten positive representation of the integer number that is to be converted to binary, until we get a quotient that is equal to zero, keeping track of each remainder.
  • 3. Construct the base 2 representation of the positive integer part of the number, by taking all the remainders of the previous dividing operations, starting from the bottom of the list constructed above. Thus, the last remainder of the divisions becomes the first symbol (the leftmost) of the base two number, while the first remainder becomes the last symbol (the rightmost).
  • 4. Then convert the fractional part. Multiply the number repeatedly by 2, until we get a fractional part that is equal to zero, keeping track of each integer part of the results.
  • 5. Construct the base 2 representation of the fractional part of the number by taking all the integer parts of the previous multiplying operations, starting from the top of the constructed list above (they should appear in the binary representation, from left to right, in the order they have been calculated).
  • 6. Normalize the binary representation of the number, by shifting the decimal point (or if you prefer, the decimal mark) "n" positions either to the left or to the right, so that only one non zero digit remains to the left of the decimal point.
  • 7. Adjust the exponent in 8 bit excess/bias notation and then convert it from decimal (base 10) to 8 bit binary, by using the same technique of repeatedly dividing by 2, as shown above:
    Exponent (adjusted) = Exponent (unadjusted) + 2(8-1) - 1
  • 8. Normalize mantissa, remove the leading (leftmost) bit, since it's allways '1' (and the decimal sign if the case) and adjust its length to 23 bits, either by removing the excess bits from the right (losing precision...) or by adding extra '0' bits to the right.
  • 9. Sign (it takes 1 bit) is either 1 for a negative or 0 for a positive number.

Example: convert the negative number -25.347 from decimal system (base ten) to 32 bit single precision IEEE 754 binary floating point:

  • 1. Start with the positive version of the number:

    |-25.347| = 25.347

  • 2. First convert the integer part, 25. Divide it repeatedly by 2, keeping track of each remainder, until we get a quotient that is equal to zero:
    • division = quotient + remainder;
    • 25 ÷ 2 = 12 + 1;
    • 12 ÷ 2 = 6 + 0;
    • 6 ÷ 2 = 3 + 0;
    • 3 ÷ 2 = 1 + 1;
    • 1 ÷ 2 = 0 + 1;
    • We have encountered a quotient that is ZERO => FULL STOP
  • 3. Construct the base 2 representation of the integer part of the number by taking all the remainders of the previous dividing operations, starting from the bottom of the list constructed above:

    25(10) = 1 1001(2)

  • 4. Then convert the fractional part, 0.347. Multiply repeatedly by 2, keeping track of each integer part of the results, until we get a fractional part that is equal to zero:
    • #) multiplying = integer + fractional part;
    • 1) 0.347 × 2 = 0 + 0.694;
    • 2) 0.694 × 2 = 1 + 0.388;
    • 3) 0.388 × 2 = 0 + 0.776;
    • 4) 0.776 × 2 = 1 + 0.552;
    • 5) 0.552 × 2 = 1 + 0.104;
    • 6) 0.104 × 2 = 0 + 0.208;
    • 7) 0.208 × 2 = 0 + 0.416;
    • 8) 0.416 × 2 = 0 + 0.832;
    • 9) 0.832 × 2 = 1 + 0.664;
    • 10) 0.664 × 2 = 1 + 0.328;
    • 11) 0.328 × 2 = 0 + 0.656;
    • 12) 0.656 × 2 = 1 + 0.312;
    • 13) 0.312 × 2 = 0 + 0.624;
    • 14) 0.624 × 2 = 1 + 0.248;
    • 15) 0.248 × 2 = 0 + 0.496;
    • 16) 0.496 × 2 = 0 + 0.992;
    • 17) 0.992 × 2 = 1 + 0.984;
    • 18) 0.984 × 2 = 1 + 0.968;
    • 19) 0.968 × 2 = 1 + 0.936;
    • 20) 0.936 × 2 = 1 + 0.872;
    • 21) 0.872 × 2 = 1 + 0.744;
    • 22) 0.744 × 2 = 1 + 0.488;
    • 23) 0.488 × 2 = 0 + 0.976;
    • 24) 0.976 × 2 = 1 + 0.952;
    • We didn't get any fractional part that was equal to zero. But we had enough iterations (over Mantissa limit = 23) and at least one integer part that was different from zero => FULL STOP (losing precision...).
  • 5. Construct the base 2 representation of the fractional part of the number, by taking all the integer parts of the previous multiplying operations, starting from the top of the constructed list above:

    0.347(10) = 0.0101 1000 1101 0100 1111 1101(2)

  • 6. Summarizing - the positive number before normalization:

    25.347(10) = 1 1001.0101 1000 1101 0100 1111 1101(2)

  • 7. Normalize the binary representation of the number, shifting the decimal point 4 positions to the left so that only one non-zero digit stays to the left of the decimal point:

    25.347(10) =
    1 1001.0101 1000 1101 0100 1111 1101(2) =
    1 1001.0101 1000 1101 0100 1111 1101(2) × 20 =
    1.1001 0101 1000 1101 0100 1111 1101(2) × 24

  • 8. Up to this moment, there are the following elements that would feed into the 32 bit single precision IEEE 754 binary floating point:

    Sign: 1 (a negative number)

    Exponent (unadjusted): 4

    Mantissa (not-normalized): 1.1001 0101 1000 1101 0100 1111 1101

  • 9. Adjust the exponent in 8 bit excess/bias notation and then convert it from decimal (base 10) to 8 bit binary (base 2), by using the same technique of repeatedly dividing it by 2, as already demonstrated above:

    Exponent (adjusted) = Exponent (unadjusted) + 2(8-1) - 1 = (4 + 127)(10) = 131(10) =
    1000 0011(2)

  • 10. Normalize the mantissa, remove the leading (leftmost) bit, since it's allways '1' (and the decimal point) and adjust its length to 23 bits, by removing the excess bits from the right (losing precision...):

    Mantissa (not-normalized): 1.1001 0101 1000 1101 0100 1111 1101

    Mantissa (normalized): 100 1010 1100 0110 1010 0111

  • Conclusion:

    Sign (1 bit) = 1 (a negative number)

    Exponent (8 bits) = 1000 0011

    Mantissa (23 bits) = 100 1010 1100 0110 1010 0111

  • Number -25.347, converted from the decimal system (base 10) to 32 bit single precision IEEE 754 binary floating point =
    1 - 1000 0011 - 100 1010 1100 0110 1010 0111