11 100 000 011 099 999 999 999 999 999 811 Converted to 32 Bit Single Precision IEEE 754 Binary Floating Point Representation Standard

Convert decimal 11 100 000 011 099 999 999 999 999 999 811(10) to 32 bit single precision IEEE 754 binary floating point representation standard (1 bit for sign, 8 bits for exponent, 23 bits for mantissa)

What are the steps to convert decimal number
11 100 000 011 099 999 999 999 999 999 811(10) to 32 bit single precision IEEE 754 binary floating point representation (1 bit for sign, 8 bits for exponent, 23 bits for mantissa)

1. Divide the number repeatedly by 2.

Keep track of each remainder.

We stop when we get a quotient that is equal to zero.


  • division = quotient + remainder;
  • 11 100 000 011 099 999 999 999 999 999 811 ÷ 2 = 5 550 000 005 549 999 999 999 999 999 905 + 1;
  • 5 550 000 005 549 999 999 999 999 999 905 ÷ 2 = 2 775 000 002 774 999 999 999 999 999 952 + 1;
  • 2 775 000 002 774 999 999 999 999 999 952 ÷ 2 = 1 387 500 001 387 499 999 999 999 999 976 + 0;
  • 1 387 500 001 387 499 999 999 999 999 976 ÷ 2 = 693 750 000 693 749 999 999 999 999 988 + 0;
  • 693 750 000 693 749 999 999 999 999 988 ÷ 2 = 346 875 000 346 874 999 999 999 999 994 + 0;
  • 346 875 000 346 874 999 999 999 999 994 ÷ 2 = 173 437 500 173 437 499 999 999 999 997 + 0;
  • 173 437 500 173 437 499 999 999 999 997 ÷ 2 = 86 718 750 086 718 749 999 999 999 998 + 1;
  • 86 718 750 086 718 749 999 999 999 998 ÷ 2 = 43 359 375 043 359 374 999 999 999 999 + 0;
  • 43 359 375 043 359 374 999 999 999 999 ÷ 2 = 21 679 687 521 679 687 499 999 999 999 + 1;
  • 21 679 687 521 679 687 499 999 999 999 ÷ 2 = 10 839 843 760 839 843 749 999 999 999 + 1;
  • 10 839 843 760 839 843 749 999 999 999 ÷ 2 = 5 419 921 880 419 921 874 999 999 999 + 1;
  • 5 419 921 880 419 921 874 999 999 999 ÷ 2 = 2 709 960 940 209 960 937 499 999 999 + 1;
  • 2 709 960 940 209 960 937 499 999 999 ÷ 2 = 1 354 980 470 104 980 468 749 999 999 + 1;
  • 1 354 980 470 104 980 468 749 999 999 ÷ 2 = 677 490 235 052 490 234 374 999 999 + 1;
  • 677 490 235 052 490 234 374 999 999 ÷ 2 = 338 745 117 526 245 117 187 499 999 + 1;
  • 338 745 117 526 245 117 187 499 999 ÷ 2 = 169 372 558 763 122 558 593 749 999 + 1;
  • 169 372 558 763 122 558 593 749 999 ÷ 2 = 84 686 279 381 561 279 296 874 999 + 1;
  • 84 686 279 381 561 279 296 874 999 ÷ 2 = 42 343 139 690 780 639 648 437 499 + 1;
  • 42 343 139 690 780 639 648 437 499 ÷ 2 = 21 171 569 845 390 319 824 218 749 + 1;
  • 21 171 569 845 390 319 824 218 749 ÷ 2 = 10 585 784 922 695 159 912 109 374 + 1;
  • 10 585 784 922 695 159 912 109 374 ÷ 2 = 5 292 892 461 347 579 956 054 687 + 0;
  • 5 292 892 461 347 579 956 054 687 ÷ 2 = 2 646 446 230 673 789 978 027 343 + 1;
  • 2 646 446 230 673 789 978 027 343 ÷ 2 = 1 323 223 115 336 894 989 013 671 + 1;
  • 1 323 223 115 336 894 989 013 671 ÷ 2 = 661 611 557 668 447 494 506 835 + 1;
  • 661 611 557 668 447 494 506 835 ÷ 2 = 330 805 778 834 223 747 253 417 + 1;
  • 330 805 778 834 223 747 253 417 ÷ 2 = 165 402 889 417 111 873 626 708 + 1;
  • 165 402 889 417 111 873 626 708 ÷ 2 = 82 701 444 708 555 936 813 354 + 0;
  • 82 701 444 708 555 936 813 354 ÷ 2 = 41 350 722 354 277 968 406 677 + 0;
  • 41 350 722 354 277 968 406 677 ÷ 2 = 20 675 361 177 138 984 203 338 + 1;
  • 20 675 361 177 138 984 203 338 ÷ 2 = 10 337 680 588 569 492 101 669 + 0;
  • 10 337 680 588 569 492 101 669 ÷ 2 = 5 168 840 294 284 746 050 834 + 1;
  • 5 168 840 294 284 746 050 834 ÷ 2 = 2 584 420 147 142 373 025 417 + 0;
  • 2 584 420 147 142 373 025 417 ÷ 2 = 1 292 210 073 571 186 512 708 + 1;
  • 1 292 210 073 571 186 512 708 ÷ 2 = 646 105 036 785 593 256 354 + 0;
  • 646 105 036 785 593 256 354 ÷ 2 = 323 052 518 392 796 628 177 + 0;
  • 323 052 518 392 796 628 177 ÷ 2 = 161 526 259 196 398 314 088 + 1;
  • 161 526 259 196 398 314 088 ÷ 2 = 80 763 129 598 199 157 044 + 0;
  • 80 763 129 598 199 157 044 ÷ 2 = 40 381 564 799 099 578 522 + 0;
  • 40 381 564 799 099 578 522 ÷ 2 = 20 190 782 399 549 789 261 + 0;
  • 20 190 782 399 549 789 261 ÷ 2 = 10 095 391 199 774 894 630 + 1;
  • 10 095 391 199 774 894 630 ÷ 2 = 5 047 695 599 887 447 315 + 0;
  • 5 047 695 599 887 447 315 ÷ 2 = 2 523 847 799 943 723 657 + 1;
  • 2 523 847 799 943 723 657 ÷ 2 = 1 261 923 899 971 861 828 + 1;
  • 1 261 923 899 971 861 828 ÷ 2 = 630 961 949 985 930 914 + 0;
  • 630 961 949 985 930 914 ÷ 2 = 315 480 974 992 965 457 + 0;
  • 315 480 974 992 965 457 ÷ 2 = 157 740 487 496 482 728 + 1;
  • 157 740 487 496 482 728 ÷ 2 = 78 870 243 748 241 364 + 0;
  • 78 870 243 748 241 364 ÷ 2 = 39 435 121 874 120 682 + 0;
  • 39 435 121 874 120 682 ÷ 2 = 19 717 560 937 060 341 + 0;
  • 19 717 560 937 060 341 ÷ 2 = 9 858 780 468 530 170 + 1;
  • 9 858 780 468 530 170 ÷ 2 = 4 929 390 234 265 085 + 0;
  • 4 929 390 234 265 085 ÷ 2 = 2 464 695 117 132 542 + 1;
  • 2 464 695 117 132 542 ÷ 2 = 1 232 347 558 566 271 + 0;
  • 1 232 347 558 566 271 ÷ 2 = 616 173 779 283 135 + 1;
  • 616 173 779 283 135 ÷ 2 = 308 086 889 641 567 + 1;
  • 308 086 889 641 567 ÷ 2 = 154 043 444 820 783 + 1;
  • 154 043 444 820 783 ÷ 2 = 77 021 722 410 391 + 1;
  • 77 021 722 410 391 ÷ 2 = 38 510 861 205 195 + 1;
  • 38 510 861 205 195 ÷ 2 = 19 255 430 602 597 + 1;
  • 19 255 430 602 597 ÷ 2 = 9 627 715 301 298 + 1;
  • 9 627 715 301 298 ÷ 2 = 4 813 857 650 649 + 0;
  • 4 813 857 650 649 ÷ 2 = 2 406 928 825 324 + 1;
  • 2 406 928 825 324 ÷ 2 = 1 203 464 412 662 + 0;
  • 1 203 464 412 662 ÷ 2 = 601 732 206 331 + 0;
  • 601 732 206 331 ÷ 2 = 300 866 103 165 + 1;
  • 300 866 103 165 ÷ 2 = 150 433 051 582 + 1;
  • 150 433 051 582 ÷ 2 = 75 216 525 791 + 0;
  • 75 216 525 791 ÷ 2 = 37 608 262 895 + 1;
  • 37 608 262 895 ÷ 2 = 18 804 131 447 + 1;
  • 18 804 131 447 ÷ 2 = 9 402 065 723 + 1;
  • 9 402 065 723 ÷ 2 = 4 701 032 861 + 1;
  • 4 701 032 861 ÷ 2 = 2 350 516 430 + 1;
  • 2 350 516 430 ÷ 2 = 1 175 258 215 + 0;
  • 1 175 258 215 ÷ 2 = 587 629 107 + 1;
  • 587 629 107 ÷ 2 = 293 814 553 + 1;
  • 293 814 553 ÷ 2 = 146 907 276 + 1;
  • 146 907 276 ÷ 2 = 73 453 638 + 0;
  • 73 453 638 ÷ 2 = 36 726 819 + 0;
  • 36 726 819 ÷ 2 = 18 363 409 + 1;
  • 18 363 409 ÷ 2 = 9 181 704 + 1;
  • 9 181 704 ÷ 2 = 4 590 852 + 0;
  • 4 590 852 ÷ 2 = 2 295 426 + 0;
  • 2 295 426 ÷ 2 = 1 147 713 + 0;
  • 1 147 713 ÷ 2 = 573 856 + 1;
  • 573 856 ÷ 2 = 286 928 + 0;
  • 286 928 ÷ 2 = 143 464 + 0;
  • 143 464 ÷ 2 = 71 732 + 0;
  • 71 732 ÷ 2 = 35 866 + 0;
  • 35 866 ÷ 2 = 17 933 + 0;
  • 17 933 ÷ 2 = 8 966 + 1;
  • 8 966 ÷ 2 = 4 483 + 0;
  • 4 483 ÷ 2 = 2 241 + 1;
  • 2 241 ÷ 2 = 1 120 + 1;
  • 1 120 ÷ 2 = 560 + 0;
  • 560 ÷ 2 = 280 + 0;
  • 280 ÷ 2 = 140 + 0;
  • 140 ÷ 2 = 70 + 0;
  • 70 ÷ 2 = 35 + 0;
  • 35 ÷ 2 = 17 + 1;
  • 17 ÷ 2 = 8 + 1;
  • 8 ÷ 2 = 4 + 0;
  • 4 ÷ 2 = 2 + 0;
  • 2 ÷ 2 = 1 + 0;
  • 1 ÷ 2 = 0 + 1;

2. Construct the base 2 representation of the positive number.

Take all the remainders starting from the bottom of the list constructed above.

11 100 000 011 099 999 999 999 999 999 811(10) =


1000 1100 0001 1010 0000 1000 1100 1110 1111 1011 0010 1111 1110 1010 0010 0110 1000 1001 0101 0011 1110 1111 1111 1111 0100 0011(2)


3. Normalize the binary representation of the number.

Shift the decimal mark 103 positions to the left, so that only one non zero digit remains to the left of it:


11 100 000 011 099 999 999 999 999 999 811(10) =


1000 1100 0001 1010 0000 1000 1100 1110 1111 1011 0010 1111 1110 1010 0010 0110 1000 1001 0101 0011 1110 1111 1111 1111 0100 0011(2) =


1000 1100 0001 1010 0000 1000 1100 1110 1111 1011 0010 1111 1110 1010 0010 0110 1000 1001 0101 0011 1110 1111 1111 1111 0100 0011(2) × 20 =


1.0001 1000 0011 0100 0001 0001 1001 1101 1111 0110 0101 1111 1101 0100 0100 1101 0001 0010 1010 0111 1101 1111 1111 1110 1000 011(2) × 2103


4. Up to this moment, there are the following elements that would feed into the 32 bit single precision IEEE 754 binary floating point representation:

Sign 0 (a positive number)


Exponent (unadjusted): 103


Mantissa (not normalized):
1.0001 1000 0011 0100 0001 0001 1001 1101 1111 0110 0101 1111 1101 0100 0100 1101 0001 0010 1010 0111 1101 1111 1111 1110 1000 011


5. Adjust the exponent.

Use the 8 bit excess/bias notation:


Exponent (adjusted) =


Exponent (unadjusted) + 2(8-1) - 1 =


103 + 2(8-1) - 1 =


(103 + 127)(10) =


230(10)


6. Convert the adjusted exponent from the decimal (base 10) to 8 bit binary.

Use the same technique of repeatedly dividing by 2:


  • division = quotient + remainder;
  • 230 ÷ 2 = 115 + 0;
  • 115 ÷ 2 = 57 + 1;
  • 57 ÷ 2 = 28 + 1;
  • 28 ÷ 2 = 14 + 0;
  • 14 ÷ 2 = 7 + 0;
  • 7 ÷ 2 = 3 + 1;
  • 3 ÷ 2 = 1 + 1;
  • 1 ÷ 2 = 0 + 1;

7. Construct the base 2 representation of the adjusted exponent.

Take all the remainders starting from the bottom of the list constructed above.


Exponent (adjusted) =


230(10) =


1110 0110(2)


8. Normalize the mantissa.

a) Remove the leading (the leftmost) bit, since it's allways 1, and the decimal point, if the case.


b) Adjust its length to 23 bits, by removing the excess bits, from the right (if any of the excess bits is set on 1, we are losing precision...).


Mantissa (normalized) =


1. 000 1100 0001 1010 0000 1000 1100 1110 1111 1011 0010 1111 1110 1010 0010 0110 1000 1001 0101 0011 1110 1111 1111 1111 0100 0011 =


000 1100 0001 1010 0000 1000


9. The three elements that make up the number's 32 bit single precision IEEE 754 binary floating point representation:

Sign (1 bit) =
0 (a positive number)


Exponent (8 bits) =
1110 0110


Mantissa (23 bits) =
000 1100 0001 1010 0000 1000


Decimal number 11 100 000 011 099 999 999 999 999 999 811 converted to 32 bit single precision IEEE 754 binary floating point representation:

0 - 1110 0110 - 000 1100 0001 1010 0000 1000


How to convert decimal numbers from base ten to 32 bit single precision IEEE 754 binary floating point standard

Follow the steps below to convert a base 10 decimal number to 32 bit single precision IEEE 754 binary floating point:

  • 1. If the number to be converted is negative, start with its the positive version.
  • 2. First convert the integer part. Divide repeatedly by 2 the base ten positive representation of the integer number that is to be converted to binary, until we get a quotient that is equal to zero, keeping track of each remainder.
  • 3. Construct the base 2 representation of the positive integer part of the number, by taking all the remainders of the previous dividing operations, starting from the bottom of the list constructed above. Thus, the last remainder of the divisions becomes the first symbol (the leftmost) of the base two number, while the first remainder becomes the last symbol (the rightmost).
  • 4. Then convert the fractional part. Multiply the number repeatedly by 2, until we get a fractional part that is equal to zero, keeping track of each integer part of the results.
  • 5. Construct the base 2 representation of the fractional part of the number by taking all the integer parts of the previous multiplying operations, starting from the top of the constructed list above (they should appear in the binary representation, from left to right, in the order they have been calculated).
  • 6. Normalize the binary representation of the number, by shifting the decimal point (or if you prefer, the decimal mark) "n" positions either to the left or to the right, so that only one non zero digit remains to the left of the decimal point.
  • 7. Adjust the exponent in 8 bit excess/bias notation and then convert it from decimal (base 10) to 8 bit binary, by using the same technique of repeatedly dividing by 2, as shown above:
    Exponent (adjusted) = Exponent (unadjusted) + 2(8-1) - 1
  • 8. Normalize mantissa, remove the leading (leftmost) bit, since it's allways '1' (and the decimal sign if the case) and adjust its length to 23 bits, either by removing the excess bits from the right (losing precision...) or by adding extra '0' bits to the right.
  • 9. Sign (it takes 1 bit) is either 1 for a negative or 0 for a positive number.

Example: convert the negative number -25.347 from decimal system (base ten) to 32 bit single precision IEEE 754 binary floating point:

  • 1. Start with the positive version of the number:

    |-25.347| = 25.347

  • 2. First convert the integer part, 25. Divide it repeatedly by 2, keeping track of each remainder, until we get a quotient that is equal to zero:
    • division = quotient + remainder;
    • 25 ÷ 2 = 12 + 1;
    • 12 ÷ 2 = 6 + 0;
    • 6 ÷ 2 = 3 + 0;
    • 3 ÷ 2 = 1 + 1;
    • 1 ÷ 2 = 0 + 1;
    • We have encountered a quotient that is ZERO => FULL STOP
  • 3. Construct the base 2 representation of the integer part of the number by taking all the remainders of the previous dividing operations, starting from the bottom of the list constructed above:

    25(10) = 1 1001(2)

  • 4. Then convert the fractional part, 0.347. Multiply repeatedly by 2, keeping track of each integer part of the results, until we get a fractional part that is equal to zero:
    • #) multiplying = integer + fractional part;
    • 1) 0.347 × 2 = 0 + 0.694;
    • 2) 0.694 × 2 = 1 + 0.388;
    • 3) 0.388 × 2 = 0 + 0.776;
    • 4) 0.776 × 2 = 1 + 0.552;
    • 5) 0.552 × 2 = 1 + 0.104;
    • 6) 0.104 × 2 = 0 + 0.208;
    • 7) 0.208 × 2 = 0 + 0.416;
    • 8) 0.416 × 2 = 0 + 0.832;
    • 9) 0.832 × 2 = 1 + 0.664;
    • 10) 0.664 × 2 = 1 + 0.328;
    • 11) 0.328 × 2 = 0 + 0.656;
    • 12) 0.656 × 2 = 1 + 0.312;
    • 13) 0.312 × 2 = 0 + 0.624;
    • 14) 0.624 × 2 = 1 + 0.248;
    • 15) 0.248 × 2 = 0 + 0.496;
    • 16) 0.496 × 2 = 0 + 0.992;
    • 17) 0.992 × 2 = 1 + 0.984;
    • 18) 0.984 × 2 = 1 + 0.968;
    • 19) 0.968 × 2 = 1 + 0.936;
    • 20) 0.936 × 2 = 1 + 0.872;
    • 21) 0.872 × 2 = 1 + 0.744;
    • 22) 0.744 × 2 = 1 + 0.488;
    • 23) 0.488 × 2 = 0 + 0.976;
    • 24) 0.976 × 2 = 1 + 0.952;
    • We didn't get any fractional part that was equal to zero. But we had enough iterations (over Mantissa limit = 23) and at least one integer part that was different from zero => FULL STOP (losing precision...).
  • 5. Construct the base 2 representation of the fractional part of the number, by taking all the integer parts of the previous multiplying operations, starting from the top of the constructed list above:

    0.347(10) = 0.0101 1000 1101 0100 1111 1101(2)

  • 6. Summarizing - the positive number before normalization:

    25.347(10) = 1 1001.0101 1000 1101 0100 1111 1101(2)

  • 7. Normalize the binary representation of the number, shifting the decimal point 4 positions to the left so that only one non-zero digit stays to the left of the decimal point:

    25.347(10) =
    1 1001.0101 1000 1101 0100 1111 1101(2) =
    1 1001.0101 1000 1101 0100 1111 1101(2) × 20 =
    1.1001 0101 1000 1101 0100 1111 1101(2) × 24

  • 8. Up to this moment, there are the following elements that would feed into the 32 bit single precision IEEE 754 binary floating point:

    Sign: 1 (a negative number)

    Exponent (unadjusted): 4

    Mantissa (not-normalized): 1.1001 0101 1000 1101 0100 1111 1101

  • 9. Adjust the exponent in 8 bit excess/bias notation and then convert it from decimal (base 10) to 8 bit binary (base 2), by using the same technique of repeatedly dividing it by 2, as already demonstrated above:

    Exponent (adjusted) = Exponent (unadjusted) + 2(8-1) - 1 = (4 + 127)(10) = 131(10) =
    1000 0011(2)

  • 10. Normalize the mantissa, remove the leading (leftmost) bit, since it's allways '1' (and the decimal point) and adjust its length to 23 bits, by removing the excess bits from the right (losing precision...):

    Mantissa (not-normalized): 1.1001 0101 1000 1101 0100 1111 1101

    Mantissa (normalized): 100 1010 1100 0110 1010 0111

  • Conclusion:

    Sign (1 bit) = 1 (a negative number)

    Exponent (8 bits) = 1000 0011

    Mantissa (23 bits) = 100 1010 1100 0110 1010 0111

  • Number -25.347, converted from the decimal system (base 10) to 32 bit single precision IEEE 754 binary floating point =
    1 - 1000 0011 - 100 1010 1100 0110 1010 0111