11 011 111 110 100 000 000 000 000 000 068 Converted to 32 Bit Single Precision IEEE 754 Binary Floating Point Representation Standard

Convert decimal 11 011 111 110 100 000 000 000 000 000 068(10) to 32 bit single precision IEEE 754 binary floating point representation standard (1 bit for sign, 8 bits for exponent, 23 bits for mantissa)

What are the steps to convert decimal number
11 011 111 110 100 000 000 000 000 000 068(10) to 32 bit single precision IEEE 754 binary floating point representation (1 bit for sign, 8 bits for exponent, 23 bits for mantissa)

1. Divide the number repeatedly by 2.

Keep track of each remainder.

We stop when we get a quotient that is equal to zero.


  • division = quotient + remainder;
  • 11 011 111 110 100 000 000 000 000 000 068 ÷ 2 = 5 505 555 555 050 000 000 000 000 000 034 + 0;
  • 5 505 555 555 050 000 000 000 000 000 034 ÷ 2 = 2 752 777 777 525 000 000 000 000 000 017 + 0;
  • 2 752 777 777 525 000 000 000 000 000 017 ÷ 2 = 1 376 388 888 762 500 000 000 000 000 008 + 1;
  • 1 376 388 888 762 500 000 000 000 000 008 ÷ 2 = 688 194 444 381 250 000 000 000 000 004 + 0;
  • 688 194 444 381 250 000 000 000 000 004 ÷ 2 = 344 097 222 190 625 000 000 000 000 002 + 0;
  • 344 097 222 190 625 000 000 000 000 002 ÷ 2 = 172 048 611 095 312 500 000 000 000 001 + 0;
  • 172 048 611 095 312 500 000 000 000 001 ÷ 2 = 86 024 305 547 656 250 000 000 000 000 + 1;
  • 86 024 305 547 656 250 000 000 000 000 ÷ 2 = 43 012 152 773 828 125 000 000 000 000 + 0;
  • 43 012 152 773 828 125 000 000 000 000 ÷ 2 = 21 506 076 386 914 062 500 000 000 000 + 0;
  • 21 506 076 386 914 062 500 000 000 000 ÷ 2 = 10 753 038 193 457 031 250 000 000 000 + 0;
  • 10 753 038 193 457 031 250 000 000 000 ÷ 2 = 5 376 519 096 728 515 625 000 000 000 + 0;
  • 5 376 519 096 728 515 625 000 000 000 ÷ 2 = 2 688 259 548 364 257 812 500 000 000 + 0;
  • 2 688 259 548 364 257 812 500 000 000 ÷ 2 = 1 344 129 774 182 128 906 250 000 000 + 0;
  • 1 344 129 774 182 128 906 250 000 000 ÷ 2 = 672 064 887 091 064 453 125 000 000 + 0;
  • 672 064 887 091 064 453 125 000 000 ÷ 2 = 336 032 443 545 532 226 562 500 000 + 0;
  • 336 032 443 545 532 226 562 500 000 ÷ 2 = 168 016 221 772 766 113 281 250 000 + 0;
  • 168 016 221 772 766 113 281 250 000 ÷ 2 = 84 008 110 886 383 056 640 625 000 + 0;
  • 84 008 110 886 383 056 640 625 000 ÷ 2 = 42 004 055 443 191 528 320 312 500 + 0;
  • 42 004 055 443 191 528 320 312 500 ÷ 2 = 21 002 027 721 595 764 160 156 250 + 0;
  • 21 002 027 721 595 764 160 156 250 ÷ 2 = 10 501 013 860 797 882 080 078 125 + 0;
  • 10 501 013 860 797 882 080 078 125 ÷ 2 = 5 250 506 930 398 941 040 039 062 + 1;
  • 5 250 506 930 398 941 040 039 062 ÷ 2 = 2 625 253 465 199 470 520 019 531 + 0;
  • 2 625 253 465 199 470 520 019 531 ÷ 2 = 1 312 626 732 599 735 260 009 765 + 1;
  • 1 312 626 732 599 735 260 009 765 ÷ 2 = 656 313 366 299 867 630 004 882 + 1;
  • 656 313 366 299 867 630 004 882 ÷ 2 = 328 156 683 149 933 815 002 441 + 0;
  • 328 156 683 149 933 815 002 441 ÷ 2 = 164 078 341 574 966 907 501 220 + 1;
  • 164 078 341 574 966 907 501 220 ÷ 2 = 82 039 170 787 483 453 750 610 + 0;
  • 82 039 170 787 483 453 750 610 ÷ 2 = 41 019 585 393 741 726 875 305 + 0;
  • 41 019 585 393 741 726 875 305 ÷ 2 = 20 509 792 696 870 863 437 652 + 1;
  • 20 509 792 696 870 863 437 652 ÷ 2 = 10 254 896 348 435 431 718 826 + 0;
  • 10 254 896 348 435 431 718 826 ÷ 2 = 5 127 448 174 217 715 859 413 + 0;
  • 5 127 448 174 217 715 859 413 ÷ 2 = 2 563 724 087 108 857 929 706 + 1;
  • 2 563 724 087 108 857 929 706 ÷ 2 = 1 281 862 043 554 428 964 853 + 0;
  • 1 281 862 043 554 428 964 853 ÷ 2 = 640 931 021 777 214 482 426 + 1;
  • 640 931 021 777 214 482 426 ÷ 2 = 320 465 510 888 607 241 213 + 0;
  • 320 465 510 888 607 241 213 ÷ 2 = 160 232 755 444 303 620 606 + 1;
  • 160 232 755 444 303 620 606 ÷ 2 = 80 116 377 722 151 810 303 + 0;
  • 80 116 377 722 151 810 303 ÷ 2 = 40 058 188 861 075 905 151 + 1;
  • 40 058 188 861 075 905 151 ÷ 2 = 20 029 094 430 537 952 575 + 1;
  • 20 029 094 430 537 952 575 ÷ 2 = 10 014 547 215 268 976 287 + 1;
  • 10 014 547 215 268 976 287 ÷ 2 = 5 007 273 607 634 488 143 + 1;
  • 5 007 273 607 634 488 143 ÷ 2 = 2 503 636 803 817 244 071 + 1;
  • 2 503 636 803 817 244 071 ÷ 2 = 1 251 818 401 908 622 035 + 1;
  • 1 251 818 401 908 622 035 ÷ 2 = 625 909 200 954 311 017 + 1;
  • 625 909 200 954 311 017 ÷ 2 = 312 954 600 477 155 508 + 1;
  • 312 954 600 477 155 508 ÷ 2 = 156 477 300 238 577 754 + 0;
  • 156 477 300 238 577 754 ÷ 2 = 78 238 650 119 288 877 + 0;
  • 78 238 650 119 288 877 ÷ 2 = 39 119 325 059 644 438 + 1;
  • 39 119 325 059 644 438 ÷ 2 = 19 559 662 529 822 219 + 0;
  • 19 559 662 529 822 219 ÷ 2 = 9 779 831 264 911 109 + 1;
  • 9 779 831 264 911 109 ÷ 2 = 4 889 915 632 455 554 + 1;
  • 4 889 915 632 455 554 ÷ 2 = 2 444 957 816 227 777 + 0;
  • 2 444 957 816 227 777 ÷ 2 = 1 222 478 908 113 888 + 1;
  • 1 222 478 908 113 888 ÷ 2 = 611 239 454 056 944 + 0;
  • 611 239 454 056 944 ÷ 2 = 305 619 727 028 472 + 0;
  • 305 619 727 028 472 ÷ 2 = 152 809 863 514 236 + 0;
  • 152 809 863 514 236 ÷ 2 = 76 404 931 757 118 + 0;
  • 76 404 931 757 118 ÷ 2 = 38 202 465 878 559 + 0;
  • 38 202 465 878 559 ÷ 2 = 19 101 232 939 279 + 1;
  • 19 101 232 939 279 ÷ 2 = 9 550 616 469 639 + 1;
  • 9 550 616 469 639 ÷ 2 = 4 775 308 234 819 + 1;
  • 4 775 308 234 819 ÷ 2 = 2 387 654 117 409 + 1;
  • 2 387 654 117 409 ÷ 2 = 1 193 827 058 704 + 1;
  • 1 193 827 058 704 ÷ 2 = 596 913 529 352 + 0;
  • 596 913 529 352 ÷ 2 = 298 456 764 676 + 0;
  • 298 456 764 676 ÷ 2 = 149 228 382 338 + 0;
  • 149 228 382 338 ÷ 2 = 74 614 191 169 + 0;
  • 74 614 191 169 ÷ 2 = 37 307 095 584 + 1;
  • 37 307 095 584 ÷ 2 = 18 653 547 792 + 0;
  • 18 653 547 792 ÷ 2 = 9 326 773 896 + 0;
  • 9 326 773 896 ÷ 2 = 4 663 386 948 + 0;
  • 4 663 386 948 ÷ 2 = 2 331 693 474 + 0;
  • 2 331 693 474 ÷ 2 = 1 165 846 737 + 0;
  • 1 165 846 737 ÷ 2 = 582 923 368 + 1;
  • 582 923 368 ÷ 2 = 291 461 684 + 0;
  • 291 461 684 ÷ 2 = 145 730 842 + 0;
  • 145 730 842 ÷ 2 = 72 865 421 + 0;
  • 72 865 421 ÷ 2 = 36 432 710 + 1;
  • 36 432 710 ÷ 2 = 18 216 355 + 0;
  • 18 216 355 ÷ 2 = 9 108 177 + 1;
  • 9 108 177 ÷ 2 = 4 554 088 + 1;
  • 4 554 088 ÷ 2 = 2 277 044 + 0;
  • 2 277 044 ÷ 2 = 1 138 522 + 0;
  • 1 138 522 ÷ 2 = 569 261 + 0;
  • 569 261 ÷ 2 = 284 630 + 1;
  • 284 630 ÷ 2 = 142 315 + 0;
  • 142 315 ÷ 2 = 71 157 + 1;
  • 71 157 ÷ 2 = 35 578 + 1;
  • 35 578 ÷ 2 = 17 789 + 0;
  • 17 789 ÷ 2 = 8 894 + 1;
  • 8 894 ÷ 2 = 4 447 + 0;
  • 4 447 ÷ 2 = 2 223 + 1;
  • 2 223 ÷ 2 = 1 111 + 1;
  • 1 111 ÷ 2 = 555 + 1;
  • 555 ÷ 2 = 277 + 1;
  • 277 ÷ 2 = 138 + 1;
  • 138 ÷ 2 = 69 + 0;
  • 69 ÷ 2 = 34 + 1;
  • 34 ÷ 2 = 17 + 0;
  • 17 ÷ 2 = 8 + 1;
  • 8 ÷ 2 = 4 + 0;
  • 4 ÷ 2 = 2 + 0;
  • 2 ÷ 2 = 1 + 0;
  • 1 ÷ 2 = 0 + 1;

2. Construct the base 2 representation of the positive number.

Take all the remainders starting from the bottom of the list constructed above.

11 011 111 110 100 000 000 000 000 000 068(10) =


1000 1010 1111 1010 1101 0001 1010 0010 0000 1000 0111 1100 0001 0110 1001 1111 1110 1010 1001 0010 1101 0000 0000 0000 0100 0100(2)


3. Normalize the binary representation of the number.

Shift the decimal mark 103 positions to the left, so that only one non zero digit remains to the left of it:


11 011 111 110 100 000 000 000 000 000 068(10) =


1000 1010 1111 1010 1101 0001 1010 0010 0000 1000 0111 1100 0001 0110 1001 1111 1110 1010 1001 0010 1101 0000 0000 0000 0100 0100(2) =


1000 1010 1111 1010 1101 0001 1010 0010 0000 1000 0111 1100 0001 0110 1001 1111 1110 1010 1001 0010 1101 0000 0000 0000 0100 0100(2) × 20 =


1.0001 0101 1111 0101 1010 0011 0100 0100 0001 0000 1111 1000 0010 1101 0011 1111 1101 0101 0010 0101 1010 0000 0000 0000 1000 100(2) × 2103


4. Up to this moment, there are the following elements that would feed into the 32 bit single precision IEEE 754 binary floating point representation:

Sign 0 (a positive number)


Exponent (unadjusted): 103


Mantissa (not normalized):
1.0001 0101 1111 0101 1010 0011 0100 0100 0001 0000 1111 1000 0010 1101 0011 1111 1101 0101 0010 0101 1010 0000 0000 0000 1000 100


5. Adjust the exponent.

Use the 8 bit excess/bias notation:


Exponent (adjusted) =


Exponent (unadjusted) + 2(8-1) - 1 =


103 + 2(8-1) - 1 =


(103 + 127)(10) =


230(10)


6. Convert the adjusted exponent from the decimal (base 10) to 8 bit binary.

Use the same technique of repeatedly dividing by 2:


  • division = quotient + remainder;
  • 230 ÷ 2 = 115 + 0;
  • 115 ÷ 2 = 57 + 1;
  • 57 ÷ 2 = 28 + 1;
  • 28 ÷ 2 = 14 + 0;
  • 14 ÷ 2 = 7 + 0;
  • 7 ÷ 2 = 3 + 1;
  • 3 ÷ 2 = 1 + 1;
  • 1 ÷ 2 = 0 + 1;

7. Construct the base 2 representation of the adjusted exponent.

Take all the remainders starting from the bottom of the list constructed above.


Exponent (adjusted) =


230(10) =


1110 0110(2)


8. Normalize the mantissa.

a) Remove the leading (the leftmost) bit, since it's allways 1, and the decimal point, if the case.


b) Adjust its length to 23 bits, by removing the excess bits, from the right (if any of the excess bits is set on 1, we are losing precision...).


Mantissa (normalized) =


1. 000 1010 1111 1010 1101 0001 1010 0010 0000 1000 0111 1100 0001 0110 1001 1111 1110 1010 1001 0010 1101 0000 0000 0000 0100 0100 =


000 1010 1111 1010 1101 0001


9. The three elements that make up the number's 32 bit single precision IEEE 754 binary floating point representation:

Sign (1 bit) =
0 (a positive number)


Exponent (8 bits) =
1110 0110


Mantissa (23 bits) =
000 1010 1111 1010 1101 0001


Decimal number 11 011 111 110 100 000 000 000 000 000 068 converted to 32 bit single precision IEEE 754 binary floating point representation:

0 - 1110 0110 - 000 1010 1111 1010 1101 0001


How to convert decimal numbers from base ten to 32 bit single precision IEEE 754 binary floating point standard

Follow the steps below to convert a base 10 decimal number to 32 bit single precision IEEE 754 binary floating point:

  • 1. If the number to be converted is negative, start with its the positive version.
  • 2. First convert the integer part. Divide repeatedly by 2 the base ten positive representation of the integer number that is to be converted to binary, until we get a quotient that is equal to zero, keeping track of each remainder.
  • 3. Construct the base 2 representation of the positive integer part of the number, by taking all the remainders of the previous dividing operations, starting from the bottom of the list constructed above. Thus, the last remainder of the divisions becomes the first symbol (the leftmost) of the base two number, while the first remainder becomes the last symbol (the rightmost).
  • 4. Then convert the fractional part. Multiply the number repeatedly by 2, until we get a fractional part that is equal to zero, keeping track of each integer part of the results.
  • 5. Construct the base 2 representation of the fractional part of the number by taking all the integer parts of the previous multiplying operations, starting from the top of the constructed list above (they should appear in the binary representation, from left to right, in the order they have been calculated).
  • 6. Normalize the binary representation of the number, by shifting the decimal point (or if you prefer, the decimal mark) "n" positions either to the left or to the right, so that only one non zero digit remains to the left of the decimal point.
  • 7. Adjust the exponent in 8 bit excess/bias notation and then convert it from decimal (base 10) to 8 bit binary, by using the same technique of repeatedly dividing by 2, as shown above:
    Exponent (adjusted) = Exponent (unadjusted) + 2(8-1) - 1
  • 8. Normalize mantissa, remove the leading (leftmost) bit, since it's allways '1' (and the decimal sign if the case) and adjust its length to 23 bits, either by removing the excess bits from the right (losing precision...) or by adding extra '0' bits to the right.
  • 9. Sign (it takes 1 bit) is either 1 for a negative or 0 for a positive number.

Example: convert the negative number -25.347 from decimal system (base ten) to 32 bit single precision IEEE 754 binary floating point:

  • 1. Start with the positive version of the number:

    |-25.347| = 25.347

  • 2. First convert the integer part, 25. Divide it repeatedly by 2, keeping track of each remainder, until we get a quotient that is equal to zero:
    • division = quotient + remainder;
    • 25 ÷ 2 = 12 + 1;
    • 12 ÷ 2 = 6 + 0;
    • 6 ÷ 2 = 3 + 0;
    • 3 ÷ 2 = 1 + 1;
    • 1 ÷ 2 = 0 + 1;
    • We have encountered a quotient that is ZERO => FULL STOP
  • 3. Construct the base 2 representation of the integer part of the number by taking all the remainders of the previous dividing operations, starting from the bottom of the list constructed above:

    25(10) = 1 1001(2)

  • 4. Then convert the fractional part, 0.347. Multiply repeatedly by 2, keeping track of each integer part of the results, until we get a fractional part that is equal to zero:
    • #) multiplying = integer + fractional part;
    • 1) 0.347 × 2 = 0 + 0.694;
    • 2) 0.694 × 2 = 1 + 0.388;
    • 3) 0.388 × 2 = 0 + 0.776;
    • 4) 0.776 × 2 = 1 + 0.552;
    • 5) 0.552 × 2 = 1 + 0.104;
    • 6) 0.104 × 2 = 0 + 0.208;
    • 7) 0.208 × 2 = 0 + 0.416;
    • 8) 0.416 × 2 = 0 + 0.832;
    • 9) 0.832 × 2 = 1 + 0.664;
    • 10) 0.664 × 2 = 1 + 0.328;
    • 11) 0.328 × 2 = 0 + 0.656;
    • 12) 0.656 × 2 = 1 + 0.312;
    • 13) 0.312 × 2 = 0 + 0.624;
    • 14) 0.624 × 2 = 1 + 0.248;
    • 15) 0.248 × 2 = 0 + 0.496;
    • 16) 0.496 × 2 = 0 + 0.992;
    • 17) 0.992 × 2 = 1 + 0.984;
    • 18) 0.984 × 2 = 1 + 0.968;
    • 19) 0.968 × 2 = 1 + 0.936;
    • 20) 0.936 × 2 = 1 + 0.872;
    • 21) 0.872 × 2 = 1 + 0.744;
    • 22) 0.744 × 2 = 1 + 0.488;
    • 23) 0.488 × 2 = 0 + 0.976;
    • 24) 0.976 × 2 = 1 + 0.952;
    • We didn't get any fractional part that was equal to zero. But we had enough iterations (over Mantissa limit = 23) and at least one integer part that was different from zero => FULL STOP (losing precision...).
  • 5. Construct the base 2 representation of the fractional part of the number, by taking all the integer parts of the previous multiplying operations, starting from the top of the constructed list above:

    0.347(10) = 0.0101 1000 1101 0100 1111 1101(2)

  • 6. Summarizing - the positive number before normalization:

    25.347(10) = 1 1001.0101 1000 1101 0100 1111 1101(2)

  • 7. Normalize the binary representation of the number, shifting the decimal point 4 positions to the left so that only one non-zero digit stays to the left of the decimal point:

    25.347(10) =
    1 1001.0101 1000 1101 0100 1111 1101(2) =
    1 1001.0101 1000 1101 0100 1111 1101(2) × 20 =
    1.1001 0101 1000 1101 0100 1111 1101(2) × 24

  • 8. Up to this moment, there are the following elements that would feed into the 32 bit single precision IEEE 754 binary floating point:

    Sign: 1 (a negative number)

    Exponent (unadjusted): 4

    Mantissa (not-normalized): 1.1001 0101 1000 1101 0100 1111 1101

  • 9. Adjust the exponent in 8 bit excess/bias notation and then convert it from decimal (base 10) to 8 bit binary (base 2), by using the same technique of repeatedly dividing it by 2, as already demonstrated above:

    Exponent (adjusted) = Exponent (unadjusted) + 2(8-1) - 1 = (4 + 127)(10) = 131(10) =
    1000 0011(2)

  • 10. Normalize the mantissa, remove the leading (leftmost) bit, since it's allways '1' (and the decimal point) and adjust its length to 23 bits, by removing the excess bits from the right (losing precision...):

    Mantissa (not-normalized): 1.1001 0101 1000 1101 0100 1111 1101

    Mantissa (normalized): 100 1010 1100 0110 1010 0111

  • Conclusion:

    Sign (1 bit) = 1 (a negative number)

    Exponent (8 bits) = 1000 0011

    Mantissa (23 bits) = 100 1010 1100 0110 1010 0111

  • Number -25.347, converted from the decimal system (base 10) to 32 bit single precision IEEE 754 binary floating point =
    1 - 1000 0011 - 100 1010 1100 0110 1010 0111