32bit IEEE 754: Decimal ↗ Single Precision Floating Point Binary: 11 010 001 010 111 010 000 000 000 000 004 Convert the Number to 32 Bit Single Precision IEEE 754 Binary Floating Point Representation Standard, From a Base 10 Decimal System Number

Number 11 010 001 010 111 010 000 000 000 000 004(10) converted and written in 32 bit single precision IEEE 754 binary floating point representation (1 bit for sign, 8 bits for exponent, 23 bits for mantissa)

1. Divide the number repeatedly by 2.

Keep track of each remainder.

We stop when we get a quotient that is equal to zero.


  • division = quotient + remainder;
  • 11 010 001 010 111 010 000 000 000 000 004 ÷ 2 = 5 505 000 505 055 505 000 000 000 000 002 + 0;
  • 5 505 000 505 055 505 000 000 000 000 002 ÷ 2 = 2 752 500 252 527 752 500 000 000 000 001 + 0;
  • 2 752 500 252 527 752 500 000 000 000 001 ÷ 2 = 1 376 250 126 263 876 250 000 000 000 000 + 1;
  • 1 376 250 126 263 876 250 000 000 000 000 ÷ 2 = 688 125 063 131 938 125 000 000 000 000 + 0;
  • 688 125 063 131 938 125 000 000 000 000 ÷ 2 = 344 062 531 565 969 062 500 000 000 000 + 0;
  • 344 062 531 565 969 062 500 000 000 000 ÷ 2 = 172 031 265 782 984 531 250 000 000 000 + 0;
  • 172 031 265 782 984 531 250 000 000 000 ÷ 2 = 86 015 632 891 492 265 625 000 000 000 + 0;
  • 86 015 632 891 492 265 625 000 000 000 ÷ 2 = 43 007 816 445 746 132 812 500 000 000 + 0;
  • 43 007 816 445 746 132 812 500 000 000 ÷ 2 = 21 503 908 222 873 066 406 250 000 000 + 0;
  • 21 503 908 222 873 066 406 250 000 000 ÷ 2 = 10 751 954 111 436 533 203 125 000 000 + 0;
  • 10 751 954 111 436 533 203 125 000 000 ÷ 2 = 5 375 977 055 718 266 601 562 500 000 + 0;
  • 5 375 977 055 718 266 601 562 500 000 ÷ 2 = 2 687 988 527 859 133 300 781 250 000 + 0;
  • 2 687 988 527 859 133 300 781 250 000 ÷ 2 = 1 343 994 263 929 566 650 390 625 000 + 0;
  • 1 343 994 263 929 566 650 390 625 000 ÷ 2 = 671 997 131 964 783 325 195 312 500 + 0;
  • 671 997 131 964 783 325 195 312 500 ÷ 2 = 335 998 565 982 391 662 597 656 250 + 0;
  • 335 998 565 982 391 662 597 656 250 ÷ 2 = 167 999 282 991 195 831 298 828 125 + 0;
  • 167 999 282 991 195 831 298 828 125 ÷ 2 = 83 999 641 495 597 915 649 414 062 + 1;
  • 83 999 641 495 597 915 649 414 062 ÷ 2 = 41 999 820 747 798 957 824 707 031 + 0;
  • 41 999 820 747 798 957 824 707 031 ÷ 2 = 20 999 910 373 899 478 912 353 515 + 1;
  • 20 999 910 373 899 478 912 353 515 ÷ 2 = 10 499 955 186 949 739 456 176 757 + 1;
  • 10 499 955 186 949 739 456 176 757 ÷ 2 = 5 249 977 593 474 869 728 088 378 + 1;
  • 5 249 977 593 474 869 728 088 378 ÷ 2 = 2 624 988 796 737 434 864 044 189 + 0;
  • 2 624 988 796 737 434 864 044 189 ÷ 2 = 1 312 494 398 368 717 432 022 094 + 1;
  • 1 312 494 398 368 717 432 022 094 ÷ 2 = 656 247 199 184 358 716 011 047 + 0;
  • 656 247 199 184 358 716 011 047 ÷ 2 = 328 123 599 592 179 358 005 523 + 1;
  • 328 123 599 592 179 358 005 523 ÷ 2 = 164 061 799 796 089 679 002 761 + 1;
  • 164 061 799 796 089 679 002 761 ÷ 2 = 82 030 899 898 044 839 501 380 + 1;
  • 82 030 899 898 044 839 501 380 ÷ 2 = 41 015 449 949 022 419 750 690 + 0;
  • 41 015 449 949 022 419 750 690 ÷ 2 = 20 507 724 974 511 209 875 345 + 0;
  • 20 507 724 974 511 209 875 345 ÷ 2 = 10 253 862 487 255 604 937 672 + 1;
  • 10 253 862 487 255 604 937 672 ÷ 2 = 5 126 931 243 627 802 468 836 + 0;
  • 5 126 931 243 627 802 468 836 ÷ 2 = 2 563 465 621 813 901 234 418 + 0;
  • 2 563 465 621 813 901 234 418 ÷ 2 = 1 281 732 810 906 950 617 209 + 0;
  • 1 281 732 810 906 950 617 209 ÷ 2 = 640 866 405 453 475 308 604 + 1;
  • 640 866 405 453 475 308 604 ÷ 2 = 320 433 202 726 737 654 302 + 0;
  • 320 433 202 726 737 654 302 ÷ 2 = 160 216 601 363 368 827 151 + 0;
  • 160 216 601 363 368 827 151 ÷ 2 = 80 108 300 681 684 413 575 + 1;
  • 80 108 300 681 684 413 575 ÷ 2 = 40 054 150 340 842 206 787 + 1;
  • 40 054 150 340 842 206 787 ÷ 2 = 20 027 075 170 421 103 393 + 1;
  • 20 027 075 170 421 103 393 ÷ 2 = 10 013 537 585 210 551 696 + 1;
  • 10 013 537 585 210 551 696 ÷ 2 = 5 006 768 792 605 275 848 + 0;
  • 5 006 768 792 605 275 848 ÷ 2 = 2 503 384 396 302 637 924 + 0;
  • 2 503 384 396 302 637 924 ÷ 2 = 1 251 692 198 151 318 962 + 0;
  • 1 251 692 198 151 318 962 ÷ 2 = 625 846 099 075 659 481 + 0;
  • 625 846 099 075 659 481 ÷ 2 = 312 923 049 537 829 740 + 1;
  • 312 923 049 537 829 740 ÷ 2 = 156 461 524 768 914 870 + 0;
  • 156 461 524 768 914 870 ÷ 2 = 78 230 762 384 457 435 + 0;
  • 78 230 762 384 457 435 ÷ 2 = 39 115 381 192 228 717 + 1;
  • 39 115 381 192 228 717 ÷ 2 = 19 557 690 596 114 358 + 1;
  • 19 557 690 596 114 358 ÷ 2 = 9 778 845 298 057 179 + 0;
  • 9 778 845 298 057 179 ÷ 2 = 4 889 422 649 028 589 + 1;
  • 4 889 422 649 028 589 ÷ 2 = 2 444 711 324 514 294 + 1;
  • 2 444 711 324 514 294 ÷ 2 = 1 222 355 662 257 147 + 0;
  • 1 222 355 662 257 147 ÷ 2 = 611 177 831 128 573 + 1;
  • 611 177 831 128 573 ÷ 2 = 305 588 915 564 286 + 1;
  • 305 588 915 564 286 ÷ 2 = 152 794 457 782 143 + 0;
  • 152 794 457 782 143 ÷ 2 = 76 397 228 891 071 + 1;
  • 76 397 228 891 071 ÷ 2 = 38 198 614 445 535 + 1;
  • 38 198 614 445 535 ÷ 2 = 19 099 307 222 767 + 1;
  • 19 099 307 222 767 ÷ 2 = 9 549 653 611 383 + 1;
  • 9 549 653 611 383 ÷ 2 = 4 774 826 805 691 + 1;
  • 4 774 826 805 691 ÷ 2 = 2 387 413 402 845 + 1;
  • 2 387 413 402 845 ÷ 2 = 1 193 706 701 422 + 1;
  • 1 193 706 701 422 ÷ 2 = 596 853 350 711 + 0;
  • 596 853 350 711 ÷ 2 = 298 426 675 355 + 1;
  • 298 426 675 355 ÷ 2 = 149 213 337 677 + 1;
  • 149 213 337 677 ÷ 2 = 74 606 668 838 + 1;
  • 74 606 668 838 ÷ 2 = 37 303 334 419 + 0;
  • 37 303 334 419 ÷ 2 = 18 651 667 209 + 1;
  • 18 651 667 209 ÷ 2 = 9 325 833 604 + 1;
  • 9 325 833 604 ÷ 2 = 4 662 916 802 + 0;
  • 4 662 916 802 ÷ 2 = 2 331 458 401 + 0;
  • 2 331 458 401 ÷ 2 = 1 165 729 200 + 1;
  • 1 165 729 200 ÷ 2 = 582 864 600 + 0;
  • 582 864 600 ÷ 2 = 291 432 300 + 0;
  • 291 432 300 ÷ 2 = 145 716 150 + 0;
  • 145 716 150 ÷ 2 = 72 858 075 + 0;
  • 72 858 075 ÷ 2 = 36 429 037 + 1;
  • 36 429 037 ÷ 2 = 18 214 518 + 1;
  • 18 214 518 ÷ 2 = 9 107 259 + 0;
  • 9 107 259 ÷ 2 = 4 553 629 + 1;
  • 4 553 629 ÷ 2 = 2 276 814 + 1;
  • 2 276 814 ÷ 2 = 1 138 407 + 0;
  • 1 138 407 ÷ 2 = 569 203 + 1;
  • 569 203 ÷ 2 = 284 601 + 1;
  • 284 601 ÷ 2 = 142 300 + 1;
  • 142 300 ÷ 2 = 71 150 + 0;
  • 71 150 ÷ 2 = 35 575 + 0;
  • 35 575 ÷ 2 = 17 787 + 1;
  • 17 787 ÷ 2 = 8 893 + 1;
  • 8 893 ÷ 2 = 4 446 + 1;
  • 4 446 ÷ 2 = 2 223 + 0;
  • 2 223 ÷ 2 = 1 111 + 1;
  • 1 111 ÷ 2 = 555 + 1;
  • 555 ÷ 2 = 277 + 1;
  • 277 ÷ 2 = 138 + 1;
  • 138 ÷ 2 = 69 + 0;
  • 69 ÷ 2 = 34 + 1;
  • 34 ÷ 2 = 17 + 0;
  • 17 ÷ 2 = 8 + 1;
  • 8 ÷ 2 = 4 + 0;
  • 4 ÷ 2 = 2 + 0;
  • 2 ÷ 2 = 1 + 0;
  • 1 ÷ 2 = 0 + 1;

2. Construct the base 2 representation of the positive number.

Take all the remainders starting from the bottom of the list constructed above.


11 010 001 010 111 010 000 000 000 000 004(10) =


1000 1010 1111 0111 0011 1011 0110 0001 0011 0111 0111 1111 0110 1101 1001 0000 1111 0010 0010 0111 0101 1101 0000 0000 0000 0100(2)


3. Normalize the binary representation of the number.

Shift the decimal mark 103 positions to the left, so that only one non zero digit remains to the left of it:


11 010 001 010 111 010 000 000 000 000 004(10) =


1000 1010 1111 0111 0011 1011 0110 0001 0011 0111 0111 1111 0110 1101 1001 0000 1111 0010 0010 0111 0101 1101 0000 0000 0000 0100(2) =


1000 1010 1111 0111 0011 1011 0110 0001 0011 0111 0111 1111 0110 1101 1001 0000 1111 0010 0010 0111 0101 1101 0000 0000 0000 0100(2) × 20 =


1.0001 0101 1110 1110 0111 0110 1100 0010 0110 1110 1111 1110 1101 1011 0010 0001 1110 0100 0100 1110 1011 1010 0000 0000 0000 100(2) × 2103


4. Up to this moment, there are the following elements that would feed into the 32 bit single precision IEEE 754 binary floating point representation:

Sign 0 (a positive number)


Exponent (unadjusted): 103


Mantissa (not normalized):
1.0001 0101 1110 1110 0111 0110 1100 0010 0110 1110 1111 1110 1101 1011 0010 0001 1110 0100 0100 1110 1011 1010 0000 0000 0000 100


5. Adjust the exponent.

Use the 8 bit excess/bias notation:


Exponent (adjusted) =


Exponent (unadjusted) + 2(8-1) - 1 =


103 + 2(8-1) - 1 =


(103 + 127)(10) =


230(10)


6. Convert the adjusted exponent from the decimal (base 10) to 8 bit binary.

Use the same technique of repeatedly dividing by 2:


  • division = quotient + remainder;
  • 230 ÷ 2 = 115 + 0;
  • 115 ÷ 2 = 57 + 1;
  • 57 ÷ 2 = 28 + 1;
  • 28 ÷ 2 = 14 + 0;
  • 14 ÷ 2 = 7 + 0;
  • 7 ÷ 2 = 3 + 1;
  • 3 ÷ 2 = 1 + 1;
  • 1 ÷ 2 = 0 + 1;

7. Construct the base 2 representation of the adjusted exponent.

Take all the remainders starting from the bottom of the list constructed above.


Exponent (adjusted) =


230(10) =


1110 0110(2)


8. Normalize the mantissa.

a) Remove the leading (the leftmost) bit, since it's allways 1, and the decimal point, if the case.


b) Adjust its length to 23 bits, by removing the excess bits, from the right (if any of the excess bits is set on 1, we are losing precision...).


Mantissa (normalized) =


1. 000 1010 1111 0111 0011 1011 0110 0001 0011 0111 0111 1111 0110 1101 1001 0000 1111 0010 0010 0111 0101 1101 0000 0000 0000 0100 =


000 1010 1111 0111 0011 1011


9. The three elements that make up the number's 32 bit single precision IEEE 754 binary floating point representation:

Sign (1 bit) =
0 (a positive number)


Exponent (8 bits) =
1110 0110


Mantissa (23 bits) =
000 1010 1111 0111 0011 1011


The base ten decimal number 11 010 001 010 111 010 000 000 000 000 004 converted and written in 32 bit single precision IEEE 754 binary floating point representation:
0 - 1110 0110 - 000 1010 1111 0111 0011 1011

The latest decimal numbers converted from base ten to 32 bit single precision IEEE 754 floating point binary standard representation

Number 0.362 301 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard May 01 10:38 UTC (GMT)
Number -1 086 324 631 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard May 01 10:38 UTC (GMT)
Number 340 282 377 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard May 01 10:38 UTC (GMT)
Number -0.000 000 000 000 000 000 160 22 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard May 01 10:38 UTC (GMT)
Number 101 101 011 011 011 101 101 011 009 957 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard May 01 10:38 UTC (GMT)
Number 1 727 128 015 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard May 01 10:38 UTC (GMT)
Number -0.011 105 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard May 01 10:38 UTC (GMT)
Number 0.625 05 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard May 01 10:38 UTC (GMT)
Number 46.25 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard May 01 10:38 UTC (GMT)
Number 57.862 4 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard May 01 10:38 UTC (GMT)
All base ten decimal numbers converted to 32 bit single precision IEEE 754 binary floating point

How to convert decimal numbers from base ten to 32 bit single precision IEEE 754 binary floating point standard

Follow the steps below to convert a base 10 decimal number to 32 bit single precision IEEE 754 binary floating point:

  • 1. If the number to be converted is negative, start with its the positive version.
  • 2. First convert the integer part. Divide repeatedly by 2 the base ten positive representation of the integer number that is to be converted to binary, until we get a quotient that is equal to zero, keeping track of each remainder.
  • 3. Construct the base 2 representation of the positive integer part of the number, by taking all the remainders of the previous dividing operations, starting from the bottom of the list constructed above. Thus, the last remainder of the divisions becomes the first symbol (the leftmost) of the base two number, while the first remainder becomes the last symbol (the rightmost).
  • 4. Then convert the fractional part. Multiply the number repeatedly by 2, until we get a fractional part that is equal to zero, keeping track of each integer part of the results.
  • 5. Construct the base 2 representation of the fractional part of the number by taking all the integer parts of the previous multiplying operations, starting from the top of the constructed list above (they should appear in the binary representation, from left to right, in the order they have been calculated).
  • 6. Normalize the binary representation of the number, by shifting the decimal point (or if you prefer, the decimal mark) "n" positions either to the left or to the right, so that only one non zero digit remains to the left of the decimal point.
  • 7. Adjust the exponent in 8 bit excess/bias notation and then convert it from decimal (base 10) to 8 bit binary, by using the same technique of repeatedly dividing by 2, as shown above:
    Exponent (adjusted) = Exponent (unadjusted) + 2(8-1) - 1
  • 8. Normalize mantissa, remove the leading (leftmost) bit, since it's allways '1' (and the decimal sign if the case) and adjust its length to 23 bits, either by removing the excess bits from the right (losing precision...) or by adding extra '0' bits to the right.
  • 9. Sign (it takes 1 bit) is either 1 for a negative or 0 for a positive number.

Example: convert the negative number -25.347 from decimal system (base ten) to 32 bit single precision IEEE 754 binary floating point:

  • 1. Start with the positive version of the number:

    |-25.347| = 25.347

  • 2. First convert the integer part, 25. Divide it repeatedly by 2, keeping track of each remainder, until we get a quotient that is equal to zero:
    • division = quotient + remainder;
    • 25 ÷ 2 = 12 + 1;
    • 12 ÷ 2 = 6 + 0;
    • 6 ÷ 2 = 3 + 0;
    • 3 ÷ 2 = 1 + 1;
    • 1 ÷ 2 = 0 + 1;
    • We have encountered a quotient that is ZERO => FULL STOP
  • 3. Construct the base 2 representation of the integer part of the number by taking all the remainders of the previous dividing operations, starting from the bottom of the list constructed above:

    25(10) = 1 1001(2)

  • 4. Then convert the fractional part, 0.347. Multiply repeatedly by 2, keeping track of each integer part of the results, until we get a fractional part that is equal to zero:
    • #) multiplying = integer + fractional part;
    • 1) 0.347 × 2 = 0 + 0.694;
    • 2) 0.694 × 2 = 1 + 0.388;
    • 3) 0.388 × 2 = 0 + 0.776;
    • 4) 0.776 × 2 = 1 + 0.552;
    • 5) 0.552 × 2 = 1 + 0.104;
    • 6) 0.104 × 2 = 0 + 0.208;
    • 7) 0.208 × 2 = 0 + 0.416;
    • 8) 0.416 × 2 = 0 + 0.832;
    • 9) 0.832 × 2 = 1 + 0.664;
    • 10) 0.664 × 2 = 1 + 0.328;
    • 11) 0.328 × 2 = 0 + 0.656;
    • 12) 0.656 × 2 = 1 + 0.312;
    • 13) 0.312 × 2 = 0 + 0.624;
    • 14) 0.624 × 2 = 1 + 0.248;
    • 15) 0.248 × 2 = 0 + 0.496;
    • 16) 0.496 × 2 = 0 + 0.992;
    • 17) 0.992 × 2 = 1 + 0.984;
    • 18) 0.984 × 2 = 1 + 0.968;
    • 19) 0.968 × 2 = 1 + 0.936;
    • 20) 0.936 × 2 = 1 + 0.872;
    • 21) 0.872 × 2 = 1 + 0.744;
    • 22) 0.744 × 2 = 1 + 0.488;
    • 23) 0.488 × 2 = 0 + 0.976;
    • 24) 0.976 × 2 = 1 + 0.952;
    • We didn't get any fractional part that was equal to zero. But we had enough iterations (over Mantissa limit = 23) and at least one integer part that was different from zero => FULL STOP (losing precision...).
  • 5. Construct the base 2 representation of the fractional part of the number, by taking all the integer parts of the previous multiplying operations, starting from the top of the constructed list above:

    0.347(10) = 0.0101 1000 1101 0100 1111 1101(2)

  • 6. Summarizing - the positive number before normalization:

    25.347(10) = 1 1001.0101 1000 1101 0100 1111 1101(2)

  • 7. Normalize the binary representation of the number, shifting the decimal point 4 positions to the left so that only one non-zero digit stays to the left of the decimal point:

    25.347(10) =
    1 1001.0101 1000 1101 0100 1111 1101(2) =
    1 1001.0101 1000 1101 0100 1111 1101(2) × 20 =
    1.1001 0101 1000 1101 0100 1111 1101(2) × 24

  • 8. Up to this moment, there are the following elements that would feed into the 32 bit single precision IEEE 754 binary floating point:

    Sign: 1 (a negative number)

    Exponent (unadjusted): 4

    Mantissa (not-normalized): 1.1001 0101 1000 1101 0100 1111 1101

  • 9. Adjust the exponent in 8 bit excess/bias notation and then convert it from decimal (base 10) to 8 bit binary (base 2), by using the same technique of repeatedly dividing it by 2, as already demonstrated above:

    Exponent (adjusted) = Exponent (unadjusted) + 2(8-1) - 1 = (4 + 127)(10) = 131(10) =
    1000 0011(2)

  • 10. Normalize the mantissa, remove the leading (leftmost) bit, since it's allways '1' (and the decimal point) and adjust its length to 23 bits, by removing the excess bits from the right (losing precision...):

    Mantissa (not-normalized): 1.1001 0101 1000 1101 0100 1111 1101

    Mantissa (normalized): 100 1010 1100 0110 1010 0111

  • Conclusion:

    Sign (1 bit) = 1 (a negative number)

    Exponent (8 bits) = 1000 0011

    Mantissa (23 bits) = 100 1010 1100 0110 1010 0111

  • Number -25.347, converted from the decimal system (base 10) to 32 bit single precision IEEE 754 binary floating point =
    1 - 1000 0011 - 100 1010 1100 0110 1010 0111