32bit IEEE 754: Decimal ↗ Single Precision Floating Point Binary: 11 000 011 111 000 111 011 000 000 000 013 Convert the Number to 32 Bit Single Precision IEEE 754 Binary Floating Point Representation Standard, From a Base 10 Decimal System Number

Number 11 000 011 111 000 111 011 000 000 000 013(10) converted and written in 32 bit single precision IEEE 754 binary floating point representation (1 bit for sign, 8 bits for exponent, 23 bits for mantissa)

1. Divide the number repeatedly by 2.

Keep track of each remainder.

We stop when we get a quotient that is equal to zero.


  • division = quotient + remainder;
  • 11 000 011 111 000 111 011 000 000 000 013 ÷ 2 = 5 500 005 555 500 055 505 500 000 000 006 + 1;
  • 5 500 005 555 500 055 505 500 000 000 006 ÷ 2 = 2 750 002 777 750 027 752 750 000 000 003 + 0;
  • 2 750 002 777 750 027 752 750 000 000 003 ÷ 2 = 1 375 001 388 875 013 876 375 000 000 001 + 1;
  • 1 375 001 388 875 013 876 375 000 000 001 ÷ 2 = 687 500 694 437 506 938 187 500 000 000 + 1;
  • 687 500 694 437 506 938 187 500 000 000 ÷ 2 = 343 750 347 218 753 469 093 750 000 000 + 0;
  • 343 750 347 218 753 469 093 750 000 000 ÷ 2 = 171 875 173 609 376 734 546 875 000 000 + 0;
  • 171 875 173 609 376 734 546 875 000 000 ÷ 2 = 85 937 586 804 688 367 273 437 500 000 + 0;
  • 85 937 586 804 688 367 273 437 500 000 ÷ 2 = 42 968 793 402 344 183 636 718 750 000 + 0;
  • 42 968 793 402 344 183 636 718 750 000 ÷ 2 = 21 484 396 701 172 091 818 359 375 000 + 0;
  • 21 484 396 701 172 091 818 359 375 000 ÷ 2 = 10 742 198 350 586 045 909 179 687 500 + 0;
  • 10 742 198 350 586 045 909 179 687 500 ÷ 2 = 5 371 099 175 293 022 954 589 843 750 + 0;
  • 5 371 099 175 293 022 954 589 843 750 ÷ 2 = 2 685 549 587 646 511 477 294 921 875 + 0;
  • 2 685 549 587 646 511 477 294 921 875 ÷ 2 = 1 342 774 793 823 255 738 647 460 937 + 1;
  • 1 342 774 793 823 255 738 647 460 937 ÷ 2 = 671 387 396 911 627 869 323 730 468 + 1;
  • 671 387 396 911 627 869 323 730 468 ÷ 2 = 335 693 698 455 813 934 661 865 234 + 0;
  • 335 693 698 455 813 934 661 865 234 ÷ 2 = 167 846 849 227 906 967 330 932 617 + 0;
  • 167 846 849 227 906 967 330 932 617 ÷ 2 = 83 923 424 613 953 483 665 466 308 + 1;
  • 83 923 424 613 953 483 665 466 308 ÷ 2 = 41 961 712 306 976 741 832 733 154 + 0;
  • 41 961 712 306 976 741 832 733 154 ÷ 2 = 20 980 856 153 488 370 916 366 577 + 0;
  • 20 980 856 153 488 370 916 366 577 ÷ 2 = 10 490 428 076 744 185 458 183 288 + 1;
  • 10 490 428 076 744 185 458 183 288 ÷ 2 = 5 245 214 038 372 092 729 091 644 + 0;
  • 5 245 214 038 372 092 729 091 644 ÷ 2 = 2 622 607 019 186 046 364 545 822 + 0;
  • 2 622 607 019 186 046 364 545 822 ÷ 2 = 1 311 303 509 593 023 182 272 911 + 0;
  • 1 311 303 509 593 023 182 272 911 ÷ 2 = 655 651 754 796 511 591 136 455 + 1;
  • 655 651 754 796 511 591 136 455 ÷ 2 = 327 825 877 398 255 795 568 227 + 1;
  • 327 825 877 398 255 795 568 227 ÷ 2 = 163 912 938 699 127 897 784 113 + 1;
  • 163 912 938 699 127 897 784 113 ÷ 2 = 81 956 469 349 563 948 892 056 + 1;
  • 81 956 469 349 563 948 892 056 ÷ 2 = 40 978 234 674 781 974 446 028 + 0;
  • 40 978 234 674 781 974 446 028 ÷ 2 = 20 489 117 337 390 987 223 014 + 0;
  • 20 489 117 337 390 987 223 014 ÷ 2 = 10 244 558 668 695 493 611 507 + 0;
  • 10 244 558 668 695 493 611 507 ÷ 2 = 5 122 279 334 347 746 805 753 + 1;
  • 5 122 279 334 347 746 805 753 ÷ 2 = 2 561 139 667 173 873 402 876 + 1;
  • 2 561 139 667 173 873 402 876 ÷ 2 = 1 280 569 833 586 936 701 438 + 0;
  • 1 280 569 833 586 936 701 438 ÷ 2 = 640 284 916 793 468 350 719 + 0;
  • 640 284 916 793 468 350 719 ÷ 2 = 320 142 458 396 734 175 359 + 1;
  • 320 142 458 396 734 175 359 ÷ 2 = 160 071 229 198 367 087 679 + 1;
  • 160 071 229 198 367 087 679 ÷ 2 = 80 035 614 599 183 543 839 + 1;
  • 80 035 614 599 183 543 839 ÷ 2 = 40 017 807 299 591 771 919 + 1;
  • 40 017 807 299 591 771 919 ÷ 2 = 20 008 903 649 795 885 959 + 1;
  • 20 008 903 649 795 885 959 ÷ 2 = 10 004 451 824 897 942 979 + 1;
  • 10 004 451 824 897 942 979 ÷ 2 = 5 002 225 912 448 971 489 + 1;
  • 5 002 225 912 448 971 489 ÷ 2 = 2 501 112 956 224 485 744 + 1;
  • 2 501 112 956 224 485 744 ÷ 2 = 1 250 556 478 112 242 872 + 0;
  • 1 250 556 478 112 242 872 ÷ 2 = 625 278 239 056 121 436 + 0;
  • 625 278 239 056 121 436 ÷ 2 = 312 639 119 528 060 718 + 0;
  • 312 639 119 528 060 718 ÷ 2 = 156 319 559 764 030 359 + 0;
  • 156 319 559 764 030 359 ÷ 2 = 78 159 779 882 015 179 + 1;
  • 78 159 779 882 015 179 ÷ 2 = 39 079 889 941 007 589 + 1;
  • 39 079 889 941 007 589 ÷ 2 = 19 539 944 970 503 794 + 1;
  • 19 539 944 970 503 794 ÷ 2 = 9 769 972 485 251 897 + 0;
  • 9 769 972 485 251 897 ÷ 2 = 4 884 986 242 625 948 + 1;
  • 4 884 986 242 625 948 ÷ 2 = 2 442 493 121 312 974 + 0;
  • 2 442 493 121 312 974 ÷ 2 = 1 221 246 560 656 487 + 0;
  • 1 221 246 560 656 487 ÷ 2 = 610 623 280 328 243 + 1;
  • 610 623 280 328 243 ÷ 2 = 305 311 640 164 121 + 1;
  • 305 311 640 164 121 ÷ 2 = 152 655 820 082 060 + 1;
  • 152 655 820 082 060 ÷ 2 = 76 327 910 041 030 + 0;
  • 76 327 910 041 030 ÷ 2 = 38 163 955 020 515 + 0;
  • 38 163 955 020 515 ÷ 2 = 19 081 977 510 257 + 1;
  • 19 081 977 510 257 ÷ 2 = 9 540 988 755 128 + 1;
  • 9 540 988 755 128 ÷ 2 = 4 770 494 377 564 + 0;
  • 4 770 494 377 564 ÷ 2 = 2 385 247 188 782 + 0;
  • 2 385 247 188 782 ÷ 2 = 1 192 623 594 391 + 0;
  • 1 192 623 594 391 ÷ 2 = 596 311 797 195 + 1;
  • 596 311 797 195 ÷ 2 = 298 155 898 597 + 1;
  • 298 155 898 597 ÷ 2 = 149 077 949 298 + 1;
  • 149 077 949 298 ÷ 2 = 74 538 974 649 + 0;
  • 74 538 974 649 ÷ 2 = 37 269 487 324 + 1;
  • 37 269 487 324 ÷ 2 = 18 634 743 662 + 0;
  • 18 634 743 662 ÷ 2 = 9 317 371 831 + 0;
  • 9 317 371 831 ÷ 2 = 4 658 685 915 + 1;
  • 4 658 685 915 ÷ 2 = 2 329 342 957 + 1;
  • 2 329 342 957 ÷ 2 = 1 164 671 478 + 1;
  • 1 164 671 478 ÷ 2 = 582 335 739 + 0;
  • 582 335 739 ÷ 2 = 291 167 869 + 1;
  • 291 167 869 ÷ 2 = 145 583 934 + 1;
  • 145 583 934 ÷ 2 = 72 791 967 + 0;
  • 72 791 967 ÷ 2 = 36 395 983 + 1;
  • 36 395 983 ÷ 2 = 18 197 991 + 1;
  • 18 197 991 ÷ 2 = 9 098 995 + 1;
  • 9 098 995 ÷ 2 = 4 549 497 + 1;
  • 4 549 497 ÷ 2 = 2 274 748 + 1;
  • 2 274 748 ÷ 2 = 1 137 374 + 0;
  • 1 137 374 ÷ 2 = 568 687 + 0;
  • 568 687 ÷ 2 = 284 343 + 1;
  • 284 343 ÷ 2 = 142 171 + 1;
  • 142 171 ÷ 2 = 71 085 + 1;
  • 71 085 ÷ 2 = 35 542 + 1;
  • 35 542 ÷ 2 = 17 771 + 0;
  • 17 771 ÷ 2 = 8 885 + 1;
  • 8 885 ÷ 2 = 4 442 + 1;
  • 4 442 ÷ 2 = 2 221 + 0;
  • 2 221 ÷ 2 = 1 110 + 1;
  • 1 110 ÷ 2 = 555 + 0;
  • 555 ÷ 2 = 277 + 1;
  • 277 ÷ 2 = 138 + 1;
  • 138 ÷ 2 = 69 + 0;
  • 69 ÷ 2 = 34 + 1;
  • 34 ÷ 2 = 17 + 0;
  • 17 ÷ 2 = 8 + 1;
  • 8 ÷ 2 = 4 + 0;
  • 4 ÷ 2 = 2 + 0;
  • 2 ÷ 2 = 1 + 0;
  • 1 ÷ 2 = 0 + 1;

2. Construct the base 2 representation of the positive number.

Take all the remainders starting from the bottom of the list constructed above.


11 000 011 111 000 111 011 000 000 000 013(10) =


1000 1010 1101 0110 1111 0011 1110 1101 1100 1011 1000 1100 1110 0101 1100 0011 1111 1100 1100 0111 1000 1001 0011 0000 0000 1101(2)


3. Normalize the binary representation of the number.

Shift the decimal mark 103 positions to the left, so that only one non zero digit remains to the left of it:


11 000 011 111 000 111 011 000 000 000 013(10) =


1000 1010 1101 0110 1111 0011 1110 1101 1100 1011 1000 1100 1110 0101 1100 0011 1111 1100 1100 0111 1000 1001 0011 0000 0000 1101(2) =


1000 1010 1101 0110 1111 0011 1110 1101 1100 1011 1000 1100 1110 0101 1100 0011 1111 1100 1100 0111 1000 1001 0011 0000 0000 1101(2) × 20 =


1.0001 0101 1010 1101 1110 0111 1101 1011 1001 0111 0001 1001 1100 1011 1000 0111 1111 1001 1000 1111 0001 0010 0110 0000 0001 101(2) × 2103


4. Up to this moment, there are the following elements that would feed into the 32 bit single precision IEEE 754 binary floating point representation:

Sign 0 (a positive number)


Exponent (unadjusted): 103


Mantissa (not normalized):
1.0001 0101 1010 1101 1110 0111 1101 1011 1001 0111 0001 1001 1100 1011 1000 0111 1111 1001 1000 1111 0001 0010 0110 0000 0001 101


5. Adjust the exponent.

Use the 8 bit excess/bias notation:


Exponent (adjusted) =


Exponent (unadjusted) + 2(8-1) - 1 =


103 + 2(8-1) - 1 =


(103 + 127)(10) =


230(10)


6. Convert the adjusted exponent from the decimal (base 10) to 8 bit binary.

Use the same technique of repeatedly dividing by 2:


  • division = quotient + remainder;
  • 230 ÷ 2 = 115 + 0;
  • 115 ÷ 2 = 57 + 1;
  • 57 ÷ 2 = 28 + 1;
  • 28 ÷ 2 = 14 + 0;
  • 14 ÷ 2 = 7 + 0;
  • 7 ÷ 2 = 3 + 1;
  • 3 ÷ 2 = 1 + 1;
  • 1 ÷ 2 = 0 + 1;

7. Construct the base 2 representation of the adjusted exponent.

Take all the remainders starting from the bottom of the list constructed above.


Exponent (adjusted) =


230(10) =


1110 0110(2)


8. Normalize the mantissa.

a) Remove the leading (the leftmost) bit, since it's allways 1, and the decimal point, if the case.


b) Adjust its length to 23 bits, by removing the excess bits, from the right (if any of the excess bits is set on 1, we are losing precision...).


Mantissa (normalized) =


1. 000 1010 1101 0110 1111 0011 1110 1101 1100 1011 1000 1100 1110 0101 1100 0011 1111 1100 1100 0111 1000 1001 0011 0000 0000 1101 =


000 1010 1101 0110 1111 0011


9. The three elements that make up the number's 32 bit single precision IEEE 754 binary floating point representation:

Sign (1 bit) =
0 (a positive number)


Exponent (8 bits) =
1110 0110


Mantissa (23 bits) =
000 1010 1101 0110 1111 0011


The base ten decimal number 11 000 011 111 000 111 011 000 000 000 013 converted and written in 32 bit single precision IEEE 754 binary floating point representation:
0 - 1110 0110 - 000 1010 1101 0110 1111 0011

The latest decimal numbers converted from base ten to 32 bit single precision IEEE 754 floating point binary standard representation

Number -99 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard May 01 02:37 UTC (GMT)
Number 0.143 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard May 01 02:37 UTC (GMT)
Number -2.487 510 17 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard May 01 02:37 UTC (GMT)
Number 27 051 955 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard May 01 02:37 UTC (GMT)
Number 3.222 9 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard May 01 02:37 UTC (GMT)
Number 123.17 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard May 01 02:37 UTC (GMT)
Number 986 757 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard May 01 02:37 UTC (GMT)
Number 1 062 593 893 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard May 01 02:37 UTC (GMT)
Number 0.615 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard May 01 02:37 UTC (GMT)
Number 4 010 605 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard May 01 02:37 UTC (GMT)
All base ten decimal numbers converted to 32 bit single precision IEEE 754 binary floating point

How to convert decimal numbers from base ten to 32 bit single precision IEEE 754 binary floating point standard

Follow the steps below to convert a base 10 decimal number to 32 bit single precision IEEE 754 binary floating point:

  • 1. If the number to be converted is negative, start with its the positive version.
  • 2. First convert the integer part. Divide repeatedly by 2 the base ten positive representation of the integer number that is to be converted to binary, until we get a quotient that is equal to zero, keeping track of each remainder.
  • 3. Construct the base 2 representation of the positive integer part of the number, by taking all the remainders of the previous dividing operations, starting from the bottom of the list constructed above. Thus, the last remainder of the divisions becomes the first symbol (the leftmost) of the base two number, while the first remainder becomes the last symbol (the rightmost).
  • 4. Then convert the fractional part. Multiply the number repeatedly by 2, until we get a fractional part that is equal to zero, keeping track of each integer part of the results.
  • 5. Construct the base 2 representation of the fractional part of the number by taking all the integer parts of the previous multiplying operations, starting from the top of the constructed list above (they should appear in the binary representation, from left to right, in the order they have been calculated).
  • 6. Normalize the binary representation of the number, by shifting the decimal point (or if you prefer, the decimal mark) "n" positions either to the left or to the right, so that only one non zero digit remains to the left of the decimal point.
  • 7. Adjust the exponent in 8 bit excess/bias notation and then convert it from decimal (base 10) to 8 bit binary, by using the same technique of repeatedly dividing by 2, as shown above:
    Exponent (adjusted) = Exponent (unadjusted) + 2(8-1) - 1
  • 8. Normalize mantissa, remove the leading (leftmost) bit, since it's allways '1' (and the decimal sign if the case) and adjust its length to 23 bits, either by removing the excess bits from the right (losing precision...) or by adding extra '0' bits to the right.
  • 9. Sign (it takes 1 bit) is either 1 for a negative or 0 for a positive number.

Example: convert the negative number -25.347 from decimal system (base ten) to 32 bit single precision IEEE 754 binary floating point:

  • 1. Start with the positive version of the number:

    |-25.347| = 25.347

  • 2. First convert the integer part, 25. Divide it repeatedly by 2, keeping track of each remainder, until we get a quotient that is equal to zero:
    • division = quotient + remainder;
    • 25 ÷ 2 = 12 + 1;
    • 12 ÷ 2 = 6 + 0;
    • 6 ÷ 2 = 3 + 0;
    • 3 ÷ 2 = 1 + 1;
    • 1 ÷ 2 = 0 + 1;
    • We have encountered a quotient that is ZERO => FULL STOP
  • 3. Construct the base 2 representation of the integer part of the number by taking all the remainders of the previous dividing operations, starting from the bottom of the list constructed above:

    25(10) = 1 1001(2)

  • 4. Then convert the fractional part, 0.347. Multiply repeatedly by 2, keeping track of each integer part of the results, until we get a fractional part that is equal to zero:
    • #) multiplying = integer + fractional part;
    • 1) 0.347 × 2 = 0 + 0.694;
    • 2) 0.694 × 2 = 1 + 0.388;
    • 3) 0.388 × 2 = 0 + 0.776;
    • 4) 0.776 × 2 = 1 + 0.552;
    • 5) 0.552 × 2 = 1 + 0.104;
    • 6) 0.104 × 2 = 0 + 0.208;
    • 7) 0.208 × 2 = 0 + 0.416;
    • 8) 0.416 × 2 = 0 + 0.832;
    • 9) 0.832 × 2 = 1 + 0.664;
    • 10) 0.664 × 2 = 1 + 0.328;
    • 11) 0.328 × 2 = 0 + 0.656;
    • 12) 0.656 × 2 = 1 + 0.312;
    • 13) 0.312 × 2 = 0 + 0.624;
    • 14) 0.624 × 2 = 1 + 0.248;
    • 15) 0.248 × 2 = 0 + 0.496;
    • 16) 0.496 × 2 = 0 + 0.992;
    • 17) 0.992 × 2 = 1 + 0.984;
    • 18) 0.984 × 2 = 1 + 0.968;
    • 19) 0.968 × 2 = 1 + 0.936;
    • 20) 0.936 × 2 = 1 + 0.872;
    • 21) 0.872 × 2 = 1 + 0.744;
    • 22) 0.744 × 2 = 1 + 0.488;
    • 23) 0.488 × 2 = 0 + 0.976;
    • 24) 0.976 × 2 = 1 + 0.952;
    • We didn't get any fractional part that was equal to zero. But we had enough iterations (over Mantissa limit = 23) and at least one integer part that was different from zero => FULL STOP (losing precision...).
  • 5. Construct the base 2 representation of the fractional part of the number, by taking all the integer parts of the previous multiplying operations, starting from the top of the constructed list above:

    0.347(10) = 0.0101 1000 1101 0100 1111 1101(2)

  • 6. Summarizing - the positive number before normalization:

    25.347(10) = 1 1001.0101 1000 1101 0100 1111 1101(2)

  • 7. Normalize the binary representation of the number, shifting the decimal point 4 positions to the left so that only one non-zero digit stays to the left of the decimal point:

    25.347(10) =
    1 1001.0101 1000 1101 0100 1111 1101(2) =
    1 1001.0101 1000 1101 0100 1111 1101(2) × 20 =
    1.1001 0101 1000 1101 0100 1111 1101(2) × 24

  • 8. Up to this moment, there are the following elements that would feed into the 32 bit single precision IEEE 754 binary floating point:

    Sign: 1 (a negative number)

    Exponent (unadjusted): 4

    Mantissa (not-normalized): 1.1001 0101 1000 1101 0100 1111 1101

  • 9. Adjust the exponent in 8 bit excess/bias notation and then convert it from decimal (base 10) to 8 bit binary (base 2), by using the same technique of repeatedly dividing it by 2, as already demonstrated above:

    Exponent (adjusted) = Exponent (unadjusted) + 2(8-1) - 1 = (4 + 127)(10) = 131(10) =
    1000 0011(2)

  • 10. Normalize the mantissa, remove the leading (leftmost) bit, since it's allways '1' (and the decimal point) and adjust its length to 23 bits, by removing the excess bits from the right (losing precision...):

    Mantissa (not-normalized): 1.1001 0101 1000 1101 0100 1111 1101

    Mantissa (normalized): 100 1010 1100 0110 1010 0111

  • Conclusion:

    Sign (1 bit) = 1 (a negative number)

    Exponent (8 bits) = 1000 0011

    Mantissa (23 bits) = 100 1010 1100 0110 1010 0111

  • Number -25.347, converted from the decimal system (base 10) to 32 bit single precision IEEE 754 binary floating point =
    1 - 1000 0011 - 100 1010 1100 0110 1010 0111