32bit IEEE 754: Decimal ↗ Single Precision Floating Point Binary: 1 100 001 101 100 999 999 929 Convert the Number to 32 Bit Single Precision IEEE 754 Binary Floating Point Representation Standard, From a Base 10 Decimal System Number

Number 1 100 001 101 100 999 999 929(10) converted and written in 32 bit single precision IEEE 754 binary floating point representation (1 bit for sign, 8 bits for exponent, 23 bits for mantissa)

1. Divide the number repeatedly by 2.

Keep track of each remainder.

We stop when we get a quotient that is equal to zero.


  • division = quotient + remainder;
  • 1 100 001 101 100 999 999 929 ÷ 2 = 550 000 550 550 499 999 964 + 1;
  • 550 000 550 550 499 999 964 ÷ 2 = 275 000 275 275 249 999 982 + 0;
  • 275 000 275 275 249 999 982 ÷ 2 = 137 500 137 637 624 999 991 + 0;
  • 137 500 137 637 624 999 991 ÷ 2 = 68 750 068 818 812 499 995 + 1;
  • 68 750 068 818 812 499 995 ÷ 2 = 34 375 034 409 406 249 997 + 1;
  • 34 375 034 409 406 249 997 ÷ 2 = 17 187 517 204 703 124 998 + 1;
  • 17 187 517 204 703 124 998 ÷ 2 = 8 593 758 602 351 562 499 + 0;
  • 8 593 758 602 351 562 499 ÷ 2 = 4 296 879 301 175 781 249 + 1;
  • 4 296 879 301 175 781 249 ÷ 2 = 2 148 439 650 587 890 624 + 1;
  • 2 148 439 650 587 890 624 ÷ 2 = 1 074 219 825 293 945 312 + 0;
  • 1 074 219 825 293 945 312 ÷ 2 = 537 109 912 646 972 656 + 0;
  • 537 109 912 646 972 656 ÷ 2 = 268 554 956 323 486 328 + 0;
  • 268 554 956 323 486 328 ÷ 2 = 134 277 478 161 743 164 + 0;
  • 134 277 478 161 743 164 ÷ 2 = 67 138 739 080 871 582 + 0;
  • 67 138 739 080 871 582 ÷ 2 = 33 569 369 540 435 791 + 0;
  • 33 569 369 540 435 791 ÷ 2 = 16 784 684 770 217 895 + 1;
  • 16 784 684 770 217 895 ÷ 2 = 8 392 342 385 108 947 + 1;
  • 8 392 342 385 108 947 ÷ 2 = 4 196 171 192 554 473 + 1;
  • 4 196 171 192 554 473 ÷ 2 = 2 098 085 596 277 236 + 1;
  • 2 098 085 596 277 236 ÷ 2 = 1 049 042 798 138 618 + 0;
  • 1 049 042 798 138 618 ÷ 2 = 524 521 399 069 309 + 0;
  • 524 521 399 069 309 ÷ 2 = 262 260 699 534 654 + 1;
  • 262 260 699 534 654 ÷ 2 = 131 130 349 767 327 + 0;
  • 131 130 349 767 327 ÷ 2 = 65 565 174 883 663 + 1;
  • 65 565 174 883 663 ÷ 2 = 32 782 587 441 831 + 1;
  • 32 782 587 441 831 ÷ 2 = 16 391 293 720 915 + 1;
  • 16 391 293 720 915 ÷ 2 = 8 195 646 860 457 + 1;
  • 8 195 646 860 457 ÷ 2 = 4 097 823 430 228 + 1;
  • 4 097 823 430 228 ÷ 2 = 2 048 911 715 114 + 0;
  • 2 048 911 715 114 ÷ 2 = 1 024 455 857 557 + 0;
  • 1 024 455 857 557 ÷ 2 = 512 227 928 778 + 1;
  • 512 227 928 778 ÷ 2 = 256 113 964 389 + 0;
  • 256 113 964 389 ÷ 2 = 128 056 982 194 + 1;
  • 128 056 982 194 ÷ 2 = 64 028 491 097 + 0;
  • 64 028 491 097 ÷ 2 = 32 014 245 548 + 1;
  • 32 014 245 548 ÷ 2 = 16 007 122 774 + 0;
  • 16 007 122 774 ÷ 2 = 8 003 561 387 + 0;
  • 8 003 561 387 ÷ 2 = 4 001 780 693 + 1;
  • 4 001 780 693 ÷ 2 = 2 000 890 346 + 1;
  • 2 000 890 346 ÷ 2 = 1 000 445 173 + 0;
  • 1 000 445 173 ÷ 2 = 500 222 586 + 1;
  • 500 222 586 ÷ 2 = 250 111 293 + 0;
  • 250 111 293 ÷ 2 = 125 055 646 + 1;
  • 125 055 646 ÷ 2 = 62 527 823 + 0;
  • 62 527 823 ÷ 2 = 31 263 911 + 1;
  • 31 263 911 ÷ 2 = 15 631 955 + 1;
  • 15 631 955 ÷ 2 = 7 815 977 + 1;
  • 7 815 977 ÷ 2 = 3 907 988 + 1;
  • 3 907 988 ÷ 2 = 1 953 994 + 0;
  • 1 953 994 ÷ 2 = 976 997 + 0;
  • 976 997 ÷ 2 = 488 498 + 1;
  • 488 498 ÷ 2 = 244 249 + 0;
  • 244 249 ÷ 2 = 122 124 + 1;
  • 122 124 ÷ 2 = 61 062 + 0;
  • 61 062 ÷ 2 = 30 531 + 0;
  • 30 531 ÷ 2 = 15 265 + 1;
  • 15 265 ÷ 2 = 7 632 + 1;
  • 7 632 ÷ 2 = 3 816 + 0;
  • 3 816 ÷ 2 = 1 908 + 0;
  • 1 908 ÷ 2 = 954 + 0;
  • 954 ÷ 2 = 477 + 0;
  • 477 ÷ 2 = 238 + 1;
  • 238 ÷ 2 = 119 + 0;
  • 119 ÷ 2 = 59 + 1;
  • 59 ÷ 2 = 29 + 1;
  • 29 ÷ 2 = 14 + 1;
  • 14 ÷ 2 = 7 + 0;
  • 7 ÷ 2 = 3 + 1;
  • 3 ÷ 2 = 1 + 1;
  • 1 ÷ 2 = 0 + 1;

2. Construct the base 2 representation of the positive number.

Take all the remainders starting from the bottom of the list constructed above.


1 100 001 101 100 999 999 929(10) =


11 1011 1010 0001 1001 0100 1111 0101 0110 0101 0100 1111 1010 0111 1000 0001 1011 1001(2)


3. Normalize the binary representation of the number.

Shift the decimal mark 69 positions to the left, so that only one non zero digit remains to the left of it:


1 100 001 101 100 999 999 929(10) =


11 1011 1010 0001 1001 0100 1111 0101 0110 0101 0100 1111 1010 0111 1000 0001 1011 1001(2) =


11 1011 1010 0001 1001 0100 1111 0101 0110 0101 0100 1111 1010 0111 1000 0001 1011 1001(2) × 20 =


1.1101 1101 0000 1100 1010 0111 1010 1011 0010 1010 0111 1101 0011 1100 0000 1101 1100 1(2) × 269


4. Up to this moment, there are the following elements that would feed into the 32 bit single precision IEEE 754 binary floating point representation:

Sign 0 (a positive number)


Exponent (unadjusted): 69


Mantissa (not normalized):
1.1101 1101 0000 1100 1010 0111 1010 1011 0010 1010 0111 1101 0011 1100 0000 1101 1100 1


5. Adjust the exponent.

Use the 8 bit excess/bias notation:


Exponent (adjusted) =


Exponent (unadjusted) + 2(8-1) - 1 =


69 + 2(8-1) - 1 =


(69 + 127)(10) =


196(10)


6. Convert the adjusted exponent from the decimal (base 10) to 8 bit binary.

Use the same technique of repeatedly dividing by 2:


  • division = quotient + remainder;
  • 196 ÷ 2 = 98 + 0;
  • 98 ÷ 2 = 49 + 0;
  • 49 ÷ 2 = 24 + 1;
  • 24 ÷ 2 = 12 + 0;
  • 12 ÷ 2 = 6 + 0;
  • 6 ÷ 2 = 3 + 0;
  • 3 ÷ 2 = 1 + 1;
  • 1 ÷ 2 = 0 + 1;

7. Construct the base 2 representation of the adjusted exponent.

Take all the remainders starting from the bottom of the list constructed above.


Exponent (adjusted) =


196(10) =


1100 0100(2)


8. Normalize the mantissa.

a) Remove the leading (the leftmost) bit, since it's allways 1, and the decimal point, if the case.


b) Adjust its length to 23 bits, by removing the excess bits, from the right (if any of the excess bits is set on 1, we are losing precision...).


Mantissa (normalized) =


1. 110 1110 1000 0110 0101 0011 11 0101 0110 0101 0100 1111 1010 0111 1000 0001 1011 1001 =


110 1110 1000 0110 0101 0011


9. The three elements that make up the number's 32 bit single precision IEEE 754 binary floating point representation:

Sign (1 bit) =
0 (a positive number)


Exponent (8 bits) =
1100 0100


Mantissa (23 bits) =
110 1110 1000 0110 0101 0011


The base ten decimal number 1 100 001 101 100 999 999 929 converted and written in 32 bit single precision IEEE 754 binary floating point representation:
0 - 1100 0100 - 110 1110 1000 0110 0101 0011

The latest decimal numbers converted from base ten to 32 bit single precision IEEE 754 floating point binary standard representation

Number -17 554 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard May 18 17:07 UTC (GMT)
Number -15 842 250 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard May 18 17:07 UTC (GMT)
Number 10 244 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard May 18 17:07 UTC (GMT)
Number 1 246 869 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard May 18 17:07 UTC (GMT)
Number -29.31 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard May 18 17:07 UTC (GMT)
Number 230 462 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard May 18 17:07 UTC (GMT)
Number -0.000 000 000 000 000 002 11 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard May 18 17:07 UTC (GMT)
Number 10 000 001 012 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard May 18 17:07 UTC (GMT)
Number 44 360 940 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard May 18 17:07 UTC (GMT)
Number 4 399 888 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard May 18 17:07 UTC (GMT)
All base ten decimal numbers converted to 32 bit single precision IEEE 754 binary floating point

How to convert decimal numbers from base ten to 32 bit single precision IEEE 754 binary floating point standard

Follow the steps below to convert a base 10 decimal number to 32 bit single precision IEEE 754 binary floating point:

  • 1. If the number to be converted is negative, start with its the positive version.
  • 2. First convert the integer part. Divide repeatedly by 2 the base ten positive representation of the integer number that is to be converted to binary, until we get a quotient that is equal to zero, keeping track of each remainder.
  • 3. Construct the base 2 representation of the positive integer part of the number, by taking all the remainders of the previous dividing operations, starting from the bottom of the list constructed above. Thus, the last remainder of the divisions becomes the first symbol (the leftmost) of the base two number, while the first remainder becomes the last symbol (the rightmost).
  • 4. Then convert the fractional part. Multiply the number repeatedly by 2, until we get a fractional part that is equal to zero, keeping track of each integer part of the results.
  • 5. Construct the base 2 representation of the fractional part of the number by taking all the integer parts of the previous multiplying operations, starting from the top of the constructed list above (they should appear in the binary representation, from left to right, in the order they have been calculated).
  • 6. Normalize the binary representation of the number, by shifting the decimal point (or if you prefer, the decimal mark) "n" positions either to the left or to the right, so that only one non zero digit remains to the left of the decimal point.
  • 7. Adjust the exponent in 8 bit excess/bias notation and then convert it from decimal (base 10) to 8 bit binary, by using the same technique of repeatedly dividing by 2, as shown above:
    Exponent (adjusted) = Exponent (unadjusted) + 2(8-1) - 1
  • 8. Normalize mantissa, remove the leading (leftmost) bit, since it's allways '1' (and the decimal sign if the case) and adjust its length to 23 bits, either by removing the excess bits from the right (losing precision...) or by adding extra '0' bits to the right.
  • 9. Sign (it takes 1 bit) is either 1 for a negative or 0 for a positive number.

Example: convert the negative number -25.347 from decimal system (base ten) to 32 bit single precision IEEE 754 binary floating point:

  • 1. Start with the positive version of the number:

    |-25.347| = 25.347

  • 2. First convert the integer part, 25. Divide it repeatedly by 2, keeping track of each remainder, until we get a quotient that is equal to zero:
    • division = quotient + remainder;
    • 25 ÷ 2 = 12 + 1;
    • 12 ÷ 2 = 6 + 0;
    • 6 ÷ 2 = 3 + 0;
    • 3 ÷ 2 = 1 + 1;
    • 1 ÷ 2 = 0 + 1;
    • We have encountered a quotient that is ZERO => FULL STOP
  • 3. Construct the base 2 representation of the integer part of the number by taking all the remainders of the previous dividing operations, starting from the bottom of the list constructed above:

    25(10) = 1 1001(2)

  • 4. Then convert the fractional part, 0.347. Multiply repeatedly by 2, keeping track of each integer part of the results, until we get a fractional part that is equal to zero:
    • #) multiplying = integer + fractional part;
    • 1) 0.347 × 2 = 0 + 0.694;
    • 2) 0.694 × 2 = 1 + 0.388;
    • 3) 0.388 × 2 = 0 + 0.776;
    • 4) 0.776 × 2 = 1 + 0.552;
    • 5) 0.552 × 2 = 1 + 0.104;
    • 6) 0.104 × 2 = 0 + 0.208;
    • 7) 0.208 × 2 = 0 + 0.416;
    • 8) 0.416 × 2 = 0 + 0.832;
    • 9) 0.832 × 2 = 1 + 0.664;
    • 10) 0.664 × 2 = 1 + 0.328;
    • 11) 0.328 × 2 = 0 + 0.656;
    • 12) 0.656 × 2 = 1 + 0.312;
    • 13) 0.312 × 2 = 0 + 0.624;
    • 14) 0.624 × 2 = 1 + 0.248;
    • 15) 0.248 × 2 = 0 + 0.496;
    • 16) 0.496 × 2 = 0 + 0.992;
    • 17) 0.992 × 2 = 1 + 0.984;
    • 18) 0.984 × 2 = 1 + 0.968;
    • 19) 0.968 × 2 = 1 + 0.936;
    • 20) 0.936 × 2 = 1 + 0.872;
    • 21) 0.872 × 2 = 1 + 0.744;
    • 22) 0.744 × 2 = 1 + 0.488;
    • 23) 0.488 × 2 = 0 + 0.976;
    • 24) 0.976 × 2 = 1 + 0.952;
    • We didn't get any fractional part that was equal to zero. But we had enough iterations (over Mantissa limit = 23) and at least one integer part that was different from zero => FULL STOP (losing precision...).
  • 5. Construct the base 2 representation of the fractional part of the number, by taking all the integer parts of the previous multiplying operations, starting from the top of the constructed list above:

    0.347(10) = 0.0101 1000 1101 0100 1111 1101(2)

  • 6. Summarizing - the positive number before normalization:

    25.347(10) = 1 1001.0101 1000 1101 0100 1111 1101(2)

  • 7. Normalize the binary representation of the number, shifting the decimal point 4 positions to the left so that only one non-zero digit stays to the left of the decimal point:

    25.347(10) =
    1 1001.0101 1000 1101 0100 1111 1101(2) =
    1 1001.0101 1000 1101 0100 1111 1101(2) × 20 =
    1.1001 0101 1000 1101 0100 1111 1101(2) × 24

  • 8. Up to this moment, there are the following elements that would feed into the 32 bit single precision IEEE 754 binary floating point:

    Sign: 1 (a negative number)

    Exponent (unadjusted): 4

    Mantissa (not-normalized): 1.1001 0101 1000 1101 0100 1111 1101

  • 9. Adjust the exponent in 8 bit excess/bias notation and then convert it from decimal (base 10) to 8 bit binary (base 2), by using the same technique of repeatedly dividing it by 2, as already demonstrated above:

    Exponent (adjusted) = Exponent (unadjusted) + 2(8-1) - 1 = (4 + 127)(10) = 131(10) =
    1000 0011(2)

  • 10. Normalize the mantissa, remove the leading (leftmost) bit, since it's allways '1' (and the decimal point) and adjust its length to 23 bits, by removing the excess bits from the right (losing precision...):

    Mantissa (not-normalized): 1.1001 0101 1000 1101 0100 1111 1101

    Mantissa (normalized): 100 1010 1100 0110 1010 0111

  • Conclusion:

    Sign (1 bit) = 1 (a negative number)

    Exponent (8 bits) = 1000 0011

    Mantissa (23 bits) = 100 1010 1100 0110 1010 0111

  • Number -25.347, converted from the decimal system (base 10) to 32 bit single precision IEEE 754 binary floating point =
    1 - 1000 0011 - 100 1010 1100 0110 1010 0111