32bit IEEE 754: Decimal ↗ Single Precision Floating Point Binary: 110 000 101 109 999 999 999 999 999 999 943 Convert the Number to 32 Bit Single Precision IEEE 754 Binary Floating Point Representation Standard, From a Base 10 Decimal System Number

Number 110 000 101 109 999 999 999 999 999 999 943(10) converted and written in 32 bit single precision IEEE 754 binary floating point representation (1 bit for sign, 8 bits for exponent, 23 bits for mantissa)

1. Divide the number repeatedly by 2.

Keep track of each remainder.

We stop when we get a quotient that is equal to zero.


  • division = quotient + remainder;
  • 110 000 101 109 999 999 999 999 999 999 943 ÷ 2 = 55 000 050 554 999 999 999 999 999 999 971 + 1;
  • 55 000 050 554 999 999 999 999 999 999 971 ÷ 2 = 27 500 025 277 499 999 999 999 999 999 985 + 1;
  • 27 500 025 277 499 999 999 999 999 999 985 ÷ 2 = 13 750 012 638 749 999 999 999 999 999 992 + 1;
  • 13 750 012 638 749 999 999 999 999 999 992 ÷ 2 = 6 875 006 319 374 999 999 999 999 999 996 + 0;
  • 6 875 006 319 374 999 999 999 999 999 996 ÷ 2 = 3 437 503 159 687 499 999 999 999 999 998 + 0;
  • 3 437 503 159 687 499 999 999 999 999 998 ÷ 2 = 1 718 751 579 843 749 999 999 999 999 999 + 0;
  • 1 718 751 579 843 749 999 999 999 999 999 ÷ 2 = 859 375 789 921 874 999 999 999 999 999 + 1;
  • 859 375 789 921 874 999 999 999 999 999 ÷ 2 = 429 687 894 960 937 499 999 999 999 999 + 1;
  • 429 687 894 960 937 499 999 999 999 999 ÷ 2 = 214 843 947 480 468 749 999 999 999 999 + 1;
  • 214 843 947 480 468 749 999 999 999 999 ÷ 2 = 107 421 973 740 234 374 999 999 999 999 + 1;
  • 107 421 973 740 234 374 999 999 999 999 ÷ 2 = 53 710 986 870 117 187 499 999 999 999 + 1;
  • 53 710 986 870 117 187 499 999 999 999 ÷ 2 = 26 855 493 435 058 593 749 999 999 999 + 1;
  • 26 855 493 435 058 593 749 999 999 999 ÷ 2 = 13 427 746 717 529 296 874 999 999 999 + 1;
  • 13 427 746 717 529 296 874 999 999 999 ÷ 2 = 6 713 873 358 764 648 437 499 999 999 + 1;
  • 6 713 873 358 764 648 437 499 999 999 ÷ 2 = 3 356 936 679 382 324 218 749 999 999 + 1;
  • 3 356 936 679 382 324 218 749 999 999 ÷ 2 = 1 678 468 339 691 162 109 374 999 999 + 1;
  • 1 678 468 339 691 162 109 374 999 999 ÷ 2 = 839 234 169 845 581 054 687 499 999 + 1;
  • 839 234 169 845 581 054 687 499 999 ÷ 2 = 419 617 084 922 790 527 343 749 999 + 1;
  • 419 617 084 922 790 527 343 749 999 ÷ 2 = 209 808 542 461 395 263 671 874 999 + 1;
  • 209 808 542 461 395 263 671 874 999 ÷ 2 = 104 904 271 230 697 631 835 937 499 + 1;
  • 104 904 271 230 697 631 835 937 499 ÷ 2 = 52 452 135 615 348 815 917 968 749 + 1;
  • 52 452 135 615 348 815 917 968 749 ÷ 2 = 26 226 067 807 674 407 958 984 374 + 1;
  • 26 226 067 807 674 407 958 984 374 ÷ 2 = 13 113 033 903 837 203 979 492 187 + 0;
  • 13 113 033 903 837 203 979 492 187 ÷ 2 = 6 556 516 951 918 601 989 746 093 + 1;
  • 6 556 516 951 918 601 989 746 093 ÷ 2 = 3 278 258 475 959 300 994 873 046 + 1;
  • 3 278 258 475 959 300 994 873 046 ÷ 2 = 1 639 129 237 979 650 497 436 523 + 0;
  • 1 639 129 237 979 650 497 436 523 ÷ 2 = 819 564 618 989 825 248 718 261 + 1;
  • 819 564 618 989 825 248 718 261 ÷ 2 = 409 782 309 494 912 624 359 130 + 1;
  • 409 782 309 494 912 624 359 130 ÷ 2 = 204 891 154 747 456 312 179 565 + 0;
  • 204 891 154 747 456 312 179 565 ÷ 2 = 102 445 577 373 728 156 089 782 + 1;
  • 102 445 577 373 728 156 089 782 ÷ 2 = 51 222 788 686 864 078 044 891 + 0;
  • 51 222 788 686 864 078 044 891 ÷ 2 = 25 611 394 343 432 039 022 445 + 1;
  • 25 611 394 343 432 039 022 445 ÷ 2 = 12 805 697 171 716 019 511 222 + 1;
  • 12 805 697 171 716 019 511 222 ÷ 2 = 6 402 848 585 858 009 755 611 + 0;
  • 6 402 848 585 858 009 755 611 ÷ 2 = 3 201 424 292 929 004 877 805 + 1;
  • 3 201 424 292 929 004 877 805 ÷ 2 = 1 600 712 146 464 502 438 902 + 1;
  • 1 600 712 146 464 502 438 902 ÷ 2 = 800 356 073 232 251 219 451 + 0;
  • 800 356 073 232 251 219 451 ÷ 2 = 400 178 036 616 125 609 725 + 1;
  • 400 178 036 616 125 609 725 ÷ 2 = 200 089 018 308 062 804 862 + 1;
  • 200 089 018 308 062 804 862 ÷ 2 = 100 044 509 154 031 402 431 + 0;
  • 100 044 509 154 031 402 431 ÷ 2 = 50 022 254 577 015 701 215 + 1;
  • 50 022 254 577 015 701 215 ÷ 2 = 25 011 127 288 507 850 607 + 1;
  • 25 011 127 288 507 850 607 ÷ 2 = 12 505 563 644 253 925 303 + 1;
  • 12 505 563 644 253 925 303 ÷ 2 = 6 252 781 822 126 962 651 + 1;
  • 6 252 781 822 126 962 651 ÷ 2 = 3 126 390 911 063 481 325 + 1;
  • 3 126 390 911 063 481 325 ÷ 2 = 1 563 195 455 531 740 662 + 1;
  • 1 563 195 455 531 740 662 ÷ 2 = 781 597 727 765 870 331 + 0;
  • 781 597 727 765 870 331 ÷ 2 = 390 798 863 882 935 165 + 1;
  • 390 798 863 882 935 165 ÷ 2 = 195 399 431 941 467 582 + 1;
  • 195 399 431 941 467 582 ÷ 2 = 97 699 715 970 733 791 + 0;
  • 97 699 715 970 733 791 ÷ 2 = 48 849 857 985 366 895 + 1;
  • 48 849 857 985 366 895 ÷ 2 = 24 424 928 992 683 447 + 1;
  • 24 424 928 992 683 447 ÷ 2 = 12 212 464 496 341 723 + 1;
  • 12 212 464 496 341 723 ÷ 2 = 6 106 232 248 170 861 + 1;
  • 6 106 232 248 170 861 ÷ 2 = 3 053 116 124 085 430 + 1;
  • 3 053 116 124 085 430 ÷ 2 = 1 526 558 062 042 715 + 0;
  • 1 526 558 062 042 715 ÷ 2 = 763 279 031 021 357 + 1;
  • 763 279 031 021 357 ÷ 2 = 381 639 515 510 678 + 1;
  • 381 639 515 510 678 ÷ 2 = 190 819 757 755 339 + 0;
  • 190 819 757 755 339 ÷ 2 = 95 409 878 877 669 + 1;
  • 95 409 878 877 669 ÷ 2 = 47 704 939 438 834 + 1;
  • 47 704 939 438 834 ÷ 2 = 23 852 469 719 417 + 0;
  • 23 852 469 719 417 ÷ 2 = 11 926 234 859 708 + 1;
  • 11 926 234 859 708 ÷ 2 = 5 963 117 429 854 + 0;
  • 5 963 117 429 854 ÷ 2 = 2 981 558 714 927 + 0;
  • 2 981 558 714 927 ÷ 2 = 1 490 779 357 463 + 1;
  • 1 490 779 357 463 ÷ 2 = 745 389 678 731 + 1;
  • 745 389 678 731 ÷ 2 = 372 694 839 365 + 1;
  • 372 694 839 365 ÷ 2 = 186 347 419 682 + 1;
  • 186 347 419 682 ÷ 2 = 93 173 709 841 + 0;
  • 93 173 709 841 ÷ 2 = 46 586 854 920 + 1;
  • 46 586 854 920 ÷ 2 = 23 293 427 460 + 0;
  • 23 293 427 460 ÷ 2 = 11 646 713 730 + 0;
  • 11 646 713 730 ÷ 2 = 5 823 356 865 + 0;
  • 5 823 356 865 ÷ 2 = 2 911 678 432 + 1;
  • 2 911 678 432 ÷ 2 = 1 455 839 216 + 0;
  • 1 455 839 216 ÷ 2 = 727 919 608 + 0;
  • 727 919 608 ÷ 2 = 363 959 804 + 0;
  • 363 959 804 ÷ 2 = 181 979 902 + 0;
  • 181 979 902 ÷ 2 = 90 989 951 + 0;
  • 90 989 951 ÷ 2 = 45 494 975 + 1;
  • 45 494 975 ÷ 2 = 22 747 487 + 1;
  • 22 747 487 ÷ 2 = 11 373 743 + 1;
  • 11 373 743 ÷ 2 = 5 686 871 + 1;
  • 5 686 871 ÷ 2 = 2 843 435 + 1;
  • 2 843 435 ÷ 2 = 1 421 717 + 1;
  • 1 421 717 ÷ 2 = 710 858 + 1;
  • 710 858 ÷ 2 = 355 429 + 0;
  • 355 429 ÷ 2 = 177 714 + 1;
  • 177 714 ÷ 2 = 88 857 + 0;
  • 88 857 ÷ 2 = 44 428 + 1;
  • 44 428 ÷ 2 = 22 214 + 0;
  • 22 214 ÷ 2 = 11 107 + 0;
  • 11 107 ÷ 2 = 5 553 + 1;
  • 5 553 ÷ 2 = 2 776 + 1;
  • 2 776 ÷ 2 = 1 388 + 0;
  • 1 388 ÷ 2 = 694 + 0;
  • 694 ÷ 2 = 347 + 0;
  • 347 ÷ 2 = 173 + 1;
  • 173 ÷ 2 = 86 + 1;
  • 86 ÷ 2 = 43 + 0;
  • 43 ÷ 2 = 21 + 1;
  • 21 ÷ 2 = 10 + 1;
  • 10 ÷ 2 = 5 + 0;
  • 5 ÷ 2 = 2 + 1;
  • 2 ÷ 2 = 1 + 0;
  • 1 ÷ 2 = 0 + 1;

2. Construct the base 2 representation of the positive number.

Take all the remainders starting from the bottom of the list constructed above.


110 000 101 109 999 999 999 999 999 999 943(10) =


101 0110 1100 0110 0101 0111 1111 0000 0100 0101 1110 0101 1011 0111 1101 1011 1111 0110 1101 1010 1101 1011 1111 1111 1111 1100 0111(2)


3. Normalize the binary representation of the number.

Shift the decimal mark 106 positions to the left, so that only one non zero digit remains to the left of it:


110 000 101 109 999 999 999 999 999 999 943(10) =


101 0110 1100 0110 0101 0111 1111 0000 0100 0101 1110 0101 1011 0111 1101 1011 1111 0110 1101 1010 1101 1011 1111 1111 1111 1100 0111(2) =


101 0110 1100 0110 0101 0111 1111 0000 0100 0101 1110 0101 1011 0111 1101 1011 1111 0110 1101 1010 1101 1011 1111 1111 1111 1100 0111(2) × 20 =


1.0101 1011 0001 1001 0101 1111 1100 0001 0001 0111 1001 0110 1101 1111 0110 1111 1101 1011 0110 1011 0110 1111 1111 1111 1111 0001 11(2) × 2106


4. Up to this moment, there are the following elements that would feed into the 32 bit single precision IEEE 754 binary floating point representation:

Sign 0 (a positive number)


Exponent (unadjusted): 106


Mantissa (not normalized):
1.0101 1011 0001 1001 0101 1111 1100 0001 0001 0111 1001 0110 1101 1111 0110 1111 1101 1011 0110 1011 0110 1111 1111 1111 1111 0001 11


5. Adjust the exponent.

Use the 8 bit excess/bias notation:


Exponent (adjusted) =


Exponent (unadjusted) + 2(8-1) - 1 =


106 + 2(8-1) - 1 =


(106 + 127)(10) =


233(10)


6. Convert the adjusted exponent from the decimal (base 10) to 8 bit binary.

Use the same technique of repeatedly dividing by 2:


  • division = quotient + remainder;
  • 233 ÷ 2 = 116 + 1;
  • 116 ÷ 2 = 58 + 0;
  • 58 ÷ 2 = 29 + 0;
  • 29 ÷ 2 = 14 + 1;
  • 14 ÷ 2 = 7 + 0;
  • 7 ÷ 2 = 3 + 1;
  • 3 ÷ 2 = 1 + 1;
  • 1 ÷ 2 = 0 + 1;

7. Construct the base 2 representation of the adjusted exponent.

Take all the remainders starting from the bottom of the list constructed above.


Exponent (adjusted) =


233(10) =


1110 1001(2)


8. Normalize the mantissa.

a) Remove the leading (the leftmost) bit, since it's allways 1, and the decimal point, if the case.


b) Adjust its length to 23 bits, by removing the excess bits, from the right (if any of the excess bits is set on 1, we are losing precision...).


Mantissa (normalized) =


1. 010 1101 1000 1100 1010 1111 111 0000 0100 0101 1110 0101 1011 0111 1101 1011 1111 0110 1101 1010 1101 1011 1111 1111 1111 1100 0111 =


010 1101 1000 1100 1010 1111


9. The three elements that make up the number's 32 bit single precision IEEE 754 binary floating point representation:

Sign (1 bit) =
0 (a positive number)


Exponent (8 bits) =
1110 1001


Mantissa (23 bits) =
010 1101 1000 1100 1010 1111


The base ten decimal number 110 000 101 109 999 999 999 999 999 999 943 converted and written in 32 bit single precision IEEE 754 binary floating point representation:
0 - 1110 1001 - 010 1101 1000 1100 1010 1111

The latest decimal numbers converted from base ten to 32 bit single precision IEEE 754 floating point binary standard representation

Number 96.862 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard May 02 20:12 UTC (GMT)
Number 958 169 704 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard May 02 20:12 UTC (GMT)
Number 675.9 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard May 02 20:12 UTC (GMT)
Number 67 100 103 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard May 02 20:12 UTC (GMT)
Number 12 526 617 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard May 02 20:12 UTC (GMT)
Number 669 741 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard May 02 20:12 UTC (GMT)
Number 54 525 892 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard May 02 20:12 UTC (GMT)
Number 637 403 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard May 02 20:12 UTC (GMT)
Number -39 659 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard May 02 20:12 UTC (GMT)
Number 9 732.14 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard May 02 20:12 UTC (GMT)
All base ten decimal numbers converted to 32 bit single precision IEEE 754 binary floating point

How to convert decimal numbers from base ten to 32 bit single precision IEEE 754 binary floating point standard

Follow the steps below to convert a base 10 decimal number to 32 bit single precision IEEE 754 binary floating point:

  • 1. If the number to be converted is negative, start with its the positive version.
  • 2. First convert the integer part. Divide repeatedly by 2 the base ten positive representation of the integer number that is to be converted to binary, until we get a quotient that is equal to zero, keeping track of each remainder.
  • 3. Construct the base 2 representation of the positive integer part of the number, by taking all the remainders of the previous dividing operations, starting from the bottom of the list constructed above. Thus, the last remainder of the divisions becomes the first symbol (the leftmost) of the base two number, while the first remainder becomes the last symbol (the rightmost).
  • 4. Then convert the fractional part. Multiply the number repeatedly by 2, until we get a fractional part that is equal to zero, keeping track of each integer part of the results.
  • 5. Construct the base 2 representation of the fractional part of the number by taking all the integer parts of the previous multiplying operations, starting from the top of the constructed list above (they should appear in the binary representation, from left to right, in the order they have been calculated).
  • 6. Normalize the binary representation of the number, by shifting the decimal point (or if you prefer, the decimal mark) "n" positions either to the left or to the right, so that only one non zero digit remains to the left of the decimal point.
  • 7. Adjust the exponent in 8 bit excess/bias notation and then convert it from decimal (base 10) to 8 bit binary, by using the same technique of repeatedly dividing by 2, as shown above:
    Exponent (adjusted) = Exponent (unadjusted) + 2(8-1) - 1
  • 8. Normalize mantissa, remove the leading (leftmost) bit, since it's allways '1' (and the decimal sign if the case) and adjust its length to 23 bits, either by removing the excess bits from the right (losing precision...) or by adding extra '0' bits to the right.
  • 9. Sign (it takes 1 bit) is either 1 for a negative or 0 for a positive number.

Example: convert the negative number -25.347 from decimal system (base ten) to 32 bit single precision IEEE 754 binary floating point:

  • 1. Start with the positive version of the number:

    |-25.347| = 25.347

  • 2. First convert the integer part, 25. Divide it repeatedly by 2, keeping track of each remainder, until we get a quotient that is equal to zero:
    • division = quotient + remainder;
    • 25 ÷ 2 = 12 + 1;
    • 12 ÷ 2 = 6 + 0;
    • 6 ÷ 2 = 3 + 0;
    • 3 ÷ 2 = 1 + 1;
    • 1 ÷ 2 = 0 + 1;
    • We have encountered a quotient that is ZERO => FULL STOP
  • 3. Construct the base 2 representation of the integer part of the number by taking all the remainders of the previous dividing operations, starting from the bottom of the list constructed above:

    25(10) = 1 1001(2)

  • 4. Then convert the fractional part, 0.347. Multiply repeatedly by 2, keeping track of each integer part of the results, until we get a fractional part that is equal to zero:
    • #) multiplying = integer + fractional part;
    • 1) 0.347 × 2 = 0 + 0.694;
    • 2) 0.694 × 2 = 1 + 0.388;
    • 3) 0.388 × 2 = 0 + 0.776;
    • 4) 0.776 × 2 = 1 + 0.552;
    • 5) 0.552 × 2 = 1 + 0.104;
    • 6) 0.104 × 2 = 0 + 0.208;
    • 7) 0.208 × 2 = 0 + 0.416;
    • 8) 0.416 × 2 = 0 + 0.832;
    • 9) 0.832 × 2 = 1 + 0.664;
    • 10) 0.664 × 2 = 1 + 0.328;
    • 11) 0.328 × 2 = 0 + 0.656;
    • 12) 0.656 × 2 = 1 + 0.312;
    • 13) 0.312 × 2 = 0 + 0.624;
    • 14) 0.624 × 2 = 1 + 0.248;
    • 15) 0.248 × 2 = 0 + 0.496;
    • 16) 0.496 × 2 = 0 + 0.992;
    • 17) 0.992 × 2 = 1 + 0.984;
    • 18) 0.984 × 2 = 1 + 0.968;
    • 19) 0.968 × 2 = 1 + 0.936;
    • 20) 0.936 × 2 = 1 + 0.872;
    • 21) 0.872 × 2 = 1 + 0.744;
    • 22) 0.744 × 2 = 1 + 0.488;
    • 23) 0.488 × 2 = 0 + 0.976;
    • 24) 0.976 × 2 = 1 + 0.952;
    • We didn't get any fractional part that was equal to zero. But we had enough iterations (over Mantissa limit = 23) and at least one integer part that was different from zero => FULL STOP (losing precision...).
  • 5. Construct the base 2 representation of the fractional part of the number, by taking all the integer parts of the previous multiplying operations, starting from the top of the constructed list above:

    0.347(10) = 0.0101 1000 1101 0100 1111 1101(2)

  • 6. Summarizing - the positive number before normalization:

    25.347(10) = 1 1001.0101 1000 1101 0100 1111 1101(2)

  • 7. Normalize the binary representation of the number, shifting the decimal point 4 positions to the left so that only one non-zero digit stays to the left of the decimal point:

    25.347(10) =
    1 1001.0101 1000 1101 0100 1111 1101(2) =
    1 1001.0101 1000 1101 0100 1111 1101(2) × 20 =
    1.1001 0101 1000 1101 0100 1111 1101(2) × 24

  • 8. Up to this moment, there are the following elements that would feed into the 32 bit single precision IEEE 754 binary floating point:

    Sign: 1 (a negative number)

    Exponent (unadjusted): 4

    Mantissa (not-normalized): 1.1001 0101 1000 1101 0100 1111 1101

  • 9. Adjust the exponent in 8 bit excess/bias notation and then convert it from decimal (base 10) to 8 bit binary (base 2), by using the same technique of repeatedly dividing it by 2, as already demonstrated above:

    Exponent (adjusted) = Exponent (unadjusted) + 2(8-1) - 1 = (4 + 127)(10) = 131(10) =
    1000 0011(2)

  • 10. Normalize the mantissa, remove the leading (leftmost) bit, since it's allways '1' (and the decimal point) and adjust its length to 23 bits, by removing the excess bits from the right (losing precision...):

    Mantissa (not-normalized): 1.1001 0101 1000 1101 0100 1111 1101

    Mantissa (normalized): 100 1010 1100 0110 1010 0111

  • Conclusion:

    Sign (1 bit) = 1 (a negative number)

    Exponent (8 bits) = 1000 0011

    Mantissa (23 bits) = 100 1010 1100 0110 1010 0111

  • Number -25.347, converted from the decimal system (base 10) to 32 bit single precision IEEE 754 binary floating point =
    1 - 1000 0011 - 100 1010 1100 0110 1010 0111