32bit IEEE 754: Decimal ↗ Single Precision Floating Point Binary: 11 000 010 101 011 101 100 000 000 000 046 Convert the Number to 32 Bit Single Precision IEEE 754 Binary Floating Point Representation Standard, From a Base 10 Decimal System Number

Number 11 000 010 101 011 101 100 000 000 000 046(10) converted and written in 32 bit single precision IEEE 754 binary floating point representation (1 bit for sign, 8 bits for exponent, 23 bits for mantissa)

1. Divide the number repeatedly by 2.

Keep track of each remainder.

We stop when we get a quotient that is equal to zero.


  • division = quotient + remainder;
  • 11 000 010 101 011 101 100 000 000 000 046 ÷ 2 = 5 500 005 050 505 550 550 000 000 000 023 + 0;
  • 5 500 005 050 505 550 550 000 000 000 023 ÷ 2 = 2 750 002 525 252 775 275 000 000 000 011 + 1;
  • 2 750 002 525 252 775 275 000 000 000 011 ÷ 2 = 1 375 001 262 626 387 637 500 000 000 005 + 1;
  • 1 375 001 262 626 387 637 500 000 000 005 ÷ 2 = 687 500 631 313 193 818 750 000 000 002 + 1;
  • 687 500 631 313 193 818 750 000 000 002 ÷ 2 = 343 750 315 656 596 909 375 000 000 001 + 0;
  • 343 750 315 656 596 909 375 000 000 001 ÷ 2 = 171 875 157 828 298 454 687 500 000 000 + 1;
  • 171 875 157 828 298 454 687 500 000 000 ÷ 2 = 85 937 578 914 149 227 343 750 000 000 + 0;
  • 85 937 578 914 149 227 343 750 000 000 ÷ 2 = 42 968 789 457 074 613 671 875 000 000 + 0;
  • 42 968 789 457 074 613 671 875 000 000 ÷ 2 = 21 484 394 728 537 306 835 937 500 000 + 0;
  • 21 484 394 728 537 306 835 937 500 000 ÷ 2 = 10 742 197 364 268 653 417 968 750 000 + 0;
  • 10 742 197 364 268 653 417 968 750 000 ÷ 2 = 5 371 098 682 134 326 708 984 375 000 + 0;
  • 5 371 098 682 134 326 708 984 375 000 ÷ 2 = 2 685 549 341 067 163 354 492 187 500 + 0;
  • 2 685 549 341 067 163 354 492 187 500 ÷ 2 = 1 342 774 670 533 581 677 246 093 750 + 0;
  • 1 342 774 670 533 581 677 246 093 750 ÷ 2 = 671 387 335 266 790 838 623 046 875 + 0;
  • 671 387 335 266 790 838 623 046 875 ÷ 2 = 335 693 667 633 395 419 311 523 437 + 1;
  • 335 693 667 633 395 419 311 523 437 ÷ 2 = 167 846 833 816 697 709 655 761 718 + 1;
  • 167 846 833 816 697 709 655 761 718 ÷ 2 = 83 923 416 908 348 854 827 880 859 + 0;
  • 83 923 416 908 348 854 827 880 859 ÷ 2 = 41 961 708 454 174 427 413 940 429 + 1;
  • 41 961 708 454 174 427 413 940 429 ÷ 2 = 20 980 854 227 087 213 706 970 214 + 1;
  • 20 980 854 227 087 213 706 970 214 ÷ 2 = 10 490 427 113 543 606 853 485 107 + 0;
  • 10 490 427 113 543 606 853 485 107 ÷ 2 = 5 245 213 556 771 803 426 742 553 + 1;
  • 5 245 213 556 771 803 426 742 553 ÷ 2 = 2 622 606 778 385 901 713 371 276 + 1;
  • 2 622 606 778 385 901 713 371 276 ÷ 2 = 1 311 303 389 192 950 856 685 638 + 0;
  • 1 311 303 389 192 950 856 685 638 ÷ 2 = 655 651 694 596 475 428 342 819 + 0;
  • 655 651 694 596 475 428 342 819 ÷ 2 = 327 825 847 298 237 714 171 409 + 1;
  • 327 825 847 298 237 714 171 409 ÷ 2 = 163 912 923 649 118 857 085 704 + 1;
  • 163 912 923 649 118 857 085 704 ÷ 2 = 81 956 461 824 559 428 542 852 + 0;
  • 81 956 461 824 559 428 542 852 ÷ 2 = 40 978 230 912 279 714 271 426 + 0;
  • 40 978 230 912 279 714 271 426 ÷ 2 = 20 489 115 456 139 857 135 713 + 0;
  • 20 489 115 456 139 857 135 713 ÷ 2 = 10 244 557 728 069 928 567 856 + 1;
  • 10 244 557 728 069 928 567 856 ÷ 2 = 5 122 278 864 034 964 283 928 + 0;
  • 5 122 278 864 034 964 283 928 ÷ 2 = 2 561 139 432 017 482 141 964 + 0;
  • 2 561 139 432 017 482 141 964 ÷ 2 = 1 280 569 716 008 741 070 982 + 0;
  • 1 280 569 716 008 741 070 982 ÷ 2 = 640 284 858 004 370 535 491 + 0;
  • 640 284 858 004 370 535 491 ÷ 2 = 320 142 429 002 185 267 745 + 1;
  • 320 142 429 002 185 267 745 ÷ 2 = 160 071 214 501 092 633 872 + 1;
  • 160 071 214 501 092 633 872 ÷ 2 = 80 035 607 250 546 316 936 + 0;
  • 80 035 607 250 546 316 936 ÷ 2 = 40 017 803 625 273 158 468 + 0;
  • 40 017 803 625 273 158 468 ÷ 2 = 20 008 901 812 636 579 234 + 0;
  • 20 008 901 812 636 579 234 ÷ 2 = 10 004 450 906 318 289 617 + 0;
  • 10 004 450 906 318 289 617 ÷ 2 = 5 002 225 453 159 144 808 + 1;
  • 5 002 225 453 159 144 808 ÷ 2 = 2 501 112 726 579 572 404 + 0;
  • 2 501 112 726 579 572 404 ÷ 2 = 1 250 556 363 289 786 202 + 0;
  • 1 250 556 363 289 786 202 ÷ 2 = 625 278 181 644 893 101 + 0;
  • 625 278 181 644 893 101 ÷ 2 = 312 639 090 822 446 550 + 1;
  • 312 639 090 822 446 550 ÷ 2 = 156 319 545 411 223 275 + 0;
  • 156 319 545 411 223 275 ÷ 2 = 78 159 772 705 611 637 + 1;
  • 78 159 772 705 611 637 ÷ 2 = 39 079 886 352 805 818 + 1;
  • 39 079 886 352 805 818 ÷ 2 = 19 539 943 176 402 909 + 0;
  • 19 539 943 176 402 909 ÷ 2 = 9 769 971 588 201 454 + 1;
  • 9 769 971 588 201 454 ÷ 2 = 4 884 985 794 100 727 + 0;
  • 4 884 985 794 100 727 ÷ 2 = 2 442 492 897 050 363 + 1;
  • 2 442 492 897 050 363 ÷ 2 = 1 221 246 448 525 181 + 1;
  • 1 221 246 448 525 181 ÷ 2 = 610 623 224 262 590 + 1;
  • 610 623 224 262 590 ÷ 2 = 305 311 612 131 295 + 0;
  • 305 311 612 131 295 ÷ 2 = 152 655 806 065 647 + 1;
  • 152 655 806 065 647 ÷ 2 = 76 327 903 032 823 + 1;
  • 76 327 903 032 823 ÷ 2 = 38 163 951 516 411 + 1;
  • 38 163 951 516 411 ÷ 2 = 19 081 975 758 205 + 1;
  • 19 081 975 758 205 ÷ 2 = 9 540 987 879 102 + 1;
  • 9 540 987 879 102 ÷ 2 = 4 770 493 939 551 + 0;
  • 4 770 493 939 551 ÷ 2 = 2 385 246 969 775 + 1;
  • 2 385 246 969 775 ÷ 2 = 1 192 623 484 887 + 1;
  • 1 192 623 484 887 ÷ 2 = 596 311 742 443 + 1;
  • 596 311 742 443 ÷ 2 = 298 155 871 221 + 1;
  • 298 155 871 221 ÷ 2 = 149 077 935 610 + 1;
  • 149 077 935 610 ÷ 2 = 74 538 967 805 + 0;
  • 74 538 967 805 ÷ 2 = 37 269 483 902 + 1;
  • 37 269 483 902 ÷ 2 = 18 634 741 951 + 0;
  • 18 634 741 951 ÷ 2 = 9 317 370 975 + 1;
  • 9 317 370 975 ÷ 2 = 4 658 685 487 + 1;
  • 4 658 685 487 ÷ 2 = 2 329 342 743 + 1;
  • 2 329 342 743 ÷ 2 = 1 164 671 371 + 1;
  • 1 164 671 371 ÷ 2 = 582 335 685 + 1;
  • 582 335 685 ÷ 2 = 291 167 842 + 1;
  • 291 167 842 ÷ 2 = 145 583 921 + 0;
  • 145 583 921 ÷ 2 = 72 791 960 + 1;
  • 72 791 960 ÷ 2 = 36 395 980 + 0;
  • 36 395 980 ÷ 2 = 18 197 990 + 0;
  • 18 197 990 ÷ 2 = 9 098 995 + 0;
  • 9 098 995 ÷ 2 = 4 549 497 + 1;
  • 4 549 497 ÷ 2 = 2 274 748 + 1;
  • 2 274 748 ÷ 2 = 1 137 374 + 0;
  • 1 137 374 ÷ 2 = 568 687 + 0;
  • 568 687 ÷ 2 = 284 343 + 1;
  • 284 343 ÷ 2 = 142 171 + 1;
  • 142 171 ÷ 2 = 71 085 + 1;
  • 71 085 ÷ 2 = 35 542 + 1;
  • 35 542 ÷ 2 = 17 771 + 0;
  • 17 771 ÷ 2 = 8 885 + 1;
  • 8 885 ÷ 2 = 4 442 + 1;
  • 4 442 ÷ 2 = 2 221 + 0;
  • 2 221 ÷ 2 = 1 110 + 1;
  • 1 110 ÷ 2 = 555 + 0;
  • 555 ÷ 2 = 277 + 1;
  • 277 ÷ 2 = 138 + 1;
  • 138 ÷ 2 = 69 + 0;
  • 69 ÷ 2 = 34 + 1;
  • 34 ÷ 2 = 17 + 0;
  • 17 ÷ 2 = 8 + 1;
  • 8 ÷ 2 = 4 + 0;
  • 4 ÷ 2 = 2 + 0;
  • 2 ÷ 2 = 1 + 0;
  • 1 ÷ 2 = 0 + 1;

2. Construct the base 2 representation of the positive number.

Take all the remainders starting from the bottom of the list constructed above.


11 000 010 101 011 101 100 000 000 000 046(10) =


1000 1010 1101 0110 1111 0011 0001 0111 1110 1011 1110 1111 1011 1010 1101 0001 0000 1100 0010 0011 0011 0110 1100 0000 0010 1110(2)


3. Normalize the binary representation of the number.

Shift the decimal mark 103 positions to the left, so that only one non zero digit remains to the left of it:


11 000 010 101 011 101 100 000 000 000 046(10) =


1000 1010 1101 0110 1111 0011 0001 0111 1110 1011 1110 1111 1011 1010 1101 0001 0000 1100 0010 0011 0011 0110 1100 0000 0010 1110(2) =


1000 1010 1101 0110 1111 0011 0001 0111 1110 1011 1110 1111 1011 1010 1101 0001 0000 1100 0010 0011 0011 0110 1100 0000 0010 1110(2) × 20 =


1.0001 0101 1010 1101 1110 0110 0010 1111 1101 0111 1101 1111 0111 0101 1010 0010 0001 1000 0100 0110 0110 1101 1000 0000 0101 110(2) × 2103


4. Up to this moment, there are the following elements that would feed into the 32 bit single precision IEEE 754 binary floating point representation:

Sign 0 (a positive number)


Exponent (unadjusted): 103


Mantissa (not normalized):
1.0001 0101 1010 1101 1110 0110 0010 1111 1101 0111 1101 1111 0111 0101 1010 0010 0001 1000 0100 0110 0110 1101 1000 0000 0101 110


5. Adjust the exponent.

Use the 8 bit excess/bias notation:


Exponent (adjusted) =


Exponent (unadjusted) + 2(8-1) - 1 =


103 + 2(8-1) - 1 =


(103 + 127)(10) =


230(10)


6. Convert the adjusted exponent from the decimal (base 10) to 8 bit binary.

Use the same technique of repeatedly dividing by 2:


  • division = quotient + remainder;
  • 230 ÷ 2 = 115 + 0;
  • 115 ÷ 2 = 57 + 1;
  • 57 ÷ 2 = 28 + 1;
  • 28 ÷ 2 = 14 + 0;
  • 14 ÷ 2 = 7 + 0;
  • 7 ÷ 2 = 3 + 1;
  • 3 ÷ 2 = 1 + 1;
  • 1 ÷ 2 = 0 + 1;

7. Construct the base 2 representation of the adjusted exponent.

Take all the remainders starting from the bottom of the list constructed above.


Exponent (adjusted) =


230(10) =


1110 0110(2)


8. Normalize the mantissa.

a) Remove the leading (the leftmost) bit, since it's allways 1, and the decimal point, if the case.


b) Adjust its length to 23 bits, by removing the excess bits, from the right (if any of the excess bits is set on 1, we are losing precision...).


Mantissa (normalized) =


1. 000 1010 1101 0110 1111 0011 0001 0111 1110 1011 1110 1111 1011 1010 1101 0001 0000 1100 0010 0011 0011 0110 1100 0000 0010 1110 =


000 1010 1101 0110 1111 0011


9. The three elements that make up the number's 32 bit single precision IEEE 754 binary floating point representation:

Sign (1 bit) =
0 (a positive number)


Exponent (8 bits) =
1110 0110


Mantissa (23 bits) =
000 1010 1101 0110 1111 0011


The base ten decimal number 11 000 010 101 011 101 100 000 000 000 046 converted and written in 32 bit single precision IEEE 754 binary floating point representation:
0 - 1110 0110 - 000 1010 1101 0110 1111 0011

The latest decimal numbers converted from base ten to 32 bit single precision IEEE 754 floating point binary standard representation

Number 4 325 293 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard May 01 23:27 UTC (GMT)
Number -72.15 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard May 01 23:27 UTC (GMT)
Number 79 693 349 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard May 01 23:27 UTC (GMT)
Number 0.550 02 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard May 01 23:27 UTC (GMT)
Number 52 953 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard May 01 23:27 UTC (GMT)
Number 828 162 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard May 01 23:27 UTC (GMT)
Number 100 120.9 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard May 01 23:27 UTC (GMT)
Number -73.142 852 783 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard May 01 23:27 UTC (GMT)
Number 82 285 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard May 01 23:27 UTC (GMT)
Number 161 874 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard May 01 23:27 UTC (GMT)
All base ten decimal numbers converted to 32 bit single precision IEEE 754 binary floating point

How to convert decimal numbers from base ten to 32 bit single precision IEEE 754 binary floating point standard

Follow the steps below to convert a base 10 decimal number to 32 bit single precision IEEE 754 binary floating point:

  • 1. If the number to be converted is negative, start with its the positive version.
  • 2. First convert the integer part. Divide repeatedly by 2 the base ten positive representation of the integer number that is to be converted to binary, until we get a quotient that is equal to zero, keeping track of each remainder.
  • 3. Construct the base 2 representation of the positive integer part of the number, by taking all the remainders of the previous dividing operations, starting from the bottom of the list constructed above. Thus, the last remainder of the divisions becomes the first symbol (the leftmost) of the base two number, while the first remainder becomes the last symbol (the rightmost).
  • 4. Then convert the fractional part. Multiply the number repeatedly by 2, until we get a fractional part that is equal to zero, keeping track of each integer part of the results.
  • 5. Construct the base 2 representation of the fractional part of the number by taking all the integer parts of the previous multiplying operations, starting from the top of the constructed list above (they should appear in the binary representation, from left to right, in the order they have been calculated).
  • 6. Normalize the binary representation of the number, by shifting the decimal point (or if you prefer, the decimal mark) "n" positions either to the left or to the right, so that only one non zero digit remains to the left of the decimal point.
  • 7. Adjust the exponent in 8 bit excess/bias notation and then convert it from decimal (base 10) to 8 bit binary, by using the same technique of repeatedly dividing by 2, as shown above:
    Exponent (adjusted) = Exponent (unadjusted) + 2(8-1) - 1
  • 8. Normalize mantissa, remove the leading (leftmost) bit, since it's allways '1' (and the decimal sign if the case) and adjust its length to 23 bits, either by removing the excess bits from the right (losing precision...) or by adding extra '0' bits to the right.
  • 9. Sign (it takes 1 bit) is either 1 for a negative or 0 for a positive number.

Example: convert the negative number -25.347 from decimal system (base ten) to 32 bit single precision IEEE 754 binary floating point:

  • 1. Start with the positive version of the number:

    |-25.347| = 25.347

  • 2. First convert the integer part, 25. Divide it repeatedly by 2, keeping track of each remainder, until we get a quotient that is equal to zero:
    • division = quotient + remainder;
    • 25 ÷ 2 = 12 + 1;
    • 12 ÷ 2 = 6 + 0;
    • 6 ÷ 2 = 3 + 0;
    • 3 ÷ 2 = 1 + 1;
    • 1 ÷ 2 = 0 + 1;
    • We have encountered a quotient that is ZERO => FULL STOP
  • 3. Construct the base 2 representation of the integer part of the number by taking all the remainders of the previous dividing operations, starting from the bottom of the list constructed above:

    25(10) = 1 1001(2)

  • 4. Then convert the fractional part, 0.347. Multiply repeatedly by 2, keeping track of each integer part of the results, until we get a fractional part that is equal to zero:
    • #) multiplying = integer + fractional part;
    • 1) 0.347 × 2 = 0 + 0.694;
    • 2) 0.694 × 2 = 1 + 0.388;
    • 3) 0.388 × 2 = 0 + 0.776;
    • 4) 0.776 × 2 = 1 + 0.552;
    • 5) 0.552 × 2 = 1 + 0.104;
    • 6) 0.104 × 2 = 0 + 0.208;
    • 7) 0.208 × 2 = 0 + 0.416;
    • 8) 0.416 × 2 = 0 + 0.832;
    • 9) 0.832 × 2 = 1 + 0.664;
    • 10) 0.664 × 2 = 1 + 0.328;
    • 11) 0.328 × 2 = 0 + 0.656;
    • 12) 0.656 × 2 = 1 + 0.312;
    • 13) 0.312 × 2 = 0 + 0.624;
    • 14) 0.624 × 2 = 1 + 0.248;
    • 15) 0.248 × 2 = 0 + 0.496;
    • 16) 0.496 × 2 = 0 + 0.992;
    • 17) 0.992 × 2 = 1 + 0.984;
    • 18) 0.984 × 2 = 1 + 0.968;
    • 19) 0.968 × 2 = 1 + 0.936;
    • 20) 0.936 × 2 = 1 + 0.872;
    • 21) 0.872 × 2 = 1 + 0.744;
    • 22) 0.744 × 2 = 1 + 0.488;
    • 23) 0.488 × 2 = 0 + 0.976;
    • 24) 0.976 × 2 = 1 + 0.952;
    • We didn't get any fractional part that was equal to zero. But we had enough iterations (over Mantissa limit = 23) and at least one integer part that was different from zero => FULL STOP (losing precision...).
  • 5. Construct the base 2 representation of the fractional part of the number, by taking all the integer parts of the previous multiplying operations, starting from the top of the constructed list above:

    0.347(10) = 0.0101 1000 1101 0100 1111 1101(2)

  • 6. Summarizing - the positive number before normalization:

    25.347(10) = 1 1001.0101 1000 1101 0100 1111 1101(2)

  • 7. Normalize the binary representation of the number, shifting the decimal point 4 positions to the left so that only one non-zero digit stays to the left of the decimal point:

    25.347(10) =
    1 1001.0101 1000 1101 0100 1111 1101(2) =
    1 1001.0101 1000 1101 0100 1111 1101(2) × 20 =
    1.1001 0101 1000 1101 0100 1111 1101(2) × 24

  • 8. Up to this moment, there are the following elements that would feed into the 32 bit single precision IEEE 754 binary floating point:

    Sign: 1 (a negative number)

    Exponent (unadjusted): 4

    Mantissa (not-normalized): 1.1001 0101 1000 1101 0100 1111 1101

  • 9. Adjust the exponent in 8 bit excess/bias notation and then convert it from decimal (base 10) to 8 bit binary (base 2), by using the same technique of repeatedly dividing it by 2, as already demonstrated above:

    Exponent (adjusted) = Exponent (unadjusted) + 2(8-1) - 1 = (4 + 127)(10) = 131(10) =
    1000 0011(2)

  • 10. Normalize the mantissa, remove the leading (leftmost) bit, since it's allways '1' (and the decimal point) and adjust its length to 23 bits, by removing the excess bits from the right (losing precision...):

    Mantissa (not-normalized): 1.1001 0101 1000 1101 0100 1111 1101

    Mantissa (normalized): 100 1010 1100 0110 1010 0111

  • Conclusion:

    Sign (1 bit) = 1 (a negative number)

    Exponent (8 bits) = 1000 0011

    Mantissa (23 bits) = 100 1010 1100 0110 1010 0111

  • Number -25.347, converted from the decimal system (base 10) to 32 bit single precision IEEE 754 binary floating point =
    1 - 1000 0011 - 100 1010 1100 0110 1010 0111