11 000 010 001 011 009 999 999 999 999 361 Converted to 32 Bit Single Precision IEEE 754 Binary Floating Point Representation Standard

Convert decimal 11 000 010 001 011 009 999 999 999 999 361(10) to 32 bit single precision IEEE 754 binary floating point representation standard (1 bit for sign, 8 bits for exponent, 23 bits for mantissa)

What are the steps to convert decimal number
11 000 010 001 011 009 999 999 999 999 361(10) to 32 bit single precision IEEE 754 binary floating point representation (1 bit for sign, 8 bits for exponent, 23 bits for mantissa)

1. Divide the number repeatedly by 2.

Keep track of each remainder.

We stop when we get a quotient that is equal to zero.


  • division = quotient + remainder;
  • 11 000 010 001 011 009 999 999 999 999 361 ÷ 2 = 5 500 005 000 505 504 999 999 999 999 680 + 1;
  • 5 500 005 000 505 504 999 999 999 999 680 ÷ 2 = 2 750 002 500 252 752 499 999 999 999 840 + 0;
  • 2 750 002 500 252 752 499 999 999 999 840 ÷ 2 = 1 375 001 250 126 376 249 999 999 999 920 + 0;
  • 1 375 001 250 126 376 249 999 999 999 920 ÷ 2 = 687 500 625 063 188 124 999 999 999 960 + 0;
  • 687 500 625 063 188 124 999 999 999 960 ÷ 2 = 343 750 312 531 594 062 499 999 999 980 + 0;
  • 343 750 312 531 594 062 499 999 999 980 ÷ 2 = 171 875 156 265 797 031 249 999 999 990 + 0;
  • 171 875 156 265 797 031 249 999 999 990 ÷ 2 = 85 937 578 132 898 515 624 999 999 995 + 0;
  • 85 937 578 132 898 515 624 999 999 995 ÷ 2 = 42 968 789 066 449 257 812 499 999 997 + 1;
  • 42 968 789 066 449 257 812 499 999 997 ÷ 2 = 21 484 394 533 224 628 906 249 999 998 + 1;
  • 21 484 394 533 224 628 906 249 999 998 ÷ 2 = 10 742 197 266 612 314 453 124 999 999 + 0;
  • 10 742 197 266 612 314 453 124 999 999 ÷ 2 = 5 371 098 633 306 157 226 562 499 999 + 1;
  • 5 371 098 633 306 157 226 562 499 999 ÷ 2 = 2 685 549 316 653 078 613 281 249 999 + 1;
  • 2 685 549 316 653 078 613 281 249 999 ÷ 2 = 1 342 774 658 326 539 306 640 624 999 + 1;
  • 1 342 774 658 326 539 306 640 624 999 ÷ 2 = 671 387 329 163 269 653 320 312 499 + 1;
  • 671 387 329 163 269 653 320 312 499 ÷ 2 = 335 693 664 581 634 826 660 156 249 + 1;
  • 335 693 664 581 634 826 660 156 249 ÷ 2 = 167 846 832 290 817 413 330 078 124 + 1;
  • 167 846 832 290 817 413 330 078 124 ÷ 2 = 83 923 416 145 408 706 665 039 062 + 0;
  • 83 923 416 145 408 706 665 039 062 ÷ 2 = 41 961 708 072 704 353 332 519 531 + 0;
  • 41 961 708 072 704 353 332 519 531 ÷ 2 = 20 980 854 036 352 176 666 259 765 + 1;
  • 20 980 854 036 352 176 666 259 765 ÷ 2 = 10 490 427 018 176 088 333 129 882 + 1;
  • 10 490 427 018 176 088 333 129 882 ÷ 2 = 5 245 213 509 088 044 166 564 941 + 0;
  • 5 245 213 509 088 044 166 564 941 ÷ 2 = 2 622 606 754 544 022 083 282 470 + 1;
  • 2 622 606 754 544 022 083 282 470 ÷ 2 = 1 311 303 377 272 011 041 641 235 + 0;
  • 1 311 303 377 272 011 041 641 235 ÷ 2 = 655 651 688 636 005 520 820 617 + 1;
  • 655 651 688 636 005 520 820 617 ÷ 2 = 327 825 844 318 002 760 410 308 + 1;
  • 327 825 844 318 002 760 410 308 ÷ 2 = 163 912 922 159 001 380 205 154 + 0;
  • 163 912 922 159 001 380 205 154 ÷ 2 = 81 956 461 079 500 690 102 577 + 0;
  • 81 956 461 079 500 690 102 577 ÷ 2 = 40 978 230 539 750 345 051 288 + 1;
  • 40 978 230 539 750 345 051 288 ÷ 2 = 20 489 115 269 875 172 525 644 + 0;
  • 20 489 115 269 875 172 525 644 ÷ 2 = 10 244 557 634 937 586 262 822 + 0;
  • 10 244 557 634 937 586 262 822 ÷ 2 = 5 122 278 817 468 793 131 411 + 0;
  • 5 122 278 817 468 793 131 411 ÷ 2 = 2 561 139 408 734 396 565 705 + 1;
  • 2 561 139 408 734 396 565 705 ÷ 2 = 1 280 569 704 367 198 282 852 + 1;
  • 1 280 569 704 367 198 282 852 ÷ 2 = 640 284 852 183 599 141 426 + 0;
  • 640 284 852 183 599 141 426 ÷ 2 = 320 142 426 091 799 570 713 + 0;
  • 320 142 426 091 799 570 713 ÷ 2 = 160 071 213 045 899 785 356 + 1;
  • 160 071 213 045 899 785 356 ÷ 2 = 80 035 606 522 949 892 678 + 0;
  • 80 035 606 522 949 892 678 ÷ 2 = 40 017 803 261 474 946 339 + 0;
  • 40 017 803 261 474 946 339 ÷ 2 = 20 008 901 630 737 473 169 + 1;
  • 20 008 901 630 737 473 169 ÷ 2 = 10 004 450 815 368 736 584 + 1;
  • 10 004 450 815 368 736 584 ÷ 2 = 5 002 225 407 684 368 292 + 0;
  • 5 002 225 407 684 368 292 ÷ 2 = 2 501 112 703 842 184 146 + 0;
  • 2 501 112 703 842 184 146 ÷ 2 = 1 250 556 351 921 092 073 + 0;
  • 1 250 556 351 921 092 073 ÷ 2 = 625 278 175 960 546 036 + 1;
  • 625 278 175 960 546 036 ÷ 2 = 312 639 087 980 273 018 + 0;
  • 312 639 087 980 273 018 ÷ 2 = 156 319 543 990 136 509 + 0;
  • 156 319 543 990 136 509 ÷ 2 = 78 159 771 995 068 254 + 1;
  • 78 159 771 995 068 254 ÷ 2 = 39 079 885 997 534 127 + 0;
  • 39 079 885 997 534 127 ÷ 2 = 19 539 942 998 767 063 + 1;
  • 19 539 942 998 767 063 ÷ 2 = 9 769 971 499 383 531 + 1;
  • 9 769 971 499 383 531 ÷ 2 = 4 884 985 749 691 765 + 1;
  • 4 884 985 749 691 765 ÷ 2 = 2 442 492 874 845 882 + 1;
  • 2 442 492 874 845 882 ÷ 2 = 1 221 246 437 422 941 + 0;
  • 1 221 246 437 422 941 ÷ 2 = 610 623 218 711 470 + 1;
  • 610 623 218 711 470 ÷ 2 = 305 311 609 355 735 + 0;
  • 305 311 609 355 735 ÷ 2 = 152 655 804 677 867 + 1;
  • 152 655 804 677 867 ÷ 2 = 76 327 902 338 933 + 1;
  • 76 327 902 338 933 ÷ 2 = 38 163 951 169 466 + 1;
  • 38 163 951 169 466 ÷ 2 = 19 081 975 584 733 + 0;
  • 19 081 975 584 733 ÷ 2 = 9 540 987 792 366 + 1;
  • 9 540 987 792 366 ÷ 2 = 4 770 493 896 183 + 0;
  • 4 770 493 896 183 ÷ 2 = 2 385 246 948 091 + 1;
  • 2 385 246 948 091 ÷ 2 = 1 192 623 474 045 + 1;
  • 1 192 623 474 045 ÷ 2 = 596 311 737 022 + 1;
  • 596 311 737 022 ÷ 2 = 298 155 868 511 + 0;
  • 298 155 868 511 ÷ 2 = 149 077 934 255 + 1;
  • 149 077 934 255 ÷ 2 = 74 538 967 127 + 1;
  • 74 538 967 127 ÷ 2 = 37 269 483 563 + 1;
  • 37 269 483 563 ÷ 2 = 18 634 741 781 + 1;
  • 18 634 741 781 ÷ 2 = 9 317 370 890 + 1;
  • 9 317 370 890 ÷ 2 = 4 658 685 445 + 0;
  • 4 658 685 445 ÷ 2 = 2 329 342 722 + 1;
  • 2 329 342 722 ÷ 2 = 1 164 671 361 + 0;
  • 1 164 671 361 ÷ 2 = 582 335 680 + 1;
  • 582 335 680 ÷ 2 = 291 167 840 + 0;
  • 291 167 840 ÷ 2 = 145 583 920 + 0;
  • 145 583 920 ÷ 2 = 72 791 960 + 0;
  • 72 791 960 ÷ 2 = 36 395 980 + 0;
  • 36 395 980 ÷ 2 = 18 197 990 + 0;
  • 18 197 990 ÷ 2 = 9 098 995 + 0;
  • 9 098 995 ÷ 2 = 4 549 497 + 1;
  • 4 549 497 ÷ 2 = 2 274 748 + 1;
  • 2 274 748 ÷ 2 = 1 137 374 + 0;
  • 1 137 374 ÷ 2 = 568 687 + 0;
  • 568 687 ÷ 2 = 284 343 + 1;
  • 284 343 ÷ 2 = 142 171 + 1;
  • 142 171 ÷ 2 = 71 085 + 1;
  • 71 085 ÷ 2 = 35 542 + 1;
  • 35 542 ÷ 2 = 17 771 + 0;
  • 17 771 ÷ 2 = 8 885 + 1;
  • 8 885 ÷ 2 = 4 442 + 1;
  • 4 442 ÷ 2 = 2 221 + 0;
  • 2 221 ÷ 2 = 1 110 + 1;
  • 1 110 ÷ 2 = 555 + 0;
  • 555 ÷ 2 = 277 + 1;
  • 277 ÷ 2 = 138 + 1;
  • 138 ÷ 2 = 69 + 0;
  • 69 ÷ 2 = 34 + 1;
  • 34 ÷ 2 = 17 + 0;
  • 17 ÷ 2 = 8 + 1;
  • 8 ÷ 2 = 4 + 0;
  • 4 ÷ 2 = 2 + 0;
  • 2 ÷ 2 = 1 + 0;
  • 1 ÷ 2 = 0 + 1;

2. Construct the base 2 representation of the positive number.

Take all the remainders starting from the bottom of the list constructed above.

11 000 010 001 011 009 999 999 999 999 361(10) =


1000 1010 1101 0110 1111 0011 0000 0010 1011 1110 1110 1011 1010 1111 0100 1000 1100 1001 1000 1001 1010 1100 1111 1101 1000 0001(2)


3. Normalize the binary representation of the number.

Shift the decimal mark 103 positions to the left, so that only one non zero digit remains to the left of it:


11 000 010 001 011 009 999 999 999 999 361(10) =


1000 1010 1101 0110 1111 0011 0000 0010 1011 1110 1110 1011 1010 1111 0100 1000 1100 1001 1000 1001 1010 1100 1111 1101 1000 0001(2) =


1000 1010 1101 0110 1111 0011 0000 0010 1011 1110 1110 1011 1010 1111 0100 1000 1100 1001 1000 1001 1010 1100 1111 1101 1000 0001(2) × 20 =


1.0001 0101 1010 1101 1110 0110 0000 0101 0111 1101 1101 0111 0101 1110 1001 0001 1001 0011 0001 0011 0101 1001 1111 1011 0000 001(2) × 2103


4. Up to this moment, there are the following elements that would feed into the 32 bit single precision IEEE 754 binary floating point representation:

Sign 0 (a positive number)


Exponent (unadjusted): 103


Mantissa (not normalized):
1.0001 0101 1010 1101 1110 0110 0000 0101 0111 1101 1101 0111 0101 1110 1001 0001 1001 0011 0001 0011 0101 1001 1111 1011 0000 001


5. Adjust the exponent.

Use the 8 bit excess/bias notation:


Exponent (adjusted) =


Exponent (unadjusted) + 2(8-1) - 1 =


103 + 2(8-1) - 1 =


(103 + 127)(10) =


230(10)


6. Convert the adjusted exponent from the decimal (base 10) to 8 bit binary.

Use the same technique of repeatedly dividing by 2:


  • division = quotient + remainder;
  • 230 ÷ 2 = 115 + 0;
  • 115 ÷ 2 = 57 + 1;
  • 57 ÷ 2 = 28 + 1;
  • 28 ÷ 2 = 14 + 0;
  • 14 ÷ 2 = 7 + 0;
  • 7 ÷ 2 = 3 + 1;
  • 3 ÷ 2 = 1 + 1;
  • 1 ÷ 2 = 0 + 1;

7. Construct the base 2 representation of the adjusted exponent.

Take all the remainders starting from the bottom of the list constructed above.


Exponent (adjusted) =


230(10) =


1110 0110(2)


8. Normalize the mantissa.

a) Remove the leading (the leftmost) bit, since it's allways 1, and the decimal point, if the case.


b) Adjust its length to 23 bits, by removing the excess bits, from the right (if any of the excess bits is set on 1, we are losing precision...).


Mantissa (normalized) =


1. 000 1010 1101 0110 1111 0011 0000 0010 1011 1110 1110 1011 1010 1111 0100 1000 1100 1001 1000 1001 1010 1100 1111 1101 1000 0001 =


000 1010 1101 0110 1111 0011


9. The three elements that make up the number's 32 bit single precision IEEE 754 binary floating point representation:

Sign (1 bit) =
0 (a positive number)


Exponent (8 bits) =
1110 0110


Mantissa (23 bits) =
000 1010 1101 0110 1111 0011


Decimal number 11 000 010 001 011 009 999 999 999 999 361 converted to 32 bit single precision IEEE 754 binary floating point representation:

0 - 1110 0110 - 000 1010 1101 0110 1111 0011


How to convert decimal numbers from base ten to 32 bit single precision IEEE 754 binary floating point standard

Follow the steps below to convert a base 10 decimal number to 32 bit single precision IEEE 754 binary floating point:

  • 1. If the number to be converted is negative, start with its the positive version.
  • 2. First convert the integer part. Divide repeatedly by 2 the base ten positive representation of the integer number that is to be converted to binary, until we get a quotient that is equal to zero, keeping track of each remainder.
  • 3. Construct the base 2 representation of the positive integer part of the number, by taking all the remainders of the previous dividing operations, starting from the bottom of the list constructed above. Thus, the last remainder of the divisions becomes the first symbol (the leftmost) of the base two number, while the first remainder becomes the last symbol (the rightmost).
  • 4. Then convert the fractional part. Multiply the number repeatedly by 2, until we get a fractional part that is equal to zero, keeping track of each integer part of the results.
  • 5. Construct the base 2 representation of the fractional part of the number by taking all the integer parts of the previous multiplying operations, starting from the top of the constructed list above (they should appear in the binary representation, from left to right, in the order they have been calculated).
  • 6. Normalize the binary representation of the number, by shifting the decimal point (or if you prefer, the decimal mark) "n" positions either to the left or to the right, so that only one non zero digit remains to the left of the decimal point.
  • 7. Adjust the exponent in 8 bit excess/bias notation and then convert it from decimal (base 10) to 8 bit binary, by using the same technique of repeatedly dividing by 2, as shown above:
    Exponent (adjusted) = Exponent (unadjusted) + 2(8-1) - 1
  • 8. Normalize mantissa, remove the leading (leftmost) bit, since it's allways '1' (and the decimal sign if the case) and adjust its length to 23 bits, either by removing the excess bits from the right (losing precision...) or by adding extra '0' bits to the right.
  • 9. Sign (it takes 1 bit) is either 1 for a negative or 0 for a positive number.

Example: convert the negative number -25.347 from decimal system (base ten) to 32 bit single precision IEEE 754 binary floating point:

  • 1. Start with the positive version of the number:

    |-25.347| = 25.347

  • 2. First convert the integer part, 25. Divide it repeatedly by 2, keeping track of each remainder, until we get a quotient that is equal to zero:
    • division = quotient + remainder;
    • 25 ÷ 2 = 12 + 1;
    • 12 ÷ 2 = 6 + 0;
    • 6 ÷ 2 = 3 + 0;
    • 3 ÷ 2 = 1 + 1;
    • 1 ÷ 2 = 0 + 1;
    • We have encountered a quotient that is ZERO => FULL STOP
  • 3. Construct the base 2 representation of the integer part of the number by taking all the remainders of the previous dividing operations, starting from the bottom of the list constructed above:

    25(10) = 1 1001(2)

  • 4. Then convert the fractional part, 0.347. Multiply repeatedly by 2, keeping track of each integer part of the results, until we get a fractional part that is equal to zero:
    • #) multiplying = integer + fractional part;
    • 1) 0.347 × 2 = 0 + 0.694;
    • 2) 0.694 × 2 = 1 + 0.388;
    • 3) 0.388 × 2 = 0 + 0.776;
    • 4) 0.776 × 2 = 1 + 0.552;
    • 5) 0.552 × 2 = 1 + 0.104;
    • 6) 0.104 × 2 = 0 + 0.208;
    • 7) 0.208 × 2 = 0 + 0.416;
    • 8) 0.416 × 2 = 0 + 0.832;
    • 9) 0.832 × 2 = 1 + 0.664;
    • 10) 0.664 × 2 = 1 + 0.328;
    • 11) 0.328 × 2 = 0 + 0.656;
    • 12) 0.656 × 2 = 1 + 0.312;
    • 13) 0.312 × 2 = 0 + 0.624;
    • 14) 0.624 × 2 = 1 + 0.248;
    • 15) 0.248 × 2 = 0 + 0.496;
    • 16) 0.496 × 2 = 0 + 0.992;
    • 17) 0.992 × 2 = 1 + 0.984;
    • 18) 0.984 × 2 = 1 + 0.968;
    • 19) 0.968 × 2 = 1 + 0.936;
    • 20) 0.936 × 2 = 1 + 0.872;
    • 21) 0.872 × 2 = 1 + 0.744;
    • 22) 0.744 × 2 = 1 + 0.488;
    • 23) 0.488 × 2 = 0 + 0.976;
    • 24) 0.976 × 2 = 1 + 0.952;
    • We didn't get any fractional part that was equal to zero. But we had enough iterations (over Mantissa limit = 23) and at least one integer part that was different from zero => FULL STOP (losing precision...).
  • 5. Construct the base 2 representation of the fractional part of the number, by taking all the integer parts of the previous multiplying operations, starting from the top of the constructed list above:

    0.347(10) = 0.0101 1000 1101 0100 1111 1101(2)

  • 6. Summarizing - the positive number before normalization:

    25.347(10) = 1 1001.0101 1000 1101 0100 1111 1101(2)

  • 7. Normalize the binary representation of the number, shifting the decimal point 4 positions to the left so that only one non-zero digit stays to the left of the decimal point:

    25.347(10) =
    1 1001.0101 1000 1101 0100 1111 1101(2) =
    1 1001.0101 1000 1101 0100 1111 1101(2) × 20 =
    1.1001 0101 1000 1101 0100 1111 1101(2) × 24

  • 8. Up to this moment, there are the following elements that would feed into the 32 bit single precision IEEE 754 binary floating point:

    Sign: 1 (a negative number)

    Exponent (unadjusted): 4

    Mantissa (not-normalized): 1.1001 0101 1000 1101 0100 1111 1101

  • 9. Adjust the exponent in 8 bit excess/bias notation and then convert it from decimal (base 10) to 8 bit binary (base 2), by using the same technique of repeatedly dividing it by 2, as already demonstrated above:

    Exponent (adjusted) = Exponent (unadjusted) + 2(8-1) - 1 = (4 + 127)(10) = 131(10) =
    1000 0011(2)

  • 10. Normalize the mantissa, remove the leading (leftmost) bit, since it's allways '1' (and the decimal point) and adjust its length to 23 bits, by removing the excess bits from the right (losing precision...):

    Mantissa (not-normalized): 1.1001 0101 1000 1101 0100 1111 1101

    Mantissa (normalized): 100 1010 1100 0110 1010 0111

  • Conclusion:

    Sign (1 bit) = 1 (a negative number)

    Exponent (8 bits) = 1000 0011

    Mantissa (23 bits) = 100 1010 1100 0110 1010 0111

  • Number -25.347, converted from the decimal system (base 10) to 32 bit single precision IEEE 754 binary floating point =
    1 - 1000 0011 - 100 1010 1100 0110 1010 0111