32bit IEEE 754: Decimal ↗ Single Precision Floating Point Binary: 11 000 010 001 000 000 000 000 000 000 024 Convert the Number to 32 Bit Single Precision IEEE 754 Binary Floating Point Representation Standard, From a Base 10 Decimal System Number

Number 11 000 010 001 000 000 000 000 000 000 024(10) converted and written in 32 bit single precision IEEE 754 binary floating point representation (1 bit for sign, 8 bits for exponent, 23 bits for mantissa)

1. Divide the number repeatedly by 2.

Keep track of each remainder.

We stop when we get a quotient that is equal to zero.


  • division = quotient + remainder;
  • 11 000 010 001 000 000 000 000 000 000 024 ÷ 2 = 5 500 005 000 500 000 000 000 000 000 012 + 0;
  • 5 500 005 000 500 000 000 000 000 000 012 ÷ 2 = 2 750 002 500 250 000 000 000 000 000 006 + 0;
  • 2 750 002 500 250 000 000 000 000 000 006 ÷ 2 = 1 375 001 250 125 000 000 000 000 000 003 + 0;
  • 1 375 001 250 125 000 000 000 000 000 003 ÷ 2 = 687 500 625 062 500 000 000 000 000 001 + 1;
  • 687 500 625 062 500 000 000 000 000 001 ÷ 2 = 343 750 312 531 250 000 000 000 000 000 + 1;
  • 343 750 312 531 250 000 000 000 000 000 ÷ 2 = 171 875 156 265 625 000 000 000 000 000 + 0;
  • 171 875 156 265 625 000 000 000 000 000 ÷ 2 = 85 937 578 132 812 500 000 000 000 000 + 0;
  • 85 937 578 132 812 500 000 000 000 000 ÷ 2 = 42 968 789 066 406 250 000 000 000 000 + 0;
  • 42 968 789 066 406 250 000 000 000 000 ÷ 2 = 21 484 394 533 203 125 000 000 000 000 + 0;
  • 21 484 394 533 203 125 000 000 000 000 ÷ 2 = 10 742 197 266 601 562 500 000 000 000 + 0;
  • 10 742 197 266 601 562 500 000 000 000 ÷ 2 = 5 371 098 633 300 781 250 000 000 000 + 0;
  • 5 371 098 633 300 781 250 000 000 000 ÷ 2 = 2 685 549 316 650 390 625 000 000 000 + 0;
  • 2 685 549 316 650 390 625 000 000 000 ÷ 2 = 1 342 774 658 325 195 312 500 000 000 + 0;
  • 1 342 774 658 325 195 312 500 000 000 ÷ 2 = 671 387 329 162 597 656 250 000 000 + 0;
  • 671 387 329 162 597 656 250 000 000 ÷ 2 = 335 693 664 581 298 828 125 000 000 + 0;
  • 335 693 664 581 298 828 125 000 000 ÷ 2 = 167 846 832 290 649 414 062 500 000 + 0;
  • 167 846 832 290 649 414 062 500 000 ÷ 2 = 83 923 416 145 324 707 031 250 000 + 0;
  • 83 923 416 145 324 707 031 250 000 ÷ 2 = 41 961 708 072 662 353 515 625 000 + 0;
  • 41 961 708 072 662 353 515 625 000 ÷ 2 = 20 980 854 036 331 176 757 812 500 + 0;
  • 20 980 854 036 331 176 757 812 500 ÷ 2 = 10 490 427 018 165 588 378 906 250 + 0;
  • 10 490 427 018 165 588 378 906 250 ÷ 2 = 5 245 213 509 082 794 189 453 125 + 0;
  • 5 245 213 509 082 794 189 453 125 ÷ 2 = 2 622 606 754 541 397 094 726 562 + 1;
  • 2 622 606 754 541 397 094 726 562 ÷ 2 = 1 311 303 377 270 698 547 363 281 + 0;
  • 1 311 303 377 270 698 547 363 281 ÷ 2 = 655 651 688 635 349 273 681 640 + 1;
  • 655 651 688 635 349 273 681 640 ÷ 2 = 327 825 844 317 674 636 840 820 + 0;
  • 327 825 844 317 674 636 840 820 ÷ 2 = 163 912 922 158 837 318 420 410 + 0;
  • 163 912 922 158 837 318 420 410 ÷ 2 = 81 956 461 079 418 659 210 205 + 0;
  • 81 956 461 079 418 659 210 205 ÷ 2 = 40 978 230 539 709 329 605 102 + 1;
  • 40 978 230 539 709 329 605 102 ÷ 2 = 20 489 115 269 854 664 802 551 + 0;
  • 20 489 115 269 854 664 802 551 ÷ 2 = 10 244 557 634 927 332 401 275 + 1;
  • 10 244 557 634 927 332 401 275 ÷ 2 = 5 122 278 817 463 666 200 637 + 1;
  • 5 122 278 817 463 666 200 637 ÷ 2 = 2 561 139 408 731 833 100 318 + 1;
  • 2 561 139 408 731 833 100 318 ÷ 2 = 1 280 569 704 365 916 550 159 + 0;
  • 1 280 569 704 365 916 550 159 ÷ 2 = 640 284 852 182 958 275 079 + 1;
  • 640 284 852 182 958 275 079 ÷ 2 = 320 142 426 091 479 137 539 + 1;
  • 320 142 426 091 479 137 539 ÷ 2 = 160 071 213 045 739 568 769 + 1;
  • 160 071 213 045 739 568 769 ÷ 2 = 80 035 606 522 869 784 384 + 1;
  • 80 035 606 522 869 784 384 ÷ 2 = 40 017 803 261 434 892 192 + 0;
  • 40 017 803 261 434 892 192 ÷ 2 = 20 008 901 630 717 446 096 + 0;
  • 20 008 901 630 717 446 096 ÷ 2 = 10 004 450 815 358 723 048 + 0;
  • 10 004 450 815 358 723 048 ÷ 2 = 5 002 225 407 679 361 524 + 0;
  • 5 002 225 407 679 361 524 ÷ 2 = 2 501 112 703 839 680 762 + 0;
  • 2 501 112 703 839 680 762 ÷ 2 = 1 250 556 351 919 840 381 + 0;
  • 1 250 556 351 919 840 381 ÷ 2 = 625 278 175 959 920 190 + 1;
  • 625 278 175 959 920 190 ÷ 2 = 312 639 087 979 960 095 + 0;
  • 312 639 087 979 960 095 ÷ 2 = 156 319 543 989 980 047 + 1;
  • 156 319 543 989 980 047 ÷ 2 = 78 159 771 994 990 023 + 1;
  • 78 159 771 994 990 023 ÷ 2 = 39 079 885 997 495 011 + 1;
  • 39 079 885 997 495 011 ÷ 2 = 19 539 942 998 747 505 + 1;
  • 19 539 942 998 747 505 ÷ 2 = 9 769 971 499 373 752 + 1;
  • 9 769 971 499 373 752 ÷ 2 = 4 884 985 749 686 876 + 0;
  • 4 884 985 749 686 876 ÷ 2 = 2 442 492 874 843 438 + 0;
  • 2 442 492 874 843 438 ÷ 2 = 1 221 246 437 421 719 + 0;
  • 1 221 246 437 421 719 ÷ 2 = 610 623 218 710 859 + 1;
  • 610 623 218 710 859 ÷ 2 = 305 311 609 355 429 + 1;
  • 305 311 609 355 429 ÷ 2 = 152 655 804 677 714 + 1;
  • 152 655 804 677 714 ÷ 2 = 76 327 902 338 857 + 0;
  • 76 327 902 338 857 ÷ 2 = 38 163 951 169 428 + 1;
  • 38 163 951 169 428 ÷ 2 = 19 081 975 584 714 + 0;
  • 19 081 975 584 714 ÷ 2 = 9 540 987 792 357 + 0;
  • 9 540 987 792 357 ÷ 2 = 4 770 493 896 178 + 1;
  • 4 770 493 896 178 ÷ 2 = 2 385 246 948 089 + 0;
  • 2 385 246 948 089 ÷ 2 = 1 192 623 474 044 + 1;
  • 1 192 623 474 044 ÷ 2 = 596 311 737 022 + 0;
  • 596 311 737 022 ÷ 2 = 298 155 868 511 + 0;
  • 298 155 868 511 ÷ 2 = 149 077 934 255 + 1;
  • 149 077 934 255 ÷ 2 = 74 538 967 127 + 1;
  • 74 538 967 127 ÷ 2 = 37 269 483 563 + 1;
  • 37 269 483 563 ÷ 2 = 18 634 741 781 + 1;
  • 18 634 741 781 ÷ 2 = 9 317 370 890 + 1;
  • 9 317 370 890 ÷ 2 = 4 658 685 445 + 0;
  • 4 658 685 445 ÷ 2 = 2 329 342 722 + 1;
  • 2 329 342 722 ÷ 2 = 1 164 671 361 + 0;
  • 1 164 671 361 ÷ 2 = 582 335 680 + 1;
  • 582 335 680 ÷ 2 = 291 167 840 + 0;
  • 291 167 840 ÷ 2 = 145 583 920 + 0;
  • 145 583 920 ÷ 2 = 72 791 960 + 0;
  • 72 791 960 ÷ 2 = 36 395 980 + 0;
  • 36 395 980 ÷ 2 = 18 197 990 + 0;
  • 18 197 990 ÷ 2 = 9 098 995 + 0;
  • 9 098 995 ÷ 2 = 4 549 497 + 1;
  • 4 549 497 ÷ 2 = 2 274 748 + 1;
  • 2 274 748 ÷ 2 = 1 137 374 + 0;
  • 1 137 374 ÷ 2 = 568 687 + 0;
  • 568 687 ÷ 2 = 284 343 + 1;
  • 284 343 ÷ 2 = 142 171 + 1;
  • 142 171 ÷ 2 = 71 085 + 1;
  • 71 085 ÷ 2 = 35 542 + 1;
  • 35 542 ÷ 2 = 17 771 + 0;
  • 17 771 ÷ 2 = 8 885 + 1;
  • 8 885 ÷ 2 = 4 442 + 1;
  • 4 442 ÷ 2 = 2 221 + 0;
  • 2 221 ÷ 2 = 1 110 + 1;
  • 1 110 ÷ 2 = 555 + 0;
  • 555 ÷ 2 = 277 + 1;
  • 277 ÷ 2 = 138 + 1;
  • 138 ÷ 2 = 69 + 0;
  • 69 ÷ 2 = 34 + 1;
  • 34 ÷ 2 = 17 + 0;
  • 17 ÷ 2 = 8 + 1;
  • 8 ÷ 2 = 4 + 0;
  • 4 ÷ 2 = 2 + 0;
  • 2 ÷ 2 = 1 + 0;
  • 1 ÷ 2 = 0 + 1;

2. Construct the base 2 representation of the positive number.

Take all the remainders starting from the bottom of the list constructed above.


11 000 010 001 000 000 000 000 000 000 024(10) =


1000 1010 1101 0110 1111 0011 0000 0010 1011 1110 0101 0010 1110 0011 1110 1000 0001 1110 1110 1000 1010 0000 0000 0000 0001 1000(2)


3. Normalize the binary representation of the number.

Shift the decimal mark 103 positions to the left, so that only one non zero digit remains to the left of it:


11 000 010 001 000 000 000 000 000 000 024(10) =


1000 1010 1101 0110 1111 0011 0000 0010 1011 1110 0101 0010 1110 0011 1110 1000 0001 1110 1110 1000 1010 0000 0000 0000 0001 1000(2) =


1000 1010 1101 0110 1111 0011 0000 0010 1011 1110 0101 0010 1110 0011 1110 1000 0001 1110 1110 1000 1010 0000 0000 0000 0001 1000(2) × 20 =


1.0001 0101 1010 1101 1110 0110 0000 0101 0111 1100 1010 0101 1100 0111 1101 0000 0011 1101 1101 0001 0100 0000 0000 0000 0011 000(2) × 2103


4. Up to this moment, there are the following elements that would feed into the 32 bit single precision IEEE 754 binary floating point representation:

Sign 0 (a positive number)


Exponent (unadjusted): 103


Mantissa (not normalized):
1.0001 0101 1010 1101 1110 0110 0000 0101 0111 1100 1010 0101 1100 0111 1101 0000 0011 1101 1101 0001 0100 0000 0000 0000 0011 000


5. Adjust the exponent.

Use the 8 bit excess/bias notation:


Exponent (adjusted) =


Exponent (unadjusted) + 2(8-1) - 1 =


103 + 2(8-1) - 1 =


(103 + 127)(10) =


230(10)


6. Convert the adjusted exponent from the decimal (base 10) to 8 bit binary.

Use the same technique of repeatedly dividing by 2:


  • division = quotient + remainder;
  • 230 ÷ 2 = 115 + 0;
  • 115 ÷ 2 = 57 + 1;
  • 57 ÷ 2 = 28 + 1;
  • 28 ÷ 2 = 14 + 0;
  • 14 ÷ 2 = 7 + 0;
  • 7 ÷ 2 = 3 + 1;
  • 3 ÷ 2 = 1 + 1;
  • 1 ÷ 2 = 0 + 1;

7. Construct the base 2 representation of the adjusted exponent.

Take all the remainders starting from the bottom of the list constructed above.


Exponent (adjusted) =


230(10) =


1110 0110(2)


8. Normalize the mantissa.

a) Remove the leading (the leftmost) bit, since it's allways 1, and the decimal point, if the case.


b) Adjust its length to 23 bits, by removing the excess bits, from the right (if any of the excess bits is set on 1, we are losing precision...).


Mantissa (normalized) =


1. 000 1010 1101 0110 1111 0011 0000 0010 1011 1110 0101 0010 1110 0011 1110 1000 0001 1110 1110 1000 1010 0000 0000 0000 0001 1000 =


000 1010 1101 0110 1111 0011


9. The three elements that make up the number's 32 bit single precision IEEE 754 binary floating point representation:

Sign (1 bit) =
0 (a positive number)


Exponent (8 bits) =
1110 0110


Mantissa (23 bits) =
000 1010 1101 0110 1111 0011


The base ten decimal number 11 000 010 001 000 000 000 000 000 000 024 converted and written in 32 bit single precision IEEE 754 binary floating point representation:
0 - 1110 0110 - 000 1010 1101 0110 1111 0011

The latest decimal numbers converted from base ten to 32 bit single precision IEEE 754 floating point binary standard representation

Number 11 111 000 011 111 100 111 100 001 110 916 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard May 17 11:04 UTC (GMT)
Number 160 032 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard May 17 11:04 UTC (GMT)
Number 1 098 645 403 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard May 17 11:04 UTC (GMT)
Number 199 999 958 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard May 17 11:04 UTC (GMT)
Number 157 616 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard May 17 11:04 UTC (GMT)
Number 1 258 549 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard May 17 11:04 UTC (GMT)
Number 0.000 000 000 814 907 254 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard May 17 11:04 UTC (GMT)
Number -39 659 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard May 17 11:04 UTC (GMT)
Number 173 263.233 36 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard May 17 11:04 UTC (GMT)
Number 11 001 011 011 169 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard May 17 11:04 UTC (GMT)
All base ten decimal numbers converted to 32 bit single precision IEEE 754 binary floating point

How to convert decimal numbers from base ten to 32 bit single precision IEEE 754 binary floating point standard

Follow the steps below to convert a base 10 decimal number to 32 bit single precision IEEE 754 binary floating point:

  • 1. If the number to be converted is negative, start with its the positive version.
  • 2. First convert the integer part. Divide repeatedly by 2 the base ten positive representation of the integer number that is to be converted to binary, until we get a quotient that is equal to zero, keeping track of each remainder.
  • 3. Construct the base 2 representation of the positive integer part of the number, by taking all the remainders of the previous dividing operations, starting from the bottom of the list constructed above. Thus, the last remainder of the divisions becomes the first symbol (the leftmost) of the base two number, while the first remainder becomes the last symbol (the rightmost).
  • 4. Then convert the fractional part. Multiply the number repeatedly by 2, until we get a fractional part that is equal to zero, keeping track of each integer part of the results.
  • 5. Construct the base 2 representation of the fractional part of the number by taking all the integer parts of the previous multiplying operations, starting from the top of the constructed list above (they should appear in the binary representation, from left to right, in the order they have been calculated).
  • 6. Normalize the binary representation of the number, by shifting the decimal point (or if you prefer, the decimal mark) "n" positions either to the left or to the right, so that only one non zero digit remains to the left of the decimal point.
  • 7. Adjust the exponent in 8 bit excess/bias notation and then convert it from decimal (base 10) to 8 bit binary, by using the same technique of repeatedly dividing by 2, as shown above:
    Exponent (adjusted) = Exponent (unadjusted) + 2(8-1) - 1
  • 8. Normalize mantissa, remove the leading (leftmost) bit, since it's allways '1' (and the decimal sign if the case) and adjust its length to 23 bits, either by removing the excess bits from the right (losing precision...) or by adding extra '0' bits to the right.
  • 9. Sign (it takes 1 bit) is either 1 for a negative or 0 for a positive number.

Example: convert the negative number -25.347 from decimal system (base ten) to 32 bit single precision IEEE 754 binary floating point:

  • 1. Start with the positive version of the number:

    |-25.347| = 25.347

  • 2. First convert the integer part, 25. Divide it repeatedly by 2, keeping track of each remainder, until we get a quotient that is equal to zero:
    • division = quotient + remainder;
    • 25 ÷ 2 = 12 + 1;
    • 12 ÷ 2 = 6 + 0;
    • 6 ÷ 2 = 3 + 0;
    • 3 ÷ 2 = 1 + 1;
    • 1 ÷ 2 = 0 + 1;
    • We have encountered a quotient that is ZERO => FULL STOP
  • 3. Construct the base 2 representation of the integer part of the number by taking all the remainders of the previous dividing operations, starting from the bottom of the list constructed above:

    25(10) = 1 1001(2)

  • 4. Then convert the fractional part, 0.347. Multiply repeatedly by 2, keeping track of each integer part of the results, until we get a fractional part that is equal to zero:
    • #) multiplying = integer + fractional part;
    • 1) 0.347 × 2 = 0 + 0.694;
    • 2) 0.694 × 2 = 1 + 0.388;
    • 3) 0.388 × 2 = 0 + 0.776;
    • 4) 0.776 × 2 = 1 + 0.552;
    • 5) 0.552 × 2 = 1 + 0.104;
    • 6) 0.104 × 2 = 0 + 0.208;
    • 7) 0.208 × 2 = 0 + 0.416;
    • 8) 0.416 × 2 = 0 + 0.832;
    • 9) 0.832 × 2 = 1 + 0.664;
    • 10) 0.664 × 2 = 1 + 0.328;
    • 11) 0.328 × 2 = 0 + 0.656;
    • 12) 0.656 × 2 = 1 + 0.312;
    • 13) 0.312 × 2 = 0 + 0.624;
    • 14) 0.624 × 2 = 1 + 0.248;
    • 15) 0.248 × 2 = 0 + 0.496;
    • 16) 0.496 × 2 = 0 + 0.992;
    • 17) 0.992 × 2 = 1 + 0.984;
    • 18) 0.984 × 2 = 1 + 0.968;
    • 19) 0.968 × 2 = 1 + 0.936;
    • 20) 0.936 × 2 = 1 + 0.872;
    • 21) 0.872 × 2 = 1 + 0.744;
    • 22) 0.744 × 2 = 1 + 0.488;
    • 23) 0.488 × 2 = 0 + 0.976;
    • 24) 0.976 × 2 = 1 + 0.952;
    • We didn't get any fractional part that was equal to zero. But we had enough iterations (over Mantissa limit = 23) and at least one integer part that was different from zero => FULL STOP (losing precision...).
  • 5. Construct the base 2 representation of the fractional part of the number, by taking all the integer parts of the previous multiplying operations, starting from the top of the constructed list above:

    0.347(10) = 0.0101 1000 1101 0100 1111 1101(2)

  • 6. Summarizing - the positive number before normalization:

    25.347(10) = 1 1001.0101 1000 1101 0100 1111 1101(2)

  • 7. Normalize the binary representation of the number, shifting the decimal point 4 positions to the left so that only one non-zero digit stays to the left of the decimal point:

    25.347(10) =
    1 1001.0101 1000 1101 0100 1111 1101(2) =
    1 1001.0101 1000 1101 0100 1111 1101(2) × 20 =
    1.1001 0101 1000 1101 0100 1111 1101(2) × 24

  • 8. Up to this moment, there are the following elements that would feed into the 32 bit single precision IEEE 754 binary floating point:

    Sign: 1 (a negative number)

    Exponent (unadjusted): 4

    Mantissa (not-normalized): 1.1001 0101 1000 1101 0100 1111 1101

  • 9. Adjust the exponent in 8 bit excess/bias notation and then convert it from decimal (base 10) to 8 bit binary (base 2), by using the same technique of repeatedly dividing it by 2, as already demonstrated above:

    Exponent (adjusted) = Exponent (unadjusted) + 2(8-1) - 1 = (4 + 127)(10) = 131(10) =
    1000 0011(2)

  • 10. Normalize the mantissa, remove the leading (leftmost) bit, since it's allways '1' (and the decimal point) and adjust its length to 23 bits, by removing the excess bits from the right (losing precision...):

    Mantissa (not-normalized): 1.1001 0101 1000 1101 0100 1111 1101

    Mantissa (normalized): 100 1010 1100 0110 1010 0111

  • Conclusion:

    Sign (1 bit) = 1 (a negative number)

    Exponent (8 bits) = 1000 0011

    Mantissa (23 bits) = 100 1010 1100 0110 1010 0111

  • Number -25.347, converted from the decimal system (base 10) to 32 bit single precision IEEE 754 binary floating point =
    1 - 1000 0011 - 100 1010 1100 0110 1010 0111