32bit IEEE 754: Decimal ↗ Single Precision Floating Point Binary: 11 000 001 011 110 000 000 000 000 000 000 Convert the Number to 32 Bit Single Precision IEEE 754 Binary Floating Point Representation Standard, From a Base 10 Decimal System Number

Number 11 000 001 011 110 000 000 000 000 000 000(10) converted and written in 32 bit single precision IEEE 754 binary floating point representation (1 bit for sign, 8 bits for exponent, 23 bits for mantissa)

1. Divide the number repeatedly by 2.

Keep track of each remainder.

We stop when we get a quotient that is equal to zero.


  • division = quotient + remainder;
  • 11 000 001 011 110 000 000 000 000 000 000 ÷ 2 = 5 500 000 505 555 000 000 000 000 000 000 + 0;
  • 5 500 000 505 555 000 000 000 000 000 000 ÷ 2 = 2 750 000 252 777 500 000 000 000 000 000 + 0;
  • 2 750 000 252 777 500 000 000 000 000 000 ÷ 2 = 1 375 000 126 388 750 000 000 000 000 000 + 0;
  • 1 375 000 126 388 750 000 000 000 000 000 ÷ 2 = 687 500 063 194 375 000 000 000 000 000 + 0;
  • 687 500 063 194 375 000 000 000 000 000 ÷ 2 = 343 750 031 597 187 500 000 000 000 000 + 0;
  • 343 750 031 597 187 500 000 000 000 000 ÷ 2 = 171 875 015 798 593 750 000 000 000 000 + 0;
  • 171 875 015 798 593 750 000 000 000 000 ÷ 2 = 85 937 507 899 296 875 000 000 000 000 + 0;
  • 85 937 507 899 296 875 000 000 000 000 ÷ 2 = 42 968 753 949 648 437 500 000 000 000 + 0;
  • 42 968 753 949 648 437 500 000 000 000 ÷ 2 = 21 484 376 974 824 218 750 000 000 000 + 0;
  • 21 484 376 974 824 218 750 000 000 000 ÷ 2 = 10 742 188 487 412 109 375 000 000 000 + 0;
  • 10 742 188 487 412 109 375 000 000 000 ÷ 2 = 5 371 094 243 706 054 687 500 000 000 + 0;
  • 5 371 094 243 706 054 687 500 000 000 ÷ 2 = 2 685 547 121 853 027 343 750 000 000 + 0;
  • 2 685 547 121 853 027 343 750 000 000 ÷ 2 = 1 342 773 560 926 513 671 875 000 000 + 0;
  • 1 342 773 560 926 513 671 875 000 000 ÷ 2 = 671 386 780 463 256 835 937 500 000 + 0;
  • 671 386 780 463 256 835 937 500 000 ÷ 2 = 335 693 390 231 628 417 968 750 000 + 0;
  • 335 693 390 231 628 417 968 750 000 ÷ 2 = 167 846 695 115 814 208 984 375 000 + 0;
  • 167 846 695 115 814 208 984 375 000 ÷ 2 = 83 923 347 557 907 104 492 187 500 + 0;
  • 83 923 347 557 907 104 492 187 500 ÷ 2 = 41 961 673 778 953 552 246 093 750 + 0;
  • 41 961 673 778 953 552 246 093 750 ÷ 2 = 20 980 836 889 476 776 123 046 875 + 0;
  • 20 980 836 889 476 776 123 046 875 ÷ 2 = 10 490 418 444 738 388 061 523 437 + 1;
  • 10 490 418 444 738 388 061 523 437 ÷ 2 = 5 245 209 222 369 194 030 761 718 + 1;
  • 5 245 209 222 369 194 030 761 718 ÷ 2 = 2 622 604 611 184 597 015 380 859 + 0;
  • 2 622 604 611 184 597 015 380 859 ÷ 2 = 1 311 302 305 592 298 507 690 429 + 1;
  • 1 311 302 305 592 298 507 690 429 ÷ 2 = 655 651 152 796 149 253 845 214 + 1;
  • 655 651 152 796 149 253 845 214 ÷ 2 = 327 825 576 398 074 626 922 607 + 0;
  • 327 825 576 398 074 626 922 607 ÷ 2 = 163 912 788 199 037 313 461 303 + 1;
  • 163 912 788 199 037 313 461 303 ÷ 2 = 81 956 394 099 518 656 730 651 + 1;
  • 81 956 394 099 518 656 730 651 ÷ 2 = 40 978 197 049 759 328 365 325 + 1;
  • 40 978 197 049 759 328 365 325 ÷ 2 = 20 489 098 524 879 664 182 662 + 1;
  • 20 489 098 524 879 664 182 662 ÷ 2 = 10 244 549 262 439 832 091 331 + 0;
  • 10 244 549 262 439 832 091 331 ÷ 2 = 5 122 274 631 219 916 045 665 + 1;
  • 5 122 274 631 219 916 045 665 ÷ 2 = 2 561 137 315 609 958 022 832 + 1;
  • 2 561 137 315 609 958 022 832 ÷ 2 = 1 280 568 657 804 979 011 416 + 0;
  • 1 280 568 657 804 979 011 416 ÷ 2 = 640 284 328 902 489 505 708 + 0;
  • 640 284 328 902 489 505 708 ÷ 2 = 320 142 164 451 244 752 854 + 0;
  • 320 142 164 451 244 752 854 ÷ 2 = 160 071 082 225 622 376 427 + 0;
  • 160 071 082 225 622 376 427 ÷ 2 = 80 035 541 112 811 188 213 + 1;
  • 80 035 541 112 811 188 213 ÷ 2 = 40 017 770 556 405 594 106 + 1;
  • 40 017 770 556 405 594 106 ÷ 2 = 20 008 885 278 202 797 053 + 0;
  • 20 008 885 278 202 797 053 ÷ 2 = 10 004 442 639 101 398 526 + 1;
  • 10 004 442 639 101 398 526 ÷ 2 = 5 002 221 319 550 699 263 + 0;
  • 5 002 221 319 550 699 263 ÷ 2 = 2 501 110 659 775 349 631 + 1;
  • 2 501 110 659 775 349 631 ÷ 2 = 1 250 555 329 887 674 815 + 1;
  • 1 250 555 329 887 674 815 ÷ 2 = 625 277 664 943 837 407 + 1;
  • 625 277 664 943 837 407 ÷ 2 = 312 638 832 471 918 703 + 1;
  • 312 638 832 471 918 703 ÷ 2 = 156 319 416 235 959 351 + 1;
  • 156 319 416 235 959 351 ÷ 2 = 78 159 708 117 979 675 + 1;
  • 78 159 708 117 979 675 ÷ 2 = 39 079 854 058 989 837 + 1;
  • 39 079 854 058 989 837 ÷ 2 = 19 539 927 029 494 918 + 1;
  • 19 539 927 029 494 918 ÷ 2 = 9 769 963 514 747 459 + 0;
  • 9 769 963 514 747 459 ÷ 2 = 4 884 981 757 373 729 + 1;
  • 4 884 981 757 373 729 ÷ 2 = 2 442 490 878 686 864 + 1;
  • 2 442 490 878 686 864 ÷ 2 = 1 221 245 439 343 432 + 0;
  • 1 221 245 439 343 432 ÷ 2 = 610 622 719 671 716 + 0;
  • 610 622 719 671 716 ÷ 2 = 305 311 359 835 858 + 0;
  • 305 311 359 835 858 ÷ 2 = 152 655 679 917 929 + 0;
  • 152 655 679 917 929 ÷ 2 = 76 327 839 958 964 + 1;
  • 76 327 839 958 964 ÷ 2 = 38 163 919 979 482 + 0;
  • 38 163 919 979 482 ÷ 2 = 19 081 959 989 741 + 0;
  • 19 081 959 989 741 ÷ 2 = 9 540 979 994 870 + 1;
  • 9 540 979 994 870 ÷ 2 = 4 770 489 997 435 + 0;
  • 4 770 489 997 435 ÷ 2 = 2 385 244 998 717 + 1;
  • 2 385 244 998 717 ÷ 2 = 1 192 622 499 358 + 1;
  • 1 192 622 499 358 ÷ 2 = 596 311 249 679 + 0;
  • 596 311 249 679 ÷ 2 = 298 155 624 839 + 1;
  • 298 155 624 839 ÷ 2 = 149 077 812 419 + 1;
  • 149 077 812 419 ÷ 2 = 74 538 906 209 + 1;
  • 74 538 906 209 ÷ 2 = 37 269 453 104 + 1;
  • 37 269 453 104 ÷ 2 = 18 634 726 552 + 0;
  • 18 634 726 552 ÷ 2 = 9 317 363 276 + 0;
  • 9 317 363 276 ÷ 2 = 4 658 681 638 + 0;
  • 4 658 681 638 ÷ 2 = 2 329 340 819 + 0;
  • 2 329 340 819 ÷ 2 = 1 164 670 409 + 1;
  • 1 164 670 409 ÷ 2 = 582 335 204 + 1;
  • 582 335 204 ÷ 2 = 291 167 602 + 0;
  • 291 167 602 ÷ 2 = 145 583 801 + 0;
  • 145 583 801 ÷ 2 = 72 791 900 + 1;
  • 72 791 900 ÷ 2 = 36 395 950 + 0;
  • 36 395 950 ÷ 2 = 18 197 975 + 0;
  • 18 197 975 ÷ 2 = 9 098 987 + 1;
  • 9 098 987 ÷ 2 = 4 549 493 + 1;
  • 4 549 493 ÷ 2 = 2 274 746 + 1;
  • 2 274 746 ÷ 2 = 1 137 373 + 0;
  • 1 137 373 ÷ 2 = 568 686 + 1;
  • 568 686 ÷ 2 = 284 343 + 0;
  • 284 343 ÷ 2 = 142 171 + 1;
  • 142 171 ÷ 2 = 71 085 + 1;
  • 71 085 ÷ 2 = 35 542 + 1;
  • 35 542 ÷ 2 = 17 771 + 0;
  • 17 771 ÷ 2 = 8 885 + 1;
  • 8 885 ÷ 2 = 4 442 + 1;
  • 4 442 ÷ 2 = 2 221 + 0;
  • 2 221 ÷ 2 = 1 110 + 1;
  • 1 110 ÷ 2 = 555 + 0;
  • 555 ÷ 2 = 277 + 1;
  • 277 ÷ 2 = 138 + 1;
  • 138 ÷ 2 = 69 + 0;
  • 69 ÷ 2 = 34 + 1;
  • 34 ÷ 2 = 17 + 0;
  • 17 ÷ 2 = 8 + 1;
  • 8 ÷ 2 = 4 + 0;
  • 4 ÷ 2 = 2 + 0;
  • 2 ÷ 2 = 1 + 0;
  • 1 ÷ 2 = 0 + 1;

2. Construct the base 2 representation of the positive number.

Take all the remainders starting from the bottom of the list constructed above.


11 000 001 011 110 000 000 000 000 000 000(10) =


1000 1010 1101 0110 1110 1011 1001 0011 0000 1111 0110 1001 0000 1101 1111 1110 1011 0000 1101 1110 1101 1000 0000 0000 0000 0000(2)


3. Normalize the binary representation of the number.

Shift the decimal mark 103 positions to the left, so that only one non zero digit remains to the left of it:


11 000 001 011 110 000 000 000 000 000 000(10) =


1000 1010 1101 0110 1110 1011 1001 0011 0000 1111 0110 1001 0000 1101 1111 1110 1011 0000 1101 1110 1101 1000 0000 0000 0000 0000(2) =


1000 1010 1101 0110 1110 1011 1001 0011 0000 1111 0110 1001 0000 1101 1111 1110 1011 0000 1101 1110 1101 1000 0000 0000 0000 0000(2) × 20 =


1.0001 0101 1010 1101 1101 0111 0010 0110 0001 1110 1101 0010 0001 1011 1111 1101 0110 0001 1011 1101 1011 0000 0000 0000 0000 000(2) × 2103


4. Up to this moment, there are the following elements that would feed into the 32 bit single precision IEEE 754 binary floating point representation:

Sign 0 (a positive number)


Exponent (unadjusted): 103


Mantissa (not normalized):
1.0001 0101 1010 1101 1101 0111 0010 0110 0001 1110 1101 0010 0001 1011 1111 1101 0110 0001 1011 1101 1011 0000 0000 0000 0000 000


5. Adjust the exponent.

Use the 8 bit excess/bias notation:


Exponent (adjusted) =


Exponent (unadjusted) + 2(8-1) - 1 =


103 + 2(8-1) - 1 =


(103 + 127)(10) =


230(10)


6. Convert the adjusted exponent from the decimal (base 10) to 8 bit binary.

Use the same technique of repeatedly dividing by 2:


  • division = quotient + remainder;
  • 230 ÷ 2 = 115 + 0;
  • 115 ÷ 2 = 57 + 1;
  • 57 ÷ 2 = 28 + 1;
  • 28 ÷ 2 = 14 + 0;
  • 14 ÷ 2 = 7 + 0;
  • 7 ÷ 2 = 3 + 1;
  • 3 ÷ 2 = 1 + 1;
  • 1 ÷ 2 = 0 + 1;

7. Construct the base 2 representation of the adjusted exponent.

Take all the remainders starting from the bottom of the list constructed above.


Exponent (adjusted) =


230(10) =


1110 0110(2)


8. Normalize the mantissa.

a) Remove the leading (the leftmost) bit, since it's allways 1, and the decimal point, if the case.


b) Adjust its length to 23 bits, by removing the excess bits, from the right (if any of the excess bits is set on 1, we are losing precision...).


Mantissa (normalized) =


1. 000 1010 1101 0110 1110 1011 1001 0011 0000 1111 0110 1001 0000 1101 1111 1110 1011 0000 1101 1110 1101 1000 0000 0000 0000 0000 =


000 1010 1101 0110 1110 1011


9. The three elements that make up the number's 32 bit single precision IEEE 754 binary floating point representation:

Sign (1 bit) =
0 (a positive number)


Exponent (8 bits) =
1110 0110


Mantissa (23 bits) =
000 1010 1101 0110 1110 1011


The base ten decimal number 11 000 001 011 110 000 000 000 000 000 000 converted and written in 32 bit single precision IEEE 754 binary floating point representation:
0 - 1110 0110 - 000 1010 1101 0110 1110 1011

The latest decimal numbers converted from base ten to 32 bit single precision IEEE 754 floating point binary standard representation

Number 338 296 812 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard May 18 18:37 UTC (GMT)
Number 58.8 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard May 18 18:37 UTC (GMT)
Number 1 000 001 111 099 929 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard May 18 18:37 UTC (GMT)
Number 58.8 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard May 18 18:37 UTC (GMT)
Number 6 670 013 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard May 18 18:37 UTC (GMT)
Number 3.512 090 9 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard May 18 18:37 UTC (GMT)
Number 17.562 6 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard May 18 18:37 UTC (GMT)
Number 43 641 255 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard May 18 18:37 UTC (GMT)
Number 249.876 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard May 18 18:37 UTC (GMT)
Number -2 623 482 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard May 18 18:37 UTC (GMT)
All base ten decimal numbers converted to 32 bit single precision IEEE 754 binary floating point

How to convert decimal numbers from base ten to 32 bit single precision IEEE 754 binary floating point standard

Follow the steps below to convert a base 10 decimal number to 32 bit single precision IEEE 754 binary floating point:

  • 1. If the number to be converted is negative, start with its the positive version.
  • 2. First convert the integer part. Divide repeatedly by 2 the base ten positive representation of the integer number that is to be converted to binary, until we get a quotient that is equal to zero, keeping track of each remainder.
  • 3. Construct the base 2 representation of the positive integer part of the number, by taking all the remainders of the previous dividing operations, starting from the bottom of the list constructed above. Thus, the last remainder of the divisions becomes the first symbol (the leftmost) of the base two number, while the first remainder becomes the last symbol (the rightmost).
  • 4. Then convert the fractional part. Multiply the number repeatedly by 2, until we get a fractional part that is equal to zero, keeping track of each integer part of the results.
  • 5. Construct the base 2 representation of the fractional part of the number by taking all the integer parts of the previous multiplying operations, starting from the top of the constructed list above (they should appear in the binary representation, from left to right, in the order they have been calculated).
  • 6. Normalize the binary representation of the number, by shifting the decimal point (or if you prefer, the decimal mark) "n" positions either to the left or to the right, so that only one non zero digit remains to the left of the decimal point.
  • 7. Adjust the exponent in 8 bit excess/bias notation and then convert it from decimal (base 10) to 8 bit binary, by using the same technique of repeatedly dividing by 2, as shown above:
    Exponent (adjusted) = Exponent (unadjusted) + 2(8-1) - 1
  • 8. Normalize mantissa, remove the leading (leftmost) bit, since it's allways '1' (and the decimal sign if the case) and adjust its length to 23 bits, either by removing the excess bits from the right (losing precision...) or by adding extra '0' bits to the right.
  • 9. Sign (it takes 1 bit) is either 1 for a negative or 0 for a positive number.

Example: convert the negative number -25.347 from decimal system (base ten) to 32 bit single precision IEEE 754 binary floating point:

  • 1. Start with the positive version of the number:

    |-25.347| = 25.347

  • 2. First convert the integer part, 25. Divide it repeatedly by 2, keeping track of each remainder, until we get a quotient that is equal to zero:
    • division = quotient + remainder;
    • 25 ÷ 2 = 12 + 1;
    • 12 ÷ 2 = 6 + 0;
    • 6 ÷ 2 = 3 + 0;
    • 3 ÷ 2 = 1 + 1;
    • 1 ÷ 2 = 0 + 1;
    • We have encountered a quotient that is ZERO => FULL STOP
  • 3. Construct the base 2 representation of the integer part of the number by taking all the remainders of the previous dividing operations, starting from the bottom of the list constructed above:

    25(10) = 1 1001(2)

  • 4. Then convert the fractional part, 0.347. Multiply repeatedly by 2, keeping track of each integer part of the results, until we get a fractional part that is equal to zero:
    • #) multiplying = integer + fractional part;
    • 1) 0.347 × 2 = 0 + 0.694;
    • 2) 0.694 × 2 = 1 + 0.388;
    • 3) 0.388 × 2 = 0 + 0.776;
    • 4) 0.776 × 2 = 1 + 0.552;
    • 5) 0.552 × 2 = 1 + 0.104;
    • 6) 0.104 × 2 = 0 + 0.208;
    • 7) 0.208 × 2 = 0 + 0.416;
    • 8) 0.416 × 2 = 0 + 0.832;
    • 9) 0.832 × 2 = 1 + 0.664;
    • 10) 0.664 × 2 = 1 + 0.328;
    • 11) 0.328 × 2 = 0 + 0.656;
    • 12) 0.656 × 2 = 1 + 0.312;
    • 13) 0.312 × 2 = 0 + 0.624;
    • 14) 0.624 × 2 = 1 + 0.248;
    • 15) 0.248 × 2 = 0 + 0.496;
    • 16) 0.496 × 2 = 0 + 0.992;
    • 17) 0.992 × 2 = 1 + 0.984;
    • 18) 0.984 × 2 = 1 + 0.968;
    • 19) 0.968 × 2 = 1 + 0.936;
    • 20) 0.936 × 2 = 1 + 0.872;
    • 21) 0.872 × 2 = 1 + 0.744;
    • 22) 0.744 × 2 = 1 + 0.488;
    • 23) 0.488 × 2 = 0 + 0.976;
    • 24) 0.976 × 2 = 1 + 0.952;
    • We didn't get any fractional part that was equal to zero. But we had enough iterations (over Mantissa limit = 23) and at least one integer part that was different from zero => FULL STOP (losing precision...).
  • 5. Construct the base 2 representation of the fractional part of the number, by taking all the integer parts of the previous multiplying operations, starting from the top of the constructed list above:

    0.347(10) = 0.0101 1000 1101 0100 1111 1101(2)

  • 6. Summarizing - the positive number before normalization:

    25.347(10) = 1 1001.0101 1000 1101 0100 1111 1101(2)

  • 7. Normalize the binary representation of the number, shifting the decimal point 4 positions to the left so that only one non-zero digit stays to the left of the decimal point:

    25.347(10) =
    1 1001.0101 1000 1101 0100 1111 1101(2) =
    1 1001.0101 1000 1101 0100 1111 1101(2) × 20 =
    1.1001 0101 1000 1101 0100 1111 1101(2) × 24

  • 8. Up to this moment, there are the following elements that would feed into the 32 bit single precision IEEE 754 binary floating point:

    Sign: 1 (a negative number)

    Exponent (unadjusted): 4

    Mantissa (not-normalized): 1.1001 0101 1000 1101 0100 1111 1101

  • 9. Adjust the exponent in 8 bit excess/bias notation and then convert it from decimal (base 10) to 8 bit binary (base 2), by using the same technique of repeatedly dividing it by 2, as already demonstrated above:

    Exponent (adjusted) = Exponent (unadjusted) + 2(8-1) - 1 = (4 + 127)(10) = 131(10) =
    1000 0011(2)

  • 10. Normalize the mantissa, remove the leading (leftmost) bit, since it's allways '1' (and the decimal point) and adjust its length to 23 bits, by removing the excess bits from the right (losing precision...):

    Mantissa (not-normalized): 1.1001 0101 1000 1101 0100 1111 1101

    Mantissa (normalized): 100 1010 1100 0110 1010 0111

  • Conclusion:

    Sign (1 bit) = 1 (a negative number)

    Exponent (8 bits) = 1000 0011

    Mantissa (23 bits) = 100 1010 1100 0110 1010 0111

  • Number -25.347, converted from the decimal system (base 10) to 32 bit single precision IEEE 754 binary floating point =
    1 - 1000 0011 - 100 1010 1100 0110 1010 0111