32bit IEEE 754: Decimal ↗ Single Precision Floating Point Binary: 10 111 111 009 999 999 999 999 999 999 916 Convert the Number to 32 Bit Single Precision IEEE 754 Binary Floating Point Representation Standard, From a Base 10 Decimal System Number

Number 10 111 111 009 999 999 999 999 999 999 916(10) converted and written in 32 bit single precision IEEE 754 binary floating point representation (1 bit for sign, 8 bits for exponent, 23 bits for mantissa)

1. Divide the number repeatedly by 2.

Keep track of each remainder.

We stop when we get a quotient that is equal to zero.


  • division = quotient + remainder;
  • 10 111 111 009 999 999 999 999 999 999 916 ÷ 2 = 5 055 555 504 999 999 999 999 999 999 958 + 0;
  • 5 055 555 504 999 999 999 999 999 999 958 ÷ 2 = 2 527 777 752 499 999 999 999 999 999 979 + 0;
  • 2 527 777 752 499 999 999 999 999 999 979 ÷ 2 = 1 263 888 876 249 999 999 999 999 999 989 + 1;
  • 1 263 888 876 249 999 999 999 999 999 989 ÷ 2 = 631 944 438 124 999 999 999 999 999 994 + 1;
  • 631 944 438 124 999 999 999 999 999 994 ÷ 2 = 315 972 219 062 499 999 999 999 999 997 + 0;
  • 315 972 219 062 499 999 999 999 999 997 ÷ 2 = 157 986 109 531 249 999 999 999 999 998 + 1;
  • 157 986 109 531 249 999 999 999 999 998 ÷ 2 = 78 993 054 765 624 999 999 999 999 999 + 0;
  • 78 993 054 765 624 999 999 999 999 999 ÷ 2 = 39 496 527 382 812 499 999 999 999 999 + 1;
  • 39 496 527 382 812 499 999 999 999 999 ÷ 2 = 19 748 263 691 406 249 999 999 999 999 + 1;
  • 19 748 263 691 406 249 999 999 999 999 ÷ 2 = 9 874 131 845 703 124 999 999 999 999 + 1;
  • 9 874 131 845 703 124 999 999 999 999 ÷ 2 = 4 937 065 922 851 562 499 999 999 999 + 1;
  • 4 937 065 922 851 562 499 999 999 999 ÷ 2 = 2 468 532 961 425 781 249 999 999 999 + 1;
  • 2 468 532 961 425 781 249 999 999 999 ÷ 2 = 1 234 266 480 712 890 624 999 999 999 + 1;
  • 1 234 266 480 712 890 624 999 999 999 ÷ 2 = 617 133 240 356 445 312 499 999 999 + 1;
  • 617 133 240 356 445 312 499 999 999 ÷ 2 = 308 566 620 178 222 656 249 999 999 + 1;
  • 308 566 620 178 222 656 249 999 999 ÷ 2 = 154 283 310 089 111 328 124 999 999 + 1;
  • 154 283 310 089 111 328 124 999 999 ÷ 2 = 77 141 655 044 555 664 062 499 999 + 1;
  • 77 141 655 044 555 664 062 499 999 ÷ 2 = 38 570 827 522 277 832 031 249 999 + 1;
  • 38 570 827 522 277 832 031 249 999 ÷ 2 = 19 285 413 761 138 916 015 624 999 + 1;
  • 19 285 413 761 138 916 015 624 999 ÷ 2 = 9 642 706 880 569 458 007 812 499 + 1;
  • 9 642 706 880 569 458 007 812 499 ÷ 2 = 4 821 353 440 284 729 003 906 249 + 1;
  • 4 821 353 440 284 729 003 906 249 ÷ 2 = 2 410 676 720 142 364 501 953 124 + 1;
  • 2 410 676 720 142 364 501 953 124 ÷ 2 = 1 205 338 360 071 182 250 976 562 + 0;
  • 1 205 338 360 071 182 250 976 562 ÷ 2 = 602 669 180 035 591 125 488 281 + 0;
  • 602 669 180 035 591 125 488 281 ÷ 2 = 301 334 590 017 795 562 744 140 + 1;
  • 301 334 590 017 795 562 744 140 ÷ 2 = 150 667 295 008 897 781 372 070 + 0;
  • 150 667 295 008 897 781 372 070 ÷ 2 = 75 333 647 504 448 890 686 035 + 0;
  • 75 333 647 504 448 890 686 035 ÷ 2 = 37 666 823 752 224 445 343 017 + 1;
  • 37 666 823 752 224 445 343 017 ÷ 2 = 18 833 411 876 112 222 671 508 + 1;
  • 18 833 411 876 112 222 671 508 ÷ 2 = 9 416 705 938 056 111 335 754 + 0;
  • 9 416 705 938 056 111 335 754 ÷ 2 = 4 708 352 969 028 055 667 877 + 0;
  • 4 708 352 969 028 055 667 877 ÷ 2 = 2 354 176 484 514 027 833 938 + 1;
  • 2 354 176 484 514 027 833 938 ÷ 2 = 1 177 088 242 257 013 916 969 + 0;
  • 1 177 088 242 257 013 916 969 ÷ 2 = 588 544 121 128 506 958 484 + 1;
  • 588 544 121 128 506 958 484 ÷ 2 = 294 272 060 564 253 479 242 + 0;
  • 294 272 060 564 253 479 242 ÷ 2 = 147 136 030 282 126 739 621 + 0;
  • 147 136 030 282 126 739 621 ÷ 2 = 73 568 015 141 063 369 810 + 1;
  • 73 568 015 141 063 369 810 ÷ 2 = 36 784 007 570 531 684 905 + 0;
  • 36 784 007 570 531 684 905 ÷ 2 = 18 392 003 785 265 842 452 + 1;
  • 18 392 003 785 265 842 452 ÷ 2 = 9 196 001 892 632 921 226 + 0;
  • 9 196 001 892 632 921 226 ÷ 2 = 4 598 000 946 316 460 613 + 0;
  • 4 598 000 946 316 460 613 ÷ 2 = 2 299 000 473 158 230 306 + 1;
  • 2 299 000 473 158 230 306 ÷ 2 = 1 149 500 236 579 115 153 + 0;
  • 1 149 500 236 579 115 153 ÷ 2 = 574 750 118 289 557 576 + 1;
  • 574 750 118 289 557 576 ÷ 2 = 287 375 059 144 778 788 + 0;
  • 287 375 059 144 778 788 ÷ 2 = 143 687 529 572 389 394 + 0;
  • 143 687 529 572 389 394 ÷ 2 = 71 843 764 786 194 697 + 0;
  • 71 843 764 786 194 697 ÷ 2 = 35 921 882 393 097 348 + 1;
  • 35 921 882 393 097 348 ÷ 2 = 17 960 941 196 548 674 + 0;
  • 17 960 941 196 548 674 ÷ 2 = 8 980 470 598 274 337 + 0;
  • 8 980 470 598 274 337 ÷ 2 = 4 490 235 299 137 168 + 1;
  • 4 490 235 299 137 168 ÷ 2 = 2 245 117 649 568 584 + 0;
  • 2 245 117 649 568 584 ÷ 2 = 1 122 558 824 784 292 + 0;
  • 1 122 558 824 784 292 ÷ 2 = 561 279 412 392 146 + 0;
  • 561 279 412 392 146 ÷ 2 = 280 639 706 196 073 + 0;
  • 280 639 706 196 073 ÷ 2 = 140 319 853 098 036 + 1;
  • 140 319 853 098 036 ÷ 2 = 70 159 926 549 018 + 0;
  • 70 159 926 549 018 ÷ 2 = 35 079 963 274 509 + 0;
  • 35 079 963 274 509 ÷ 2 = 17 539 981 637 254 + 1;
  • 17 539 981 637 254 ÷ 2 = 8 769 990 818 627 + 0;
  • 8 769 990 818 627 ÷ 2 = 4 384 995 409 313 + 1;
  • 4 384 995 409 313 ÷ 2 = 2 192 497 704 656 + 1;
  • 2 192 497 704 656 ÷ 2 = 1 096 248 852 328 + 0;
  • 1 096 248 852 328 ÷ 2 = 548 124 426 164 + 0;
  • 548 124 426 164 ÷ 2 = 274 062 213 082 + 0;
  • 274 062 213 082 ÷ 2 = 137 031 106 541 + 0;
  • 137 031 106 541 ÷ 2 = 68 515 553 270 + 1;
  • 68 515 553 270 ÷ 2 = 34 257 776 635 + 0;
  • 34 257 776 635 ÷ 2 = 17 128 888 317 + 1;
  • 17 128 888 317 ÷ 2 = 8 564 444 158 + 1;
  • 8 564 444 158 ÷ 2 = 4 282 222 079 + 0;
  • 4 282 222 079 ÷ 2 = 2 141 111 039 + 1;
  • 2 141 111 039 ÷ 2 = 1 070 555 519 + 1;
  • 1 070 555 519 ÷ 2 = 535 277 759 + 1;
  • 535 277 759 ÷ 2 = 267 638 879 + 1;
  • 267 638 879 ÷ 2 = 133 819 439 + 1;
  • 133 819 439 ÷ 2 = 66 909 719 + 1;
  • 66 909 719 ÷ 2 = 33 454 859 + 1;
  • 33 454 859 ÷ 2 = 16 727 429 + 1;
  • 16 727 429 ÷ 2 = 8 363 714 + 1;
  • 8 363 714 ÷ 2 = 4 181 857 + 0;
  • 4 181 857 ÷ 2 = 2 090 928 + 1;
  • 2 090 928 ÷ 2 = 1 045 464 + 0;
  • 1 045 464 ÷ 2 = 522 732 + 0;
  • 522 732 ÷ 2 = 261 366 + 0;
  • 261 366 ÷ 2 = 130 683 + 0;
  • 130 683 ÷ 2 = 65 341 + 1;
  • 65 341 ÷ 2 = 32 670 + 1;
  • 32 670 ÷ 2 = 16 335 + 0;
  • 16 335 ÷ 2 = 8 167 + 1;
  • 8 167 ÷ 2 = 4 083 + 1;
  • 4 083 ÷ 2 = 2 041 + 1;
  • 2 041 ÷ 2 = 1 020 + 1;
  • 1 020 ÷ 2 = 510 + 0;
  • 510 ÷ 2 = 255 + 0;
  • 255 ÷ 2 = 127 + 1;
  • 127 ÷ 2 = 63 + 1;
  • 63 ÷ 2 = 31 + 1;
  • 31 ÷ 2 = 15 + 1;
  • 15 ÷ 2 = 7 + 1;
  • 7 ÷ 2 = 3 + 1;
  • 3 ÷ 2 = 1 + 1;
  • 1 ÷ 2 = 0 + 1;

2. Construct the base 2 representation of the positive number.

Take all the remainders starting from the bottom of the list constructed above.


10 111 111 009 999 999 999 999 999 999 916(10) =


111 1111 1001 1110 1100 0010 1111 1111 1011 0100 0011 0100 1000 0100 1000 1010 0101 0010 1001 1001 0011 1111 1111 1111 1010 1100(2)


3. Normalize the binary representation of the number.

Shift the decimal mark 102 positions to the left, so that only one non zero digit remains to the left of it:


10 111 111 009 999 999 999 999 999 999 916(10) =


111 1111 1001 1110 1100 0010 1111 1111 1011 0100 0011 0100 1000 0100 1000 1010 0101 0010 1001 1001 0011 1111 1111 1111 1010 1100(2) =


111 1111 1001 1110 1100 0010 1111 1111 1011 0100 0011 0100 1000 0100 1000 1010 0101 0010 1001 1001 0011 1111 1111 1111 1010 1100(2) × 20 =


1.1111 1110 0111 1011 0000 1011 1111 1110 1101 0000 1101 0010 0001 0010 0010 1001 0100 1010 0110 0100 1111 1111 1111 1110 1011 00(2) × 2102


4. Up to this moment, there are the following elements that would feed into the 32 bit single precision IEEE 754 binary floating point representation:

Sign 0 (a positive number)


Exponent (unadjusted): 102


Mantissa (not normalized):
1.1111 1110 0111 1011 0000 1011 1111 1110 1101 0000 1101 0010 0001 0010 0010 1001 0100 1010 0110 0100 1111 1111 1111 1110 1011 00


5. Adjust the exponent.

Use the 8 bit excess/bias notation:


Exponent (adjusted) =


Exponent (unadjusted) + 2(8-1) - 1 =


102 + 2(8-1) - 1 =


(102 + 127)(10) =


229(10)


6. Convert the adjusted exponent from the decimal (base 10) to 8 bit binary.

Use the same technique of repeatedly dividing by 2:


  • division = quotient + remainder;
  • 229 ÷ 2 = 114 + 1;
  • 114 ÷ 2 = 57 + 0;
  • 57 ÷ 2 = 28 + 1;
  • 28 ÷ 2 = 14 + 0;
  • 14 ÷ 2 = 7 + 0;
  • 7 ÷ 2 = 3 + 1;
  • 3 ÷ 2 = 1 + 1;
  • 1 ÷ 2 = 0 + 1;

7. Construct the base 2 representation of the adjusted exponent.

Take all the remainders starting from the bottom of the list constructed above.


Exponent (adjusted) =


229(10) =


1110 0101(2)


8. Normalize the mantissa.

a) Remove the leading (the leftmost) bit, since it's allways 1, and the decimal point, if the case.


b) Adjust its length to 23 bits, by removing the excess bits, from the right (if any of the excess bits is set on 1, we are losing precision...).


Mantissa (normalized) =


1. 111 1111 0011 1101 1000 0101 111 1111 1011 0100 0011 0100 1000 0100 1000 1010 0101 0010 1001 1001 0011 1111 1111 1111 1010 1100 =


111 1111 0011 1101 1000 0101


9. The three elements that make up the number's 32 bit single precision IEEE 754 binary floating point representation:

Sign (1 bit) =
0 (a positive number)


Exponent (8 bits) =
1110 0101


Mantissa (23 bits) =
111 1111 0011 1101 1000 0101


The base ten decimal number 10 111 111 009 999 999 999 999 999 999 916 converted and written in 32 bit single precision IEEE 754 binary floating point representation:
0 - 1110 0101 - 111 1111 0011 1101 1000 0101

The latest decimal numbers converted from base ten to 32 bit single precision IEEE 754 floating point binary standard representation

Number 360 753 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard May 17 08:15 UTC (GMT)
Number 1 243.13 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard May 17 08:14 UTC (GMT)
Number -25 100 000 000 000 000 000 002 121 121 121 233 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard May 17 08:14 UTC (GMT)
Number 1 340 583 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard May 17 08:14 UTC (GMT)
Number 0.000 000 125 8 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard May 17 08:14 UTC (GMT)
Number -97 644 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard May 17 08:14 UTC (GMT)
Number -283 064 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard May 17 08:14 UTC (GMT)
Number -0.014 459 890 236 287 751 812 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard May 17 08:14 UTC (GMT)
Number 57 493 398 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard May 17 08:14 UTC (GMT)
Number -400 062 512 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard May 17 08:14 UTC (GMT)
All base ten decimal numbers converted to 32 bit single precision IEEE 754 binary floating point

How to convert decimal numbers from base ten to 32 bit single precision IEEE 754 binary floating point standard

Follow the steps below to convert a base 10 decimal number to 32 bit single precision IEEE 754 binary floating point:

  • 1. If the number to be converted is negative, start with its the positive version.
  • 2. First convert the integer part. Divide repeatedly by 2 the base ten positive representation of the integer number that is to be converted to binary, until we get a quotient that is equal to zero, keeping track of each remainder.
  • 3. Construct the base 2 representation of the positive integer part of the number, by taking all the remainders of the previous dividing operations, starting from the bottom of the list constructed above. Thus, the last remainder of the divisions becomes the first symbol (the leftmost) of the base two number, while the first remainder becomes the last symbol (the rightmost).
  • 4. Then convert the fractional part. Multiply the number repeatedly by 2, until we get a fractional part that is equal to zero, keeping track of each integer part of the results.
  • 5. Construct the base 2 representation of the fractional part of the number by taking all the integer parts of the previous multiplying operations, starting from the top of the constructed list above (they should appear in the binary representation, from left to right, in the order they have been calculated).
  • 6. Normalize the binary representation of the number, by shifting the decimal point (or if you prefer, the decimal mark) "n" positions either to the left or to the right, so that only one non zero digit remains to the left of the decimal point.
  • 7. Adjust the exponent in 8 bit excess/bias notation and then convert it from decimal (base 10) to 8 bit binary, by using the same technique of repeatedly dividing by 2, as shown above:
    Exponent (adjusted) = Exponent (unadjusted) + 2(8-1) - 1
  • 8. Normalize mantissa, remove the leading (leftmost) bit, since it's allways '1' (and the decimal sign if the case) and adjust its length to 23 bits, either by removing the excess bits from the right (losing precision...) or by adding extra '0' bits to the right.
  • 9. Sign (it takes 1 bit) is either 1 for a negative or 0 for a positive number.

Example: convert the negative number -25.347 from decimal system (base ten) to 32 bit single precision IEEE 754 binary floating point:

  • 1. Start with the positive version of the number:

    |-25.347| = 25.347

  • 2. First convert the integer part, 25. Divide it repeatedly by 2, keeping track of each remainder, until we get a quotient that is equal to zero:
    • division = quotient + remainder;
    • 25 ÷ 2 = 12 + 1;
    • 12 ÷ 2 = 6 + 0;
    • 6 ÷ 2 = 3 + 0;
    • 3 ÷ 2 = 1 + 1;
    • 1 ÷ 2 = 0 + 1;
    • We have encountered a quotient that is ZERO => FULL STOP
  • 3. Construct the base 2 representation of the integer part of the number by taking all the remainders of the previous dividing operations, starting from the bottom of the list constructed above:

    25(10) = 1 1001(2)

  • 4. Then convert the fractional part, 0.347. Multiply repeatedly by 2, keeping track of each integer part of the results, until we get a fractional part that is equal to zero:
    • #) multiplying = integer + fractional part;
    • 1) 0.347 × 2 = 0 + 0.694;
    • 2) 0.694 × 2 = 1 + 0.388;
    • 3) 0.388 × 2 = 0 + 0.776;
    • 4) 0.776 × 2 = 1 + 0.552;
    • 5) 0.552 × 2 = 1 + 0.104;
    • 6) 0.104 × 2 = 0 + 0.208;
    • 7) 0.208 × 2 = 0 + 0.416;
    • 8) 0.416 × 2 = 0 + 0.832;
    • 9) 0.832 × 2 = 1 + 0.664;
    • 10) 0.664 × 2 = 1 + 0.328;
    • 11) 0.328 × 2 = 0 + 0.656;
    • 12) 0.656 × 2 = 1 + 0.312;
    • 13) 0.312 × 2 = 0 + 0.624;
    • 14) 0.624 × 2 = 1 + 0.248;
    • 15) 0.248 × 2 = 0 + 0.496;
    • 16) 0.496 × 2 = 0 + 0.992;
    • 17) 0.992 × 2 = 1 + 0.984;
    • 18) 0.984 × 2 = 1 + 0.968;
    • 19) 0.968 × 2 = 1 + 0.936;
    • 20) 0.936 × 2 = 1 + 0.872;
    • 21) 0.872 × 2 = 1 + 0.744;
    • 22) 0.744 × 2 = 1 + 0.488;
    • 23) 0.488 × 2 = 0 + 0.976;
    • 24) 0.976 × 2 = 1 + 0.952;
    • We didn't get any fractional part that was equal to zero. But we had enough iterations (over Mantissa limit = 23) and at least one integer part that was different from zero => FULL STOP (losing precision...).
  • 5. Construct the base 2 representation of the fractional part of the number, by taking all the integer parts of the previous multiplying operations, starting from the top of the constructed list above:

    0.347(10) = 0.0101 1000 1101 0100 1111 1101(2)

  • 6. Summarizing - the positive number before normalization:

    25.347(10) = 1 1001.0101 1000 1101 0100 1111 1101(2)

  • 7. Normalize the binary representation of the number, shifting the decimal point 4 positions to the left so that only one non-zero digit stays to the left of the decimal point:

    25.347(10) =
    1 1001.0101 1000 1101 0100 1111 1101(2) =
    1 1001.0101 1000 1101 0100 1111 1101(2) × 20 =
    1.1001 0101 1000 1101 0100 1111 1101(2) × 24

  • 8. Up to this moment, there are the following elements that would feed into the 32 bit single precision IEEE 754 binary floating point:

    Sign: 1 (a negative number)

    Exponent (unadjusted): 4

    Mantissa (not-normalized): 1.1001 0101 1000 1101 0100 1111 1101

  • 9. Adjust the exponent in 8 bit excess/bias notation and then convert it from decimal (base 10) to 8 bit binary (base 2), by using the same technique of repeatedly dividing it by 2, as already demonstrated above:

    Exponent (adjusted) = Exponent (unadjusted) + 2(8-1) - 1 = (4 + 127)(10) = 131(10) =
    1000 0011(2)

  • 10. Normalize the mantissa, remove the leading (leftmost) bit, since it's allways '1' (and the decimal point) and adjust its length to 23 bits, by removing the excess bits from the right (losing precision...):

    Mantissa (not-normalized): 1.1001 0101 1000 1101 0100 1111 1101

    Mantissa (normalized): 100 1010 1100 0110 1010 0111

  • Conclusion:

    Sign (1 bit) = 1 (a negative number)

    Exponent (8 bits) = 1000 0011

    Mantissa (23 bits) = 100 1010 1100 0110 1010 0111

  • Number -25.347, converted from the decimal system (base 10) to 32 bit single precision IEEE 754 binary floating point =
    1 - 1000 0011 - 100 1010 1100 0110 1010 0111