32bit IEEE 754: Decimal ↗ Single Precision Floating Point Binary: 1 010 111 110 000 000 000 000 000 000 022 Convert the Number to 32 Bit Single Precision IEEE 754 Binary Floating Point Representation Standard, From a Base 10 Decimal System Number

Number 1 010 111 110 000 000 000 000 000 000 022(10) converted and written in 32 bit single precision IEEE 754 binary floating point representation (1 bit for sign, 8 bits for exponent, 23 bits for mantissa)

1. Divide the number repeatedly by 2.

Keep track of each remainder.

We stop when we get a quotient that is equal to zero.


  • division = quotient + remainder;
  • 1 010 111 110 000 000 000 000 000 000 022 ÷ 2 = 505 055 555 000 000 000 000 000 000 011 + 0;
  • 505 055 555 000 000 000 000 000 000 011 ÷ 2 = 252 527 777 500 000 000 000 000 000 005 + 1;
  • 252 527 777 500 000 000 000 000 000 005 ÷ 2 = 126 263 888 750 000 000 000 000 000 002 + 1;
  • 126 263 888 750 000 000 000 000 000 002 ÷ 2 = 63 131 944 375 000 000 000 000 000 001 + 0;
  • 63 131 944 375 000 000 000 000 000 001 ÷ 2 = 31 565 972 187 500 000 000 000 000 000 + 1;
  • 31 565 972 187 500 000 000 000 000 000 ÷ 2 = 15 782 986 093 750 000 000 000 000 000 + 0;
  • 15 782 986 093 750 000 000 000 000 000 ÷ 2 = 7 891 493 046 875 000 000 000 000 000 + 0;
  • 7 891 493 046 875 000 000 000 000 000 ÷ 2 = 3 945 746 523 437 500 000 000 000 000 + 0;
  • 3 945 746 523 437 500 000 000 000 000 ÷ 2 = 1 972 873 261 718 750 000 000 000 000 + 0;
  • 1 972 873 261 718 750 000 000 000 000 ÷ 2 = 986 436 630 859 375 000 000 000 000 + 0;
  • 986 436 630 859 375 000 000 000 000 ÷ 2 = 493 218 315 429 687 500 000 000 000 + 0;
  • 493 218 315 429 687 500 000 000 000 ÷ 2 = 246 609 157 714 843 750 000 000 000 + 0;
  • 246 609 157 714 843 750 000 000 000 ÷ 2 = 123 304 578 857 421 875 000 000 000 + 0;
  • 123 304 578 857 421 875 000 000 000 ÷ 2 = 61 652 289 428 710 937 500 000 000 + 0;
  • 61 652 289 428 710 937 500 000 000 ÷ 2 = 30 826 144 714 355 468 750 000 000 + 0;
  • 30 826 144 714 355 468 750 000 000 ÷ 2 = 15 413 072 357 177 734 375 000 000 + 0;
  • 15 413 072 357 177 734 375 000 000 ÷ 2 = 7 706 536 178 588 867 187 500 000 + 0;
  • 7 706 536 178 588 867 187 500 000 ÷ 2 = 3 853 268 089 294 433 593 750 000 + 0;
  • 3 853 268 089 294 433 593 750 000 ÷ 2 = 1 926 634 044 647 216 796 875 000 + 0;
  • 1 926 634 044 647 216 796 875 000 ÷ 2 = 963 317 022 323 608 398 437 500 + 0;
  • 963 317 022 323 608 398 437 500 ÷ 2 = 481 658 511 161 804 199 218 750 + 0;
  • 481 658 511 161 804 199 218 750 ÷ 2 = 240 829 255 580 902 099 609 375 + 0;
  • 240 829 255 580 902 099 609 375 ÷ 2 = 120 414 627 790 451 049 804 687 + 1;
  • 120 414 627 790 451 049 804 687 ÷ 2 = 60 207 313 895 225 524 902 343 + 1;
  • 60 207 313 895 225 524 902 343 ÷ 2 = 30 103 656 947 612 762 451 171 + 1;
  • 30 103 656 947 612 762 451 171 ÷ 2 = 15 051 828 473 806 381 225 585 + 1;
  • 15 051 828 473 806 381 225 585 ÷ 2 = 7 525 914 236 903 190 612 792 + 1;
  • 7 525 914 236 903 190 612 792 ÷ 2 = 3 762 957 118 451 595 306 396 + 0;
  • 3 762 957 118 451 595 306 396 ÷ 2 = 1 881 478 559 225 797 653 198 + 0;
  • 1 881 478 559 225 797 653 198 ÷ 2 = 940 739 279 612 898 826 599 + 0;
  • 940 739 279 612 898 826 599 ÷ 2 = 470 369 639 806 449 413 299 + 1;
  • 470 369 639 806 449 413 299 ÷ 2 = 235 184 819 903 224 706 649 + 1;
  • 235 184 819 903 224 706 649 ÷ 2 = 117 592 409 951 612 353 324 + 1;
  • 117 592 409 951 612 353 324 ÷ 2 = 58 796 204 975 806 176 662 + 0;
  • 58 796 204 975 806 176 662 ÷ 2 = 29 398 102 487 903 088 331 + 0;
  • 29 398 102 487 903 088 331 ÷ 2 = 14 699 051 243 951 544 165 + 1;
  • 14 699 051 243 951 544 165 ÷ 2 = 7 349 525 621 975 772 082 + 1;
  • 7 349 525 621 975 772 082 ÷ 2 = 3 674 762 810 987 886 041 + 0;
  • 3 674 762 810 987 886 041 ÷ 2 = 1 837 381 405 493 943 020 + 1;
  • 1 837 381 405 493 943 020 ÷ 2 = 918 690 702 746 971 510 + 0;
  • 918 690 702 746 971 510 ÷ 2 = 459 345 351 373 485 755 + 0;
  • 459 345 351 373 485 755 ÷ 2 = 229 672 675 686 742 877 + 1;
  • 229 672 675 686 742 877 ÷ 2 = 114 836 337 843 371 438 + 1;
  • 114 836 337 843 371 438 ÷ 2 = 57 418 168 921 685 719 + 0;
  • 57 418 168 921 685 719 ÷ 2 = 28 709 084 460 842 859 + 1;
  • 28 709 084 460 842 859 ÷ 2 = 14 354 542 230 421 429 + 1;
  • 14 354 542 230 421 429 ÷ 2 = 7 177 271 115 210 714 + 1;
  • 7 177 271 115 210 714 ÷ 2 = 3 588 635 557 605 357 + 0;
  • 3 588 635 557 605 357 ÷ 2 = 1 794 317 778 802 678 + 1;
  • 1 794 317 778 802 678 ÷ 2 = 897 158 889 401 339 + 0;
  • 897 158 889 401 339 ÷ 2 = 448 579 444 700 669 + 1;
  • 448 579 444 700 669 ÷ 2 = 224 289 722 350 334 + 1;
  • 224 289 722 350 334 ÷ 2 = 112 144 861 175 167 + 0;
  • 112 144 861 175 167 ÷ 2 = 56 072 430 587 583 + 1;
  • 56 072 430 587 583 ÷ 2 = 28 036 215 293 791 + 1;
  • 28 036 215 293 791 ÷ 2 = 14 018 107 646 895 + 1;
  • 14 018 107 646 895 ÷ 2 = 7 009 053 823 447 + 1;
  • 7 009 053 823 447 ÷ 2 = 3 504 526 911 723 + 1;
  • 3 504 526 911 723 ÷ 2 = 1 752 263 455 861 + 1;
  • 1 752 263 455 861 ÷ 2 = 876 131 727 930 + 1;
  • 876 131 727 930 ÷ 2 = 438 065 863 965 + 0;
  • 438 065 863 965 ÷ 2 = 219 032 931 982 + 1;
  • 219 032 931 982 ÷ 2 = 109 516 465 991 + 0;
  • 109 516 465 991 ÷ 2 = 54 758 232 995 + 1;
  • 54 758 232 995 ÷ 2 = 27 379 116 497 + 1;
  • 27 379 116 497 ÷ 2 = 13 689 558 248 + 1;
  • 13 689 558 248 ÷ 2 = 6 844 779 124 + 0;
  • 6 844 779 124 ÷ 2 = 3 422 389 562 + 0;
  • 3 422 389 562 ÷ 2 = 1 711 194 781 + 0;
  • 1 711 194 781 ÷ 2 = 855 597 390 + 1;
  • 855 597 390 ÷ 2 = 427 798 695 + 0;
  • 427 798 695 ÷ 2 = 213 899 347 + 1;
  • 213 899 347 ÷ 2 = 106 949 673 + 1;
  • 106 949 673 ÷ 2 = 53 474 836 + 1;
  • 53 474 836 ÷ 2 = 26 737 418 + 0;
  • 26 737 418 ÷ 2 = 13 368 709 + 0;
  • 13 368 709 ÷ 2 = 6 684 354 + 1;
  • 6 684 354 ÷ 2 = 3 342 177 + 0;
  • 3 342 177 ÷ 2 = 1 671 088 + 1;
  • 1 671 088 ÷ 2 = 835 544 + 0;
  • 835 544 ÷ 2 = 417 772 + 0;
  • 417 772 ÷ 2 = 208 886 + 0;
  • 208 886 ÷ 2 = 104 443 + 0;
  • 104 443 ÷ 2 = 52 221 + 1;
  • 52 221 ÷ 2 = 26 110 + 1;
  • 26 110 ÷ 2 = 13 055 + 0;
  • 13 055 ÷ 2 = 6 527 + 1;
  • 6 527 ÷ 2 = 3 263 + 1;
  • 3 263 ÷ 2 = 1 631 + 1;
  • 1 631 ÷ 2 = 815 + 1;
  • 815 ÷ 2 = 407 + 1;
  • 407 ÷ 2 = 203 + 1;
  • 203 ÷ 2 = 101 + 1;
  • 101 ÷ 2 = 50 + 1;
  • 50 ÷ 2 = 25 + 0;
  • 25 ÷ 2 = 12 + 1;
  • 12 ÷ 2 = 6 + 0;
  • 6 ÷ 2 = 3 + 0;
  • 3 ÷ 2 = 1 + 1;
  • 1 ÷ 2 = 0 + 1;

2. Construct the base 2 representation of the positive number.

Take all the remainders starting from the bottom of the list constructed above.


1 010 111 110 000 000 000 000 000 000 022(10) =


1100 1011 1111 1101 1000 0101 0011 1010 0011 1010 1111 1110 1101 0111 0110 0101 1001 1100 0111 1100 0000 0000 0000 0001 0110(2)


3. Normalize the binary representation of the number.

Shift the decimal mark 99 positions to the left, so that only one non zero digit remains to the left of it:


1 010 111 110 000 000 000 000 000 000 022(10) =


1100 1011 1111 1101 1000 0101 0011 1010 0011 1010 1111 1110 1101 0111 0110 0101 1001 1100 0111 1100 0000 0000 0000 0001 0110(2) =


1100 1011 1111 1101 1000 0101 0011 1010 0011 1010 1111 1110 1101 0111 0110 0101 1001 1100 0111 1100 0000 0000 0000 0001 0110(2) × 20 =


1.1001 0111 1111 1011 0000 1010 0111 0100 0111 0101 1111 1101 1010 1110 1100 1011 0011 1000 1111 1000 0000 0000 0000 0010 110(2) × 299


4. Up to this moment, there are the following elements that would feed into the 32 bit single precision IEEE 754 binary floating point representation:

Sign 0 (a positive number)


Exponent (unadjusted): 99


Mantissa (not normalized):
1.1001 0111 1111 1011 0000 1010 0111 0100 0111 0101 1111 1101 1010 1110 1100 1011 0011 1000 1111 1000 0000 0000 0000 0010 110


5. Adjust the exponent.

Use the 8 bit excess/bias notation:


Exponent (adjusted) =


Exponent (unadjusted) + 2(8-1) - 1 =


99 + 2(8-1) - 1 =


(99 + 127)(10) =


226(10)


6. Convert the adjusted exponent from the decimal (base 10) to 8 bit binary.

Use the same technique of repeatedly dividing by 2:


  • division = quotient + remainder;
  • 226 ÷ 2 = 113 + 0;
  • 113 ÷ 2 = 56 + 1;
  • 56 ÷ 2 = 28 + 0;
  • 28 ÷ 2 = 14 + 0;
  • 14 ÷ 2 = 7 + 0;
  • 7 ÷ 2 = 3 + 1;
  • 3 ÷ 2 = 1 + 1;
  • 1 ÷ 2 = 0 + 1;

7. Construct the base 2 representation of the adjusted exponent.

Take all the remainders starting from the bottom of the list constructed above.


Exponent (adjusted) =


226(10) =


1110 0010(2)


8. Normalize the mantissa.

a) Remove the leading (the leftmost) bit, since it's allways 1, and the decimal point, if the case.


b) Adjust its length to 23 bits, by removing the excess bits, from the right (if any of the excess bits is set on 1, we are losing precision...).


Mantissa (normalized) =


1. 100 1011 1111 1101 1000 0101 0011 1010 0011 1010 1111 1110 1101 0111 0110 0101 1001 1100 0111 1100 0000 0000 0000 0001 0110 =


100 1011 1111 1101 1000 0101


9. The three elements that make up the number's 32 bit single precision IEEE 754 binary floating point representation:

Sign (1 bit) =
0 (a positive number)


Exponent (8 bits) =
1110 0010


Mantissa (23 bits) =
100 1011 1111 1101 1000 0101


The base ten decimal number 1 010 111 110 000 000 000 000 000 000 022 converted and written in 32 bit single precision IEEE 754 binary floating point representation:
0 - 1110 0010 - 100 1011 1111 1101 1000 0101

The latest decimal numbers converted from base ten to 32 bit single precision IEEE 754 floating point binary standard representation

Number 203.01 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard May 19 02:29 UTC (GMT)
Number -85.65 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard May 19 02:29 UTC (GMT)
Number 712.468 72 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard May 19 02:29 UTC (GMT)
Number 125 149.19 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard May 19 02:29 UTC (GMT)
Number -450 024 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard May 19 02:29 UTC (GMT)
Number 5 952 602 071 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard May 19 02:29 UTC (GMT)
Number -11 318 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard May 19 02:29 UTC (GMT)
Number 17.76 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard May 19 02:29 UTC (GMT)
Number 1 204 654 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard May 19 02:28 UTC (GMT)
Number 1 355 643 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard May 19 02:28 UTC (GMT)
All base ten decimal numbers converted to 32 bit single precision IEEE 754 binary floating point

How to convert decimal numbers from base ten to 32 bit single precision IEEE 754 binary floating point standard

Follow the steps below to convert a base 10 decimal number to 32 bit single precision IEEE 754 binary floating point:

  • 1. If the number to be converted is negative, start with its the positive version.
  • 2. First convert the integer part. Divide repeatedly by 2 the base ten positive representation of the integer number that is to be converted to binary, until we get a quotient that is equal to zero, keeping track of each remainder.
  • 3. Construct the base 2 representation of the positive integer part of the number, by taking all the remainders of the previous dividing operations, starting from the bottom of the list constructed above. Thus, the last remainder of the divisions becomes the first symbol (the leftmost) of the base two number, while the first remainder becomes the last symbol (the rightmost).
  • 4. Then convert the fractional part. Multiply the number repeatedly by 2, until we get a fractional part that is equal to zero, keeping track of each integer part of the results.
  • 5. Construct the base 2 representation of the fractional part of the number by taking all the integer parts of the previous multiplying operations, starting from the top of the constructed list above (they should appear in the binary representation, from left to right, in the order they have been calculated).
  • 6. Normalize the binary representation of the number, by shifting the decimal point (or if you prefer, the decimal mark) "n" positions either to the left or to the right, so that only one non zero digit remains to the left of the decimal point.
  • 7. Adjust the exponent in 8 bit excess/bias notation and then convert it from decimal (base 10) to 8 bit binary, by using the same technique of repeatedly dividing by 2, as shown above:
    Exponent (adjusted) = Exponent (unadjusted) + 2(8-1) - 1
  • 8. Normalize mantissa, remove the leading (leftmost) bit, since it's allways '1' (and the decimal sign if the case) and adjust its length to 23 bits, either by removing the excess bits from the right (losing precision...) or by adding extra '0' bits to the right.
  • 9. Sign (it takes 1 bit) is either 1 for a negative or 0 for a positive number.

Example: convert the negative number -25.347 from decimal system (base ten) to 32 bit single precision IEEE 754 binary floating point:

  • 1. Start with the positive version of the number:

    |-25.347| = 25.347

  • 2. First convert the integer part, 25. Divide it repeatedly by 2, keeping track of each remainder, until we get a quotient that is equal to zero:
    • division = quotient + remainder;
    • 25 ÷ 2 = 12 + 1;
    • 12 ÷ 2 = 6 + 0;
    • 6 ÷ 2 = 3 + 0;
    • 3 ÷ 2 = 1 + 1;
    • 1 ÷ 2 = 0 + 1;
    • We have encountered a quotient that is ZERO => FULL STOP
  • 3. Construct the base 2 representation of the integer part of the number by taking all the remainders of the previous dividing operations, starting from the bottom of the list constructed above:

    25(10) = 1 1001(2)

  • 4. Then convert the fractional part, 0.347. Multiply repeatedly by 2, keeping track of each integer part of the results, until we get a fractional part that is equal to zero:
    • #) multiplying = integer + fractional part;
    • 1) 0.347 × 2 = 0 + 0.694;
    • 2) 0.694 × 2 = 1 + 0.388;
    • 3) 0.388 × 2 = 0 + 0.776;
    • 4) 0.776 × 2 = 1 + 0.552;
    • 5) 0.552 × 2 = 1 + 0.104;
    • 6) 0.104 × 2 = 0 + 0.208;
    • 7) 0.208 × 2 = 0 + 0.416;
    • 8) 0.416 × 2 = 0 + 0.832;
    • 9) 0.832 × 2 = 1 + 0.664;
    • 10) 0.664 × 2 = 1 + 0.328;
    • 11) 0.328 × 2 = 0 + 0.656;
    • 12) 0.656 × 2 = 1 + 0.312;
    • 13) 0.312 × 2 = 0 + 0.624;
    • 14) 0.624 × 2 = 1 + 0.248;
    • 15) 0.248 × 2 = 0 + 0.496;
    • 16) 0.496 × 2 = 0 + 0.992;
    • 17) 0.992 × 2 = 1 + 0.984;
    • 18) 0.984 × 2 = 1 + 0.968;
    • 19) 0.968 × 2 = 1 + 0.936;
    • 20) 0.936 × 2 = 1 + 0.872;
    • 21) 0.872 × 2 = 1 + 0.744;
    • 22) 0.744 × 2 = 1 + 0.488;
    • 23) 0.488 × 2 = 0 + 0.976;
    • 24) 0.976 × 2 = 1 + 0.952;
    • We didn't get any fractional part that was equal to zero. But we had enough iterations (over Mantissa limit = 23) and at least one integer part that was different from zero => FULL STOP (losing precision...).
  • 5. Construct the base 2 representation of the fractional part of the number, by taking all the integer parts of the previous multiplying operations, starting from the top of the constructed list above:

    0.347(10) = 0.0101 1000 1101 0100 1111 1101(2)

  • 6. Summarizing - the positive number before normalization:

    25.347(10) = 1 1001.0101 1000 1101 0100 1111 1101(2)

  • 7. Normalize the binary representation of the number, shifting the decimal point 4 positions to the left so that only one non-zero digit stays to the left of the decimal point:

    25.347(10) =
    1 1001.0101 1000 1101 0100 1111 1101(2) =
    1 1001.0101 1000 1101 0100 1111 1101(2) × 20 =
    1.1001 0101 1000 1101 0100 1111 1101(2) × 24

  • 8. Up to this moment, there are the following elements that would feed into the 32 bit single precision IEEE 754 binary floating point:

    Sign: 1 (a negative number)

    Exponent (unadjusted): 4

    Mantissa (not-normalized): 1.1001 0101 1000 1101 0100 1111 1101

  • 9. Adjust the exponent in 8 bit excess/bias notation and then convert it from decimal (base 10) to 8 bit binary (base 2), by using the same technique of repeatedly dividing it by 2, as already demonstrated above:

    Exponent (adjusted) = Exponent (unadjusted) + 2(8-1) - 1 = (4 + 127)(10) = 131(10) =
    1000 0011(2)

  • 10. Normalize the mantissa, remove the leading (leftmost) bit, since it's allways '1' (and the decimal point) and adjust its length to 23 bits, by removing the excess bits from the right (losing precision...):

    Mantissa (not-normalized): 1.1001 0101 1000 1101 0100 1111 1101

    Mantissa (normalized): 100 1010 1100 0110 1010 0111

  • Conclusion:

    Sign (1 bit) = 1 (a negative number)

    Exponent (8 bits) = 1000 0011

    Mantissa (23 bits) = 100 1010 1100 0110 1010 0111

  • Number -25.347, converted from the decimal system (base 10) to 32 bit single precision IEEE 754 binary floating point =
    1 - 1000 0011 - 100 1010 1100 0110 1010 0111