32bit IEEE 754: Decimal ↗ Single Precision Floating Point Binary: 10 101 000 000 000 000 000 093 Convert the Number to 32 Bit Single Precision IEEE 754 Binary Floating Point Representation Standard, From a Base 10 Decimal System Number

Number 10 101 000 000 000 000 000 093(10) converted and written in 32 bit single precision IEEE 754 binary floating point representation (1 bit for sign, 8 bits for exponent, 23 bits for mantissa)

1. Divide the number repeatedly by 2.

Keep track of each remainder.

We stop when we get a quotient that is equal to zero.


  • division = quotient + remainder;
  • 10 101 000 000 000 000 000 093 ÷ 2 = 5 050 500 000 000 000 000 046 + 1;
  • 5 050 500 000 000 000 000 046 ÷ 2 = 2 525 250 000 000 000 000 023 + 0;
  • 2 525 250 000 000 000 000 023 ÷ 2 = 1 262 625 000 000 000 000 011 + 1;
  • 1 262 625 000 000 000 000 011 ÷ 2 = 631 312 500 000 000 000 005 + 1;
  • 631 312 500 000 000 000 005 ÷ 2 = 315 656 250 000 000 000 002 + 1;
  • 315 656 250 000 000 000 002 ÷ 2 = 157 828 125 000 000 000 001 + 0;
  • 157 828 125 000 000 000 001 ÷ 2 = 78 914 062 500 000 000 000 + 1;
  • 78 914 062 500 000 000 000 ÷ 2 = 39 457 031 250 000 000 000 + 0;
  • 39 457 031 250 000 000 000 ÷ 2 = 19 728 515 625 000 000 000 + 0;
  • 19 728 515 625 000 000 000 ÷ 2 = 9 864 257 812 500 000 000 + 0;
  • 9 864 257 812 500 000 000 ÷ 2 = 4 932 128 906 250 000 000 + 0;
  • 4 932 128 906 250 000 000 ÷ 2 = 2 466 064 453 125 000 000 + 0;
  • 2 466 064 453 125 000 000 ÷ 2 = 1 233 032 226 562 500 000 + 0;
  • 1 233 032 226 562 500 000 ÷ 2 = 616 516 113 281 250 000 + 0;
  • 616 516 113 281 250 000 ÷ 2 = 308 258 056 640 625 000 + 0;
  • 308 258 056 640 625 000 ÷ 2 = 154 129 028 320 312 500 + 0;
  • 154 129 028 320 312 500 ÷ 2 = 77 064 514 160 156 250 + 0;
  • 77 064 514 160 156 250 ÷ 2 = 38 532 257 080 078 125 + 0;
  • 38 532 257 080 078 125 ÷ 2 = 19 266 128 540 039 062 + 1;
  • 19 266 128 540 039 062 ÷ 2 = 9 633 064 270 019 531 + 0;
  • 9 633 064 270 019 531 ÷ 2 = 4 816 532 135 009 765 + 1;
  • 4 816 532 135 009 765 ÷ 2 = 2 408 266 067 504 882 + 1;
  • 2 408 266 067 504 882 ÷ 2 = 1 204 133 033 752 441 + 0;
  • 1 204 133 033 752 441 ÷ 2 = 602 066 516 876 220 + 1;
  • 602 066 516 876 220 ÷ 2 = 301 033 258 438 110 + 0;
  • 301 033 258 438 110 ÷ 2 = 150 516 629 219 055 + 0;
  • 150 516 629 219 055 ÷ 2 = 75 258 314 609 527 + 1;
  • 75 258 314 609 527 ÷ 2 = 37 629 157 304 763 + 1;
  • 37 629 157 304 763 ÷ 2 = 18 814 578 652 381 + 1;
  • 18 814 578 652 381 ÷ 2 = 9 407 289 326 190 + 1;
  • 9 407 289 326 190 ÷ 2 = 4 703 644 663 095 + 0;
  • 4 703 644 663 095 ÷ 2 = 2 351 822 331 547 + 1;
  • 2 351 822 331 547 ÷ 2 = 1 175 911 165 773 + 1;
  • 1 175 911 165 773 ÷ 2 = 587 955 582 886 + 1;
  • 587 955 582 886 ÷ 2 = 293 977 791 443 + 0;
  • 293 977 791 443 ÷ 2 = 146 988 895 721 + 1;
  • 146 988 895 721 ÷ 2 = 73 494 447 860 + 1;
  • 73 494 447 860 ÷ 2 = 36 747 223 930 + 0;
  • 36 747 223 930 ÷ 2 = 18 373 611 965 + 0;
  • 18 373 611 965 ÷ 2 = 9 186 805 982 + 1;
  • 9 186 805 982 ÷ 2 = 4 593 402 991 + 0;
  • 4 593 402 991 ÷ 2 = 2 296 701 495 + 1;
  • 2 296 701 495 ÷ 2 = 1 148 350 747 + 1;
  • 1 148 350 747 ÷ 2 = 574 175 373 + 1;
  • 574 175 373 ÷ 2 = 287 087 686 + 1;
  • 287 087 686 ÷ 2 = 143 543 843 + 0;
  • 143 543 843 ÷ 2 = 71 771 921 + 1;
  • 71 771 921 ÷ 2 = 35 885 960 + 1;
  • 35 885 960 ÷ 2 = 17 942 980 + 0;
  • 17 942 980 ÷ 2 = 8 971 490 + 0;
  • 8 971 490 ÷ 2 = 4 485 745 + 0;
  • 4 485 745 ÷ 2 = 2 242 872 + 1;
  • 2 242 872 ÷ 2 = 1 121 436 + 0;
  • 1 121 436 ÷ 2 = 560 718 + 0;
  • 560 718 ÷ 2 = 280 359 + 0;
  • 280 359 ÷ 2 = 140 179 + 1;
  • 140 179 ÷ 2 = 70 089 + 1;
  • 70 089 ÷ 2 = 35 044 + 1;
  • 35 044 ÷ 2 = 17 522 + 0;
  • 17 522 ÷ 2 = 8 761 + 0;
  • 8 761 ÷ 2 = 4 380 + 1;
  • 4 380 ÷ 2 = 2 190 + 0;
  • 2 190 ÷ 2 = 1 095 + 0;
  • 1 095 ÷ 2 = 547 + 1;
  • 547 ÷ 2 = 273 + 1;
  • 273 ÷ 2 = 136 + 1;
  • 136 ÷ 2 = 68 + 0;
  • 68 ÷ 2 = 34 + 0;
  • 34 ÷ 2 = 17 + 0;
  • 17 ÷ 2 = 8 + 1;
  • 8 ÷ 2 = 4 + 0;
  • 4 ÷ 2 = 2 + 0;
  • 2 ÷ 2 = 1 + 0;
  • 1 ÷ 2 = 0 + 1;

2. Construct the base 2 representation of the positive number.

Take all the remainders starting from the bottom of the list constructed above.


10 101 000 000 000 000 000 093(10) =


10 0010 0011 1001 0011 1000 1000 1101 1110 1001 1011 1011 1100 1011 0100 0000 0000 0101 1101(2)


3. Normalize the binary representation of the number.

Shift the decimal mark 73 positions to the left, so that only one non zero digit remains to the left of it:


10 101 000 000 000 000 000 093(10) =


10 0010 0011 1001 0011 1000 1000 1101 1110 1001 1011 1011 1100 1011 0100 0000 0000 0101 1101(2) =


10 0010 0011 1001 0011 1000 1000 1101 1110 1001 1011 1011 1100 1011 0100 0000 0000 0101 1101(2) × 20 =


1.0001 0001 1100 1001 1100 0100 0110 1111 0100 1101 1101 1110 0101 1010 0000 0000 0010 1110 1(2) × 273


4. Up to this moment, there are the following elements that would feed into the 32 bit single precision IEEE 754 binary floating point representation:

Sign 0 (a positive number)


Exponent (unadjusted): 73


Mantissa (not normalized):
1.0001 0001 1100 1001 1100 0100 0110 1111 0100 1101 1101 1110 0101 1010 0000 0000 0010 1110 1


5. Adjust the exponent.

Use the 8 bit excess/bias notation:


Exponent (adjusted) =


Exponent (unadjusted) + 2(8-1) - 1 =


73 + 2(8-1) - 1 =


(73 + 127)(10) =


200(10)


6. Convert the adjusted exponent from the decimal (base 10) to 8 bit binary.

Use the same technique of repeatedly dividing by 2:


  • division = quotient + remainder;
  • 200 ÷ 2 = 100 + 0;
  • 100 ÷ 2 = 50 + 0;
  • 50 ÷ 2 = 25 + 0;
  • 25 ÷ 2 = 12 + 1;
  • 12 ÷ 2 = 6 + 0;
  • 6 ÷ 2 = 3 + 0;
  • 3 ÷ 2 = 1 + 1;
  • 1 ÷ 2 = 0 + 1;

7. Construct the base 2 representation of the adjusted exponent.

Take all the remainders starting from the bottom of the list constructed above.


Exponent (adjusted) =


200(10) =


1100 1000(2)


8. Normalize the mantissa.

a) Remove the leading (the leftmost) bit, since it's allways 1, and the decimal point, if the case.


b) Adjust its length to 23 bits, by removing the excess bits, from the right (if any of the excess bits is set on 1, we are losing precision...).


Mantissa (normalized) =


1. 000 1000 1110 0100 1110 0010 00 1101 1110 1001 1011 1011 1100 1011 0100 0000 0000 0101 1101 =


000 1000 1110 0100 1110 0010


9. The three elements that make up the number's 32 bit single precision IEEE 754 binary floating point representation:

Sign (1 bit) =
0 (a positive number)


Exponent (8 bits) =
1100 1000


Mantissa (23 bits) =
000 1000 1110 0100 1110 0010


The base ten decimal number 10 101 000 000 000 000 000 093 converted and written in 32 bit single precision IEEE 754 binary floating point representation:
0 - 1100 1000 - 000 1000 1110 0100 1110 0010

The latest decimal numbers converted from base ten to 32 bit single precision IEEE 754 floating point binary standard representation

Number 11 000 010 101 011 101 100 000 000 000 047 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard May 19 02:07 UTC (GMT)
Number 116.723 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard May 19 02:07 UTC (GMT)
Number 390 556 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard May 19 02:07 UTC (GMT)
Number 11 000 001 000 000 999 999 999 999 999 974 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard May 19 02:07 UTC (GMT)
Number 316 579 075 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard May 19 02:07 UTC (GMT)
Number 1 440 011 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard May 19 02:07 UTC (GMT)
Number 61 471 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard May 19 02:07 UTC (GMT)
Number 981.59 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard May 19 02:07 UTC (GMT)
Number -0.833 333 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard May 19 02:07 UTC (GMT)
Number -450 105 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard May 19 02:07 UTC (GMT)
All base ten decimal numbers converted to 32 bit single precision IEEE 754 binary floating point

How to convert decimal numbers from base ten to 32 bit single precision IEEE 754 binary floating point standard

Follow the steps below to convert a base 10 decimal number to 32 bit single precision IEEE 754 binary floating point:

  • 1. If the number to be converted is negative, start with its the positive version.
  • 2. First convert the integer part. Divide repeatedly by 2 the base ten positive representation of the integer number that is to be converted to binary, until we get a quotient that is equal to zero, keeping track of each remainder.
  • 3. Construct the base 2 representation of the positive integer part of the number, by taking all the remainders of the previous dividing operations, starting from the bottom of the list constructed above. Thus, the last remainder of the divisions becomes the first symbol (the leftmost) of the base two number, while the first remainder becomes the last symbol (the rightmost).
  • 4. Then convert the fractional part. Multiply the number repeatedly by 2, until we get a fractional part that is equal to zero, keeping track of each integer part of the results.
  • 5. Construct the base 2 representation of the fractional part of the number by taking all the integer parts of the previous multiplying operations, starting from the top of the constructed list above (they should appear in the binary representation, from left to right, in the order they have been calculated).
  • 6. Normalize the binary representation of the number, by shifting the decimal point (or if you prefer, the decimal mark) "n" positions either to the left or to the right, so that only one non zero digit remains to the left of the decimal point.
  • 7. Adjust the exponent in 8 bit excess/bias notation and then convert it from decimal (base 10) to 8 bit binary, by using the same technique of repeatedly dividing by 2, as shown above:
    Exponent (adjusted) = Exponent (unadjusted) + 2(8-1) - 1
  • 8. Normalize mantissa, remove the leading (leftmost) bit, since it's allways '1' (and the decimal sign if the case) and adjust its length to 23 bits, either by removing the excess bits from the right (losing precision...) or by adding extra '0' bits to the right.
  • 9. Sign (it takes 1 bit) is either 1 for a negative or 0 for a positive number.

Example: convert the negative number -25.347 from decimal system (base ten) to 32 bit single precision IEEE 754 binary floating point:

  • 1. Start with the positive version of the number:

    |-25.347| = 25.347

  • 2. First convert the integer part, 25. Divide it repeatedly by 2, keeping track of each remainder, until we get a quotient that is equal to zero:
    • division = quotient + remainder;
    • 25 ÷ 2 = 12 + 1;
    • 12 ÷ 2 = 6 + 0;
    • 6 ÷ 2 = 3 + 0;
    • 3 ÷ 2 = 1 + 1;
    • 1 ÷ 2 = 0 + 1;
    • We have encountered a quotient that is ZERO => FULL STOP
  • 3. Construct the base 2 representation of the integer part of the number by taking all the remainders of the previous dividing operations, starting from the bottom of the list constructed above:

    25(10) = 1 1001(2)

  • 4. Then convert the fractional part, 0.347. Multiply repeatedly by 2, keeping track of each integer part of the results, until we get a fractional part that is equal to zero:
    • #) multiplying = integer + fractional part;
    • 1) 0.347 × 2 = 0 + 0.694;
    • 2) 0.694 × 2 = 1 + 0.388;
    • 3) 0.388 × 2 = 0 + 0.776;
    • 4) 0.776 × 2 = 1 + 0.552;
    • 5) 0.552 × 2 = 1 + 0.104;
    • 6) 0.104 × 2 = 0 + 0.208;
    • 7) 0.208 × 2 = 0 + 0.416;
    • 8) 0.416 × 2 = 0 + 0.832;
    • 9) 0.832 × 2 = 1 + 0.664;
    • 10) 0.664 × 2 = 1 + 0.328;
    • 11) 0.328 × 2 = 0 + 0.656;
    • 12) 0.656 × 2 = 1 + 0.312;
    • 13) 0.312 × 2 = 0 + 0.624;
    • 14) 0.624 × 2 = 1 + 0.248;
    • 15) 0.248 × 2 = 0 + 0.496;
    • 16) 0.496 × 2 = 0 + 0.992;
    • 17) 0.992 × 2 = 1 + 0.984;
    • 18) 0.984 × 2 = 1 + 0.968;
    • 19) 0.968 × 2 = 1 + 0.936;
    • 20) 0.936 × 2 = 1 + 0.872;
    • 21) 0.872 × 2 = 1 + 0.744;
    • 22) 0.744 × 2 = 1 + 0.488;
    • 23) 0.488 × 2 = 0 + 0.976;
    • 24) 0.976 × 2 = 1 + 0.952;
    • We didn't get any fractional part that was equal to zero. But we had enough iterations (over Mantissa limit = 23) and at least one integer part that was different from zero => FULL STOP (losing precision...).
  • 5. Construct the base 2 representation of the fractional part of the number, by taking all the integer parts of the previous multiplying operations, starting from the top of the constructed list above:

    0.347(10) = 0.0101 1000 1101 0100 1111 1101(2)

  • 6. Summarizing - the positive number before normalization:

    25.347(10) = 1 1001.0101 1000 1101 0100 1111 1101(2)

  • 7. Normalize the binary representation of the number, shifting the decimal point 4 positions to the left so that only one non-zero digit stays to the left of the decimal point:

    25.347(10) =
    1 1001.0101 1000 1101 0100 1111 1101(2) =
    1 1001.0101 1000 1101 0100 1111 1101(2) × 20 =
    1.1001 0101 1000 1101 0100 1111 1101(2) × 24

  • 8. Up to this moment, there are the following elements that would feed into the 32 bit single precision IEEE 754 binary floating point:

    Sign: 1 (a negative number)

    Exponent (unadjusted): 4

    Mantissa (not-normalized): 1.1001 0101 1000 1101 0100 1111 1101

  • 9. Adjust the exponent in 8 bit excess/bias notation and then convert it from decimal (base 10) to 8 bit binary (base 2), by using the same technique of repeatedly dividing it by 2, as already demonstrated above:

    Exponent (adjusted) = Exponent (unadjusted) + 2(8-1) - 1 = (4 + 127)(10) = 131(10) =
    1000 0011(2)

  • 10. Normalize the mantissa, remove the leading (leftmost) bit, since it's allways '1' (and the decimal point) and adjust its length to 23 bits, by removing the excess bits from the right (losing precision...):

    Mantissa (not-normalized): 1.1001 0101 1000 1101 0100 1111 1101

    Mantissa (normalized): 100 1010 1100 0110 1010 0111

  • Conclusion:

    Sign (1 bit) = 1 (a negative number)

    Exponent (8 bits) = 1000 0011

    Mantissa (23 bits) = 100 1010 1100 0110 1010 0111

  • Number -25.347, converted from the decimal system (base 10) to 32 bit single precision IEEE 754 binary floating point =
    1 - 1000 0011 - 100 1010 1100 0110 1010 0111