32bit IEEE 754: Decimal ↗ Single Precision Floating Point Binary: 10 100 111 111 110 101 010 101 010 099 Convert the Number to 32 Bit Single Precision IEEE 754 Binary Floating Point Representation Standard, From a Base 10 Decimal System Number

Number 10 100 111 111 110 101 010 101 010 099(10) converted and written in 32 bit single precision IEEE 754 binary floating point representation (1 bit for sign, 8 bits for exponent, 23 bits for mantissa)

1. Divide the number repeatedly by 2.

Keep track of each remainder.

We stop when we get a quotient that is equal to zero.


  • division = quotient + remainder;
  • 10 100 111 111 110 101 010 101 010 099 ÷ 2 = 5 050 055 555 555 050 505 050 505 049 + 1;
  • 5 050 055 555 555 050 505 050 505 049 ÷ 2 = 2 525 027 777 777 525 252 525 252 524 + 1;
  • 2 525 027 777 777 525 252 525 252 524 ÷ 2 = 1 262 513 888 888 762 626 262 626 262 + 0;
  • 1 262 513 888 888 762 626 262 626 262 ÷ 2 = 631 256 944 444 381 313 131 313 131 + 0;
  • 631 256 944 444 381 313 131 313 131 ÷ 2 = 315 628 472 222 190 656 565 656 565 + 1;
  • 315 628 472 222 190 656 565 656 565 ÷ 2 = 157 814 236 111 095 328 282 828 282 + 1;
  • 157 814 236 111 095 328 282 828 282 ÷ 2 = 78 907 118 055 547 664 141 414 141 + 0;
  • 78 907 118 055 547 664 141 414 141 ÷ 2 = 39 453 559 027 773 832 070 707 070 + 1;
  • 39 453 559 027 773 832 070 707 070 ÷ 2 = 19 726 779 513 886 916 035 353 535 + 0;
  • 19 726 779 513 886 916 035 353 535 ÷ 2 = 9 863 389 756 943 458 017 676 767 + 1;
  • 9 863 389 756 943 458 017 676 767 ÷ 2 = 4 931 694 878 471 729 008 838 383 + 1;
  • 4 931 694 878 471 729 008 838 383 ÷ 2 = 2 465 847 439 235 864 504 419 191 + 1;
  • 2 465 847 439 235 864 504 419 191 ÷ 2 = 1 232 923 719 617 932 252 209 595 + 1;
  • 1 232 923 719 617 932 252 209 595 ÷ 2 = 616 461 859 808 966 126 104 797 + 1;
  • 616 461 859 808 966 126 104 797 ÷ 2 = 308 230 929 904 483 063 052 398 + 1;
  • 308 230 929 904 483 063 052 398 ÷ 2 = 154 115 464 952 241 531 526 199 + 0;
  • 154 115 464 952 241 531 526 199 ÷ 2 = 77 057 732 476 120 765 763 099 + 1;
  • 77 057 732 476 120 765 763 099 ÷ 2 = 38 528 866 238 060 382 881 549 + 1;
  • 38 528 866 238 060 382 881 549 ÷ 2 = 19 264 433 119 030 191 440 774 + 1;
  • 19 264 433 119 030 191 440 774 ÷ 2 = 9 632 216 559 515 095 720 387 + 0;
  • 9 632 216 559 515 095 720 387 ÷ 2 = 4 816 108 279 757 547 860 193 + 1;
  • 4 816 108 279 757 547 860 193 ÷ 2 = 2 408 054 139 878 773 930 096 + 1;
  • 2 408 054 139 878 773 930 096 ÷ 2 = 1 204 027 069 939 386 965 048 + 0;
  • 1 204 027 069 939 386 965 048 ÷ 2 = 602 013 534 969 693 482 524 + 0;
  • 602 013 534 969 693 482 524 ÷ 2 = 301 006 767 484 846 741 262 + 0;
  • 301 006 767 484 846 741 262 ÷ 2 = 150 503 383 742 423 370 631 + 0;
  • 150 503 383 742 423 370 631 ÷ 2 = 75 251 691 871 211 685 315 + 1;
  • 75 251 691 871 211 685 315 ÷ 2 = 37 625 845 935 605 842 657 + 1;
  • 37 625 845 935 605 842 657 ÷ 2 = 18 812 922 967 802 921 328 + 1;
  • 18 812 922 967 802 921 328 ÷ 2 = 9 406 461 483 901 460 664 + 0;
  • 9 406 461 483 901 460 664 ÷ 2 = 4 703 230 741 950 730 332 + 0;
  • 4 703 230 741 950 730 332 ÷ 2 = 2 351 615 370 975 365 166 + 0;
  • 2 351 615 370 975 365 166 ÷ 2 = 1 175 807 685 487 682 583 + 0;
  • 1 175 807 685 487 682 583 ÷ 2 = 587 903 842 743 841 291 + 1;
  • 587 903 842 743 841 291 ÷ 2 = 293 951 921 371 920 645 + 1;
  • 293 951 921 371 920 645 ÷ 2 = 146 975 960 685 960 322 + 1;
  • 146 975 960 685 960 322 ÷ 2 = 73 487 980 342 980 161 + 0;
  • 73 487 980 342 980 161 ÷ 2 = 36 743 990 171 490 080 + 1;
  • 36 743 990 171 490 080 ÷ 2 = 18 371 995 085 745 040 + 0;
  • 18 371 995 085 745 040 ÷ 2 = 9 185 997 542 872 520 + 0;
  • 9 185 997 542 872 520 ÷ 2 = 4 592 998 771 436 260 + 0;
  • 4 592 998 771 436 260 ÷ 2 = 2 296 499 385 718 130 + 0;
  • 2 296 499 385 718 130 ÷ 2 = 1 148 249 692 859 065 + 0;
  • 1 148 249 692 859 065 ÷ 2 = 574 124 846 429 532 + 1;
  • 574 124 846 429 532 ÷ 2 = 287 062 423 214 766 + 0;
  • 287 062 423 214 766 ÷ 2 = 143 531 211 607 383 + 0;
  • 143 531 211 607 383 ÷ 2 = 71 765 605 803 691 + 1;
  • 71 765 605 803 691 ÷ 2 = 35 882 802 901 845 + 1;
  • 35 882 802 901 845 ÷ 2 = 17 941 401 450 922 + 1;
  • 17 941 401 450 922 ÷ 2 = 8 970 700 725 461 + 0;
  • 8 970 700 725 461 ÷ 2 = 4 485 350 362 730 + 1;
  • 4 485 350 362 730 ÷ 2 = 2 242 675 181 365 + 0;
  • 2 242 675 181 365 ÷ 2 = 1 121 337 590 682 + 1;
  • 1 121 337 590 682 ÷ 2 = 560 668 795 341 + 0;
  • 560 668 795 341 ÷ 2 = 280 334 397 670 + 1;
  • 280 334 397 670 ÷ 2 = 140 167 198 835 + 0;
  • 140 167 198 835 ÷ 2 = 70 083 599 417 + 1;
  • 70 083 599 417 ÷ 2 = 35 041 799 708 + 1;
  • 35 041 799 708 ÷ 2 = 17 520 899 854 + 0;
  • 17 520 899 854 ÷ 2 = 8 760 449 927 + 0;
  • 8 760 449 927 ÷ 2 = 4 380 224 963 + 1;
  • 4 380 224 963 ÷ 2 = 2 190 112 481 + 1;
  • 2 190 112 481 ÷ 2 = 1 095 056 240 + 1;
  • 1 095 056 240 ÷ 2 = 547 528 120 + 0;
  • 547 528 120 ÷ 2 = 273 764 060 + 0;
  • 273 764 060 ÷ 2 = 136 882 030 + 0;
  • 136 882 030 ÷ 2 = 68 441 015 + 0;
  • 68 441 015 ÷ 2 = 34 220 507 + 1;
  • 34 220 507 ÷ 2 = 17 110 253 + 1;
  • 17 110 253 ÷ 2 = 8 555 126 + 1;
  • 8 555 126 ÷ 2 = 4 277 563 + 0;
  • 4 277 563 ÷ 2 = 2 138 781 + 1;
  • 2 138 781 ÷ 2 = 1 069 390 + 1;
  • 1 069 390 ÷ 2 = 534 695 + 0;
  • 534 695 ÷ 2 = 267 347 + 1;
  • 267 347 ÷ 2 = 133 673 + 1;
  • 133 673 ÷ 2 = 66 836 + 1;
  • 66 836 ÷ 2 = 33 418 + 0;
  • 33 418 ÷ 2 = 16 709 + 0;
  • 16 709 ÷ 2 = 8 354 + 1;
  • 8 354 ÷ 2 = 4 177 + 0;
  • 4 177 ÷ 2 = 2 088 + 1;
  • 2 088 ÷ 2 = 1 044 + 0;
  • 1 044 ÷ 2 = 522 + 0;
  • 522 ÷ 2 = 261 + 0;
  • 261 ÷ 2 = 130 + 1;
  • 130 ÷ 2 = 65 + 0;
  • 65 ÷ 2 = 32 + 1;
  • 32 ÷ 2 = 16 + 0;
  • 16 ÷ 2 = 8 + 0;
  • 8 ÷ 2 = 4 + 0;
  • 4 ÷ 2 = 2 + 0;
  • 2 ÷ 2 = 1 + 0;
  • 1 ÷ 2 = 0 + 1;

2. Construct the base 2 representation of the positive number.

Take all the remainders starting from the bottom of the list constructed above.


10 100 111 111 110 101 010 101 010 099(10) =


10 0000 1010 0010 1001 1101 1011 1000 0111 0011 0101 0101 1100 1000 0010 1110 0001 1100 0011 0111 0111 1110 1011 0011(2)


3. Normalize the binary representation of the number.

Shift the decimal mark 93 positions to the left, so that only one non zero digit remains to the left of it:


10 100 111 111 110 101 010 101 010 099(10) =


10 0000 1010 0010 1001 1101 1011 1000 0111 0011 0101 0101 1100 1000 0010 1110 0001 1100 0011 0111 0111 1110 1011 0011(2) =


10 0000 1010 0010 1001 1101 1011 1000 0111 0011 0101 0101 1100 1000 0010 1110 0001 1100 0011 0111 0111 1110 1011 0011(2) × 20 =


1.0000 0101 0001 0100 1110 1101 1100 0011 1001 1010 1010 1110 0100 0001 0111 0000 1110 0001 1011 1011 1111 0101 1001 1(2) × 293


4. Up to this moment, there are the following elements that would feed into the 32 bit single precision IEEE 754 binary floating point representation:

Sign 0 (a positive number)


Exponent (unadjusted): 93


Mantissa (not normalized):
1.0000 0101 0001 0100 1110 1101 1100 0011 1001 1010 1010 1110 0100 0001 0111 0000 1110 0001 1011 1011 1111 0101 1001 1


5. Adjust the exponent.

Use the 8 bit excess/bias notation:


Exponent (adjusted) =


Exponent (unadjusted) + 2(8-1) - 1 =


93 + 2(8-1) - 1 =


(93 + 127)(10) =


220(10)


6. Convert the adjusted exponent from the decimal (base 10) to 8 bit binary.

Use the same technique of repeatedly dividing by 2:


  • division = quotient + remainder;
  • 220 ÷ 2 = 110 + 0;
  • 110 ÷ 2 = 55 + 0;
  • 55 ÷ 2 = 27 + 1;
  • 27 ÷ 2 = 13 + 1;
  • 13 ÷ 2 = 6 + 1;
  • 6 ÷ 2 = 3 + 0;
  • 3 ÷ 2 = 1 + 1;
  • 1 ÷ 2 = 0 + 1;

7. Construct the base 2 representation of the adjusted exponent.

Take all the remainders starting from the bottom of the list constructed above.


Exponent (adjusted) =


220(10) =


1101 1100(2)


8. Normalize the mantissa.

a) Remove the leading (the leftmost) bit, since it's allways 1, and the decimal point, if the case.


b) Adjust its length to 23 bits, by removing the excess bits, from the right (if any of the excess bits is set on 1, we are losing precision...).


Mantissa (normalized) =


1. 000 0010 1000 1010 0111 0110 11 1000 0111 0011 0101 0101 1100 1000 0010 1110 0001 1100 0011 0111 0111 1110 1011 0011 =


000 0010 1000 1010 0111 0110


9. The three elements that make up the number's 32 bit single precision IEEE 754 binary floating point representation:

Sign (1 bit) =
0 (a positive number)


Exponent (8 bits) =
1101 1100


Mantissa (23 bits) =
000 0010 1000 1010 0111 0110


The base ten decimal number 10 100 111 111 110 101 010 101 010 099 converted and written in 32 bit single precision IEEE 754 binary floating point representation:
0 - 1101 1100 - 000 0010 1000 1010 0111 0110

The latest decimal numbers converted from base ten to 32 bit single precision IEEE 754 floating point binary standard representation

Number -4.9 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard May 01 00:37 UTC (GMT)
Number 1 059 579 209 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard May 01 00:37 UTC (GMT)
Number 1 000 100 110 011 110 000 999 999 999 919 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard May 01 00:37 UTC (GMT)
Number 1.103 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard May 01 00:37 UTC (GMT)
Number 777 530 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard May 01 00:37 UTC (GMT)
Number 4 290 772 926 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard May 01 00:37 UTC (GMT)
Number 30.000 09 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard May 01 00:37 UTC (GMT)
Number 821 000 045 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard May 01 00:37 UTC (GMT)
Number -515.326 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard May 01 00:37 UTC (GMT)
Number 429.781 26 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard May 01 00:37 UTC (GMT)
All base ten decimal numbers converted to 32 bit single precision IEEE 754 binary floating point

How to convert decimal numbers from base ten to 32 bit single precision IEEE 754 binary floating point standard

Follow the steps below to convert a base 10 decimal number to 32 bit single precision IEEE 754 binary floating point:

  • 1. If the number to be converted is negative, start with its the positive version.
  • 2. First convert the integer part. Divide repeatedly by 2 the base ten positive representation of the integer number that is to be converted to binary, until we get a quotient that is equal to zero, keeping track of each remainder.
  • 3. Construct the base 2 representation of the positive integer part of the number, by taking all the remainders of the previous dividing operations, starting from the bottom of the list constructed above. Thus, the last remainder of the divisions becomes the first symbol (the leftmost) of the base two number, while the first remainder becomes the last symbol (the rightmost).
  • 4. Then convert the fractional part. Multiply the number repeatedly by 2, until we get a fractional part that is equal to zero, keeping track of each integer part of the results.
  • 5. Construct the base 2 representation of the fractional part of the number by taking all the integer parts of the previous multiplying operations, starting from the top of the constructed list above (they should appear in the binary representation, from left to right, in the order they have been calculated).
  • 6. Normalize the binary representation of the number, by shifting the decimal point (or if you prefer, the decimal mark) "n" positions either to the left or to the right, so that only one non zero digit remains to the left of the decimal point.
  • 7. Adjust the exponent in 8 bit excess/bias notation and then convert it from decimal (base 10) to 8 bit binary, by using the same technique of repeatedly dividing by 2, as shown above:
    Exponent (adjusted) = Exponent (unadjusted) + 2(8-1) - 1
  • 8. Normalize mantissa, remove the leading (leftmost) bit, since it's allways '1' (and the decimal sign if the case) and adjust its length to 23 bits, either by removing the excess bits from the right (losing precision...) or by adding extra '0' bits to the right.
  • 9. Sign (it takes 1 bit) is either 1 for a negative or 0 for a positive number.

Example: convert the negative number -25.347 from decimal system (base ten) to 32 bit single precision IEEE 754 binary floating point:

  • 1. Start with the positive version of the number:

    |-25.347| = 25.347

  • 2. First convert the integer part, 25. Divide it repeatedly by 2, keeping track of each remainder, until we get a quotient that is equal to zero:
    • division = quotient + remainder;
    • 25 ÷ 2 = 12 + 1;
    • 12 ÷ 2 = 6 + 0;
    • 6 ÷ 2 = 3 + 0;
    • 3 ÷ 2 = 1 + 1;
    • 1 ÷ 2 = 0 + 1;
    • We have encountered a quotient that is ZERO => FULL STOP
  • 3. Construct the base 2 representation of the integer part of the number by taking all the remainders of the previous dividing operations, starting from the bottom of the list constructed above:

    25(10) = 1 1001(2)

  • 4. Then convert the fractional part, 0.347. Multiply repeatedly by 2, keeping track of each integer part of the results, until we get a fractional part that is equal to zero:
    • #) multiplying = integer + fractional part;
    • 1) 0.347 × 2 = 0 + 0.694;
    • 2) 0.694 × 2 = 1 + 0.388;
    • 3) 0.388 × 2 = 0 + 0.776;
    • 4) 0.776 × 2 = 1 + 0.552;
    • 5) 0.552 × 2 = 1 + 0.104;
    • 6) 0.104 × 2 = 0 + 0.208;
    • 7) 0.208 × 2 = 0 + 0.416;
    • 8) 0.416 × 2 = 0 + 0.832;
    • 9) 0.832 × 2 = 1 + 0.664;
    • 10) 0.664 × 2 = 1 + 0.328;
    • 11) 0.328 × 2 = 0 + 0.656;
    • 12) 0.656 × 2 = 1 + 0.312;
    • 13) 0.312 × 2 = 0 + 0.624;
    • 14) 0.624 × 2 = 1 + 0.248;
    • 15) 0.248 × 2 = 0 + 0.496;
    • 16) 0.496 × 2 = 0 + 0.992;
    • 17) 0.992 × 2 = 1 + 0.984;
    • 18) 0.984 × 2 = 1 + 0.968;
    • 19) 0.968 × 2 = 1 + 0.936;
    • 20) 0.936 × 2 = 1 + 0.872;
    • 21) 0.872 × 2 = 1 + 0.744;
    • 22) 0.744 × 2 = 1 + 0.488;
    • 23) 0.488 × 2 = 0 + 0.976;
    • 24) 0.976 × 2 = 1 + 0.952;
    • We didn't get any fractional part that was equal to zero. But we had enough iterations (over Mantissa limit = 23) and at least one integer part that was different from zero => FULL STOP (losing precision...).
  • 5. Construct the base 2 representation of the fractional part of the number, by taking all the integer parts of the previous multiplying operations, starting from the top of the constructed list above:

    0.347(10) = 0.0101 1000 1101 0100 1111 1101(2)

  • 6. Summarizing - the positive number before normalization:

    25.347(10) = 1 1001.0101 1000 1101 0100 1111 1101(2)

  • 7. Normalize the binary representation of the number, shifting the decimal point 4 positions to the left so that only one non-zero digit stays to the left of the decimal point:

    25.347(10) =
    1 1001.0101 1000 1101 0100 1111 1101(2) =
    1 1001.0101 1000 1101 0100 1111 1101(2) × 20 =
    1.1001 0101 1000 1101 0100 1111 1101(2) × 24

  • 8. Up to this moment, there are the following elements that would feed into the 32 bit single precision IEEE 754 binary floating point:

    Sign: 1 (a negative number)

    Exponent (unadjusted): 4

    Mantissa (not-normalized): 1.1001 0101 1000 1101 0100 1111 1101

  • 9. Adjust the exponent in 8 bit excess/bias notation and then convert it from decimal (base 10) to 8 bit binary (base 2), by using the same technique of repeatedly dividing it by 2, as already demonstrated above:

    Exponent (adjusted) = Exponent (unadjusted) + 2(8-1) - 1 = (4 + 127)(10) = 131(10) =
    1000 0011(2)

  • 10. Normalize the mantissa, remove the leading (leftmost) bit, since it's allways '1' (and the decimal point) and adjust its length to 23 bits, by removing the excess bits from the right (losing precision...):

    Mantissa (not-normalized): 1.1001 0101 1000 1101 0100 1111 1101

    Mantissa (normalized): 100 1010 1100 0110 1010 0111

  • Conclusion:

    Sign (1 bit) = 1 (a negative number)

    Exponent (8 bits) = 1000 0011

    Mantissa (23 bits) = 100 1010 1100 0110 1010 0111

  • Number -25.347, converted from the decimal system (base 10) to 32 bit single precision IEEE 754 binary floating point =
    1 - 1000 0011 - 100 1010 1100 0110 1010 0111