32bit IEEE 754: Decimal ↗ Single Precision Floating Point Binary: 100 100 100 100 100 100 100 100 100 024 Convert the Number to 32 Bit Single Precision IEEE 754 Binary Floating Point Representation Standard, From a Base 10 Decimal System Number

Number 100 100 100 100 100 100 100 100 100 024(10) converted and written in 32 bit single precision IEEE 754 binary floating point representation (1 bit for sign, 8 bits for exponent, 23 bits for mantissa)

1. Divide the number repeatedly by 2.

Keep track of each remainder.

We stop when we get a quotient that is equal to zero.


  • division = quotient + remainder;
  • 100 100 100 100 100 100 100 100 100 024 ÷ 2 = 50 050 050 050 050 050 050 050 050 012 + 0;
  • 50 050 050 050 050 050 050 050 050 012 ÷ 2 = 25 025 025 025 025 025 025 025 025 006 + 0;
  • 25 025 025 025 025 025 025 025 025 006 ÷ 2 = 12 512 512 512 512 512 512 512 512 503 + 0;
  • 12 512 512 512 512 512 512 512 512 503 ÷ 2 = 6 256 256 256 256 256 256 256 256 251 + 1;
  • 6 256 256 256 256 256 256 256 256 251 ÷ 2 = 3 128 128 128 128 128 128 128 128 125 + 1;
  • 3 128 128 128 128 128 128 128 128 125 ÷ 2 = 1 564 064 064 064 064 064 064 064 062 + 1;
  • 1 564 064 064 064 064 064 064 064 062 ÷ 2 = 782 032 032 032 032 032 032 032 031 + 0;
  • 782 032 032 032 032 032 032 032 031 ÷ 2 = 391 016 016 016 016 016 016 016 015 + 1;
  • 391 016 016 016 016 016 016 016 015 ÷ 2 = 195 508 008 008 008 008 008 008 007 + 1;
  • 195 508 008 008 008 008 008 008 007 ÷ 2 = 97 754 004 004 004 004 004 004 003 + 1;
  • 97 754 004 004 004 004 004 004 003 ÷ 2 = 48 877 002 002 002 002 002 002 001 + 1;
  • 48 877 002 002 002 002 002 002 001 ÷ 2 = 24 438 501 001 001 001 001 001 000 + 1;
  • 24 438 501 001 001 001 001 001 000 ÷ 2 = 12 219 250 500 500 500 500 500 500 + 0;
  • 12 219 250 500 500 500 500 500 500 ÷ 2 = 6 109 625 250 250 250 250 250 250 + 0;
  • 6 109 625 250 250 250 250 250 250 ÷ 2 = 3 054 812 625 125 125 125 125 125 + 0;
  • 3 054 812 625 125 125 125 125 125 ÷ 2 = 1 527 406 312 562 562 562 562 562 + 1;
  • 1 527 406 312 562 562 562 562 562 ÷ 2 = 763 703 156 281 281 281 281 281 + 0;
  • 763 703 156 281 281 281 281 281 ÷ 2 = 381 851 578 140 640 640 640 640 + 1;
  • 381 851 578 140 640 640 640 640 ÷ 2 = 190 925 789 070 320 320 320 320 + 0;
  • 190 925 789 070 320 320 320 320 ÷ 2 = 95 462 894 535 160 160 160 160 + 0;
  • 95 462 894 535 160 160 160 160 ÷ 2 = 47 731 447 267 580 080 080 080 + 0;
  • 47 731 447 267 580 080 080 080 ÷ 2 = 23 865 723 633 790 040 040 040 + 0;
  • 23 865 723 633 790 040 040 040 ÷ 2 = 11 932 861 816 895 020 020 020 + 0;
  • 11 932 861 816 895 020 020 020 ÷ 2 = 5 966 430 908 447 510 010 010 + 0;
  • 5 966 430 908 447 510 010 010 ÷ 2 = 2 983 215 454 223 755 005 005 + 0;
  • 2 983 215 454 223 755 005 005 ÷ 2 = 1 491 607 727 111 877 502 502 + 1;
  • 1 491 607 727 111 877 502 502 ÷ 2 = 745 803 863 555 938 751 251 + 0;
  • 745 803 863 555 938 751 251 ÷ 2 = 372 901 931 777 969 375 625 + 1;
  • 372 901 931 777 969 375 625 ÷ 2 = 186 450 965 888 984 687 812 + 1;
  • 186 450 965 888 984 687 812 ÷ 2 = 93 225 482 944 492 343 906 + 0;
  • 93 225 482 944 492 343 906 ÷ 2 = 46 612 741 472 246 171 953 + 0;
  • 46 612 741 472 246 171 953 ÷ 2 = 23 306 370 736 123 085 976 + 1;
  • 23 306 370 736 123 085 976 ÷ 2 = 11 653 185 368 061 542 988 + 0;
  • 11 653 185 368 061 542 988 ÷ 2 = 5 826 592 684 030 771 494 + 0;
  • 5 826 592 684 030 771 494 ÷ 2 = 2 913 296 342 015 385 747 + 0;
  • 2 913 296 342 015 385 747 ÷ 2 = 1 456 648 171 007 692 873 + 1;
  • 1 456 648 171 007 692 873 ÷ 2 = 728 324 085 503 846 436 + 1;
  • 728 324 085 503 846 436 ÷ 2 = 364 162 042 751 923 218 + 0;
  • 364 162 042 751 923 218 ÷ 2 = 182 081 021 375 961 609 + 0;
  • 182 081 021 375 961 609 ÷ 2 = 91 040 510 687 980 804 + 1;
  • 91 040 510 687 980 804 ÷ 2 = 45 520 255 343 990 402 + 0;
  • 45 520 255 343 990 402 ÷ 2 = 22 760 127 671 995 201 + 0;
  • 22 760 127 671 995 201 ÷ 2 = 11 380 063 835 997 600 + 1;
  • 11 380 063 835 997 600 ÷ 2 = 5 690 031 917 998 800 + 0;
  • 5 690 031 917 998 800 ÷ 2 = 2 845 015 958 999 400 + 0;
  • 2 845 015 958 999 400 ÷ 2 = 1 422 507 979 499 700 + 0;
  • 1 422 507 979 499 700 ÷ 2 = 711 253 989 749 850 + 0;
  • 711 253 989 749 850 ÷ 2 = 355 626 994 874 925 + 0;
  • 355 626 994 874 925 ÷ 2 = 177 813 497 437 462 + 1;
  • 177 813 497 437 462 ÷ 2 = 88 906 748 718 731 + 0;
  • 88 906 748 718 731 ÷ 2 = 44 453 374 359 365 + 1;
  • 44 453 374 359 365 ÷ 2 = 22 226 687 179 682 + 1;
  • 22 226 687 179 682 ÷ 2 = 11 113 343 589 841 + 0;
  • 11 113 343 589 841 ÷ 2 = 5 556 671 794 920 + 1;
  • 5 556 671 794 920 ÷ 2 = 2 778 335 897 460 + 0;
  • 2 778 335 897 460 ÷ 2 = 1 389 167 948 730 + 0;
  • 1 389 167 948 730 ÷ 2 = 694 583 974 365 + 0;
  • 694 583 974 365 ÷ 2 = 347 291 987 182 + 1;
  • 347 291 987 182 ÷ 2 = 173 645 993 591 + 0;
  • 173 645 993 591 ÷ 2 = 86 822 996 795 + 1;
  • 86 822 996 795 ÷ 2 = 43 411 498 397 + 1;
  • 43 411 498 397 ÷ 2 = 21 705 749 198 + 1;
  • 21 705 749 198 ÷ 2 = 10 852 874 599 + 0;
  • 10 852 874 599 ÷ 2 = 5 426 437 299 + 1;
  • 5 426 437 299 ÷ 2 = 2 713 218 649 + 1;
  • 2 713 218 649 ÷ 2 = 1 356 609 324 + 1;
  • 1 356 609 324 ÷ 2 = 678 304 662 + 0;
  • 678 304 662 ÷ 2 = 339 152 331 + 0;
  • 339 152 331 ÷ 2 = 169 576 165 + 1;
  • 169 576 165 ÷ 2 = 84 788 082 + 1;
  • 84 788 082 ÷ 2 = 42 394 041 + 0;
  • 42 394 041 ÷ 2 = 21 197 020 + 1;
  • 21 197 020 ÷ 2 = 10 598 510 + 0;
  • 10 598 510 ÷ 2 = 5 299 255 + 0;
  • 5 299 255 ÷ 2 = 2 649 627 + 1;
  • 2 649 627 ÷ 2 = 1 324 813 + 1;
  • 1 324 813 ÷ 2 = 662 406 + 1;
  • 662 406 ÷ 2 = 331 203 + 0;
  • 331 203 ÷ 2 = 165 601 + 1;
  • 165 601 ÷ 2 = 82 800 + 1;
  • 82 800 ÷ 2 = 41 400 + 0;
  • 41 400 ÷ 2 = 20 700 + 0;
  • 20 700 ÷ 2 = 10 350 + 0;
  • 10 350 ÷ 2 = 5 175 + 0;
  • 5 175 ÷ 2 = 2 587 + 1;
  • 2 587 ÷ 2 = 1 293 + 1;
  • 1 293 ÷ 2 = 646 + 1;
  • 646 ÷ 2 = 323 + 0;
  • 323 ÷ 2 = 161 + 1;
  • 161 ÷ 2 = 80 + 1;
  • 80 ÷ 2 = 40 + 0;
  • 40 ÷ 2 = 20 + 0;
  • 20 ÷ 2 = 10 + 0;
  • 10 ÷ 2 = 5 + 0;
  • 5 ÷ 2 = 2 + 1;
  • 2 ÷ 2 = 1 + 0;
  • 1 ÷ 2 = 0 + 1;

2. Construct the base 2 representation of the positive number.

Take all the remainders starting from the bottom of the list constructed above.


100 100 100 100 100 100 100 100 100 024(10) =


1 0100 0011 0111 0000 1101 1100 1011 0011 1011 1010 0010 1101 0000 0100 1001 1000 1001 1010 0000 0010 1000 1111 1011 1000(2)


3. Normalize the binary representation of the number.

Shift the decimal mark 96 positions to the left, so that only one non zero digit remains to the left of it:


100 100 100 100 100 100 100 100 100 024(10) =


1 0100 0011 0111 0000 1101 1100 1011 0011 1011 1010 0010 1101 0000 0100 1001 1000 1001 1010 0000 0010 1000 1111 1011 1000(2) =


1 0100 0011 0111 0000 1101 1100 1011 0011 1011 1010 0010 1101 0000 0100 1001 1000 1001 1010 0000 0010 1000 1111 1011 1000(2) × 20 =


1.0100 0011 0111 0000 1101 1100 1011 0011 1011 1010 0010 1101 0000 0100 1001 1000 1001 1010 0000 0010 1000 1111 1011 1000(2) × 296


4. Up to this moment, there are the following elements that would feed into the 32 bit single precision IEEE 754 binary floating point representation:

Sign 0 (a positive number)


Exponent (unadjusted): 96


Mantissa (not normalized):
1.0100 0011 0111 0000 1101 1100 1011 0011 1011 1010 0010 1101 0000 0100 1001 1000 1001 1010 0000 0010 1000 1111 1011 1000


5. Adjust the exponent.

Use the 8 bit excess/bias notation:


Exponent (adjusted) =


Exponent (unadjusted) + 2(8-1) - 1 =


96 + 2(8-1) - 1 =


(96 + 127)(10) =


223(10)


6. Convert the adjusted exponent from the decimal (base 10) to 8 bit binary.

Use the same technique of repeatedly dividing by 2:


  • division = quotient + remainder;
  • 223 ÷ 2 = 111 + 1;
  • 111 ÷ 2 = 55 + 1;
  • 55 ÷ 2 = 27 + 1;
  • 27 ÷ 2 = 13 + 1;
  • 13 ÷ 2 = 6 + 1;
  • 6 ÷ 2 = 3 + 0;
  • 3 ÷ 2 = 1 + 1;
  • 1 ÷ 2 = 0 + 1;

7. Construct the base 2 representation of the adjusted exponent.

Take all the remainders starting from the bottom of the list constructed above.


Exponent (adjusted) =


223(10) =


1101 1111(2)


8. Normalize the mantissa.

a) Remove the leading (the leftmost) bit, since it's allways 1, and the decimal point, if the case.


b) Adjust its length to 23 bits, by removing the excess bits, from the right (if any of the excess bits is set on 1, we are losing precision...).


Mantissa (normalized) =


1. 010 0001 1011 1000 0110 1110 0 1011 0011 1011 1010 0010 1101 0000 0100 1001 1000 1001 1010 0000 0010 1000 1111 1011 1000 =


010 0001 1011 1000 0110 1110


9. The three elements that make up the number's 32 bit single precision IEEE 754 binary floating point representation:

Sign (1 bit) =
0 (a positive number)


Exponent (8 bits) =
1101 1111


Mantissa (23 bits) =
010 0001 1011 1000 0110 1110


The base ten decimal number 100 100 100 100 100 100 100 100 100 024 converted and written in 32 bit single precision IEEE 754 binary floating point representation:
0 - 1101 1111 - 010 0001 1011 1000 0110 1110

The latest decimal numbers converted from base ten to 32 bit single precision IEEE 754 floating point binary standard representation

Number 1 000 100 000 110 111 110 001 010 001 031 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard May 18 15:30 UTC (GMT)
Number 42 526 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard May 18 15:30 UTC (GMT)
Number 43 562 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard May 18 15:30 UTC (GMT)
Number 110 099 947 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard May 18 15:30 UTC (GMT)
Number 235.132 81 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard May 18 15:30 UTC (GMT)
Number 2.536 96 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard May 18 15:30 UTC (GMT)
Number 111 101 001 000 110 100 001 001 000 979 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard May 18 15:30 UTC (GMT)
Number 7 632 121 121 121 121 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard May 18 15:30 UTC (GMT)
Number 654 910 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard May 18 15:30 UTC (GMT)
Number 127.009 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard May 18 15:30 UTC (GMT)
All base ten decimal numbers converted to 32 bit single precision IEEE 754 binary floating point

How to convert decimal numbers from base ten to 32 bit single precision IEEE 754 binary floating point standard

Follow the steps below to convert a base 10 decimal number to 32 bit single precision IEEE 754 binary floating point:

  • 1. If the number to be converted is negative, start with its the positive version.
  • 2. First convert the integer part. Divide repeatedly by 2 the base ten positive representation of the integer number that is to be converted to binary, until we get a quotient that is equal to zero, keeping track of each remainder.
  • 3. Construct the base 2 representation of the positive integer part of the number, by taking all the remainders of the previous dividing operations, starting from the bottom of the list constructed above. Thus, the last remainder of the divisions becomes the first symbol (the leftmost) of the base two number, while the first remainder becomes the last symbol (the rightmost).
  • 4. Then convert the fractional part. Multiply the number repeatedly by 2, until we get a fractional part that is equal to zero, keeping track of each integer part of the results.
  • 5. Construct the base 2 representation of the fractional part of the number by taking all the integer parts of the previous multiplying operations, starting from the top of the constructed list above (they should appear in the binary representation, from left to right, in the order they have been calculated).
  • 6. Normalize the binary representation of the number, by shifting the decimal point (or if you prefer, the decimal mark) "n" positions either to the left or to the right, so that only one non zero digit remains to the left of the decimal point.
  • 7. Adjust the exponent in 8 bit excess/bias notation and then convert it from decimal (base 10) to 8 bit binary, by using the same technique of repeatedly dividing by 2, as shown above:
    Exponent (adjusted) = Exponent (unadjusted) + 2(8-1) - 1
  • 8. Normalize mantissa, remove the leading (leftmost) bit, since it's allways '1' (and the decimal sign if the case) and adjust its length to 23 bits, either by removing the excess bits from the right (losing precision...) or by adding extra '0' bits to the right.
  • 9. Sign (it takes 1 bit) is either 1 for a negative or 0 for a positive number.

Example: convert the negative number -25.347 from decimal system (base ten) to 32 bit single precision IEEE 754 binary floating point:

  • 1. Start with the positive version of the number:

    |-25.347| = 25.347

  • 2. First convert the integer part, 25. Divide it repeatedly by 2, keeping track of each remainder, until we get a quotient that is equal to zero:
    • division = quotient + remainder;
    • 25 ÷ 2 = 12 + 1;
    • 12 ÷ 2 = 6 + 0;
    • 6 ÷ 2 = 3 + 0;
    • 3 ÷ 2 = 1 + 1;
    • 1 ÷ 2 = 0 + 1;
    • We have encountered a quotient that is ZERO => FULL STOP
  • 3. Construct the base 2 representation of the integer part of the number by taking all the remainders of the previous dividing operations, starting from the bottom of the list constructed above:

    25(10) = 1 1001(2)

  • 4. Then convert the fractional part, 0.347. Multiply repeatedly by 2, keeping track of each integer part of the results, until we get a fractional part that is equal to zero:
    • #) multiplying = integer + fractional part;
    • 1) 0.347 × 2 = 0 + 0.694;
    • 2) 0.694 × 2 = 1 + 0.388;
    • 3) 0.388 × 2 = 0 + 0.776;
    • 4) 0.776 × 2 = 1 + 0.552;
    • 5) 0.552 × 2 = 1 + 0.104;
    • 6) 0.104 × 2 = 0 + 0.208;
    • 7) 0.208 × 2 = 0 + 0.416;
    • 8) 0.416 × 2 = 0 + 0.832;
    • 9) 0.832 × 2 = 1 + 0.664;
    • 10) 0.664 × 2 = 1 + 0.328;
    • 11) 0.328 × 2 = 0 + 0.656;
    • 12) 0.656 × 2 = 1 + 0.312;
    • 13) 0.312 × 2 = 0 + 0.624;
    • 14) 0.624 × 2 = 1 + 0.248;
    • 15) 0.248 × 2 = 0 + 0.496;
    • 16) 0.496 × 2 = 0 + 0.992;
    • 17) 0.992 × 2 = 1 + 0.984;
    • 18) 0.984 × 2 = 1 + 0.968;
    • 19) 0.968 × 2 = 1 + 0.936;
    • 20) 0.936 × 2 = 1 + 0.872;
    • 21) 0.872 × 2 = 1 + 0.744;
    • 22) 0.744 × 2 = 1 + 0.488;
    • 23) 0.488 × 2 = 0 + 0.976;
    • 24) 0.976 × 2 = 1 + 0.952;
    • We didn't get any fractional part that was equal to zero. But we had enough iterations (over Mantissa limit = 23) and at least one integer part that was different from zero => FULL STOP (losing precision...).
  • 5. Construct the base 2 representation of the fractional part of the number, by taking all the integer parts of the previous multiplying operations, starting from the top of the constructed list above:

    0.347(10) = 0.0101 1000 1101 0100 1111 1101(2)

  • 6. Summarizing - the positive number before normalization:

    25.347(10) = 1 1001.0101 1000 1101 0100 1111 1101(2)

  • 7. Normalize the binary representation of the number, shifting the decimal point 4 positions to the left so that only one non-zero digit stays to the left of the decimal point:

    25.347(10) =
    1 1001.0101 1000 1101 0100 1111 1101(2) =
    1 1001.0101 1000 1101 0100 1111 1101(2) × 20 =
    1.1001 0101 1000 1101 0100 1111 1101(2) × 24

  • 8. Up to this moment, there are the following elements that would feed into the 32 bit single precision IEEE 754 binary floating point:

    Sign: 1 (a negative number)

    Exponent (unadjusted): 4

    Mantissa (not-normalized): 1.1001 0101 1000 1101 0100 1111 1101

  • 9. Adjust the exponent in 8 bit excess/bias notation and then convert it from decimal (base 10) to 8 bit binary (base 2), by using the same technique of repeatedly dividing it by 2, as already demonstrated above:

    Exponent (adjusted) = Exponent (unadjusted) + 2(8-1) - 1 = (4 + 127)(10) = 131(10) =
    1000 0011(2)

  • 10. Normalize the mantissa, remove the leading (leftmost) bit, since it's allways '1' (and the decimal point) and adjust its length to 23 bits, by removing the excess bits from the right (losing precision...):

    Mantissa (not-normalized): 1.1001 0101 1000 1101 0100 1111 1101

    Mantissa (normalized): 100 1010 1100 0110 1010 0111

  • Conclusion:

    Sign (1 bit) = 1 (a negative number)

    Exponent (8 bits) = 1000 0011

    Mantissa (23 bits) = 100 1010 1100 0110 1010 0111

  • Number -25.347, converted from the decimal system (base 10) to 32 bit single precision IEEE 754 binary floating point =
    1 - 1000 0011 - 100 1010 1100 0110 1010 0111