32bit IEEE 754: Decimal ↗ Single Precision Floating Point Binary: 1 000 100 101 000 000 000 000 000 000 009 Convert the Number to 32 Bit Single Precision IEEE 754 Binary Floating Point Representation Standard, From a Base 10 Decimal System Number

Number 1 000 100 101 000 000 000 000 000 000 009(10) converted and written in 32 bit single precision IEEE 754 binary floating point representation (1 bit for sign, 8 bits for exponent, 23 bits for mantissa)

1. Divide the number repeatedly by 2.

Keep track of each remainder.

We stop when we get a quotient that is equal to zero.


  • division = quotient + remainder;
  • 1 000 100 101 000 000 000 000 000 000 009 ÷ 2 = 500 050 050 500 000 000 000 000 000 004 + 1;
  • 500 050 050 500 000 000 000 000 000 004 ÷ 2 = 250 025 025 250 000 000 000 000 000 002 + 0;
  • 250 025 025 250 000 000 000 000 000 002 ÷ 2 = 125 012 512 625 000 000 000 000 000 001 + 0;
  • 125 012 512 625 000 000 000 000 000 001 ÷ 2 = 62 506 256 312 500 000 000 000 000 000 + 1;
  • 62 506 256 312 500 000 000 000 000 000 ÷ 2 = 31 253 128 156 250 000 000 000 000 000 + 0;
  • 31 253 128 156 250 000 000 000 000 000 ÷ 2 = 15 626 564 078 125 000 000 000 000 000 + 0;
  • 15 626 564 078 125 000 000 000 000 000 ÷ 2 = 7 813 282 039 062 500 000 000 000 000 + 0;
  • 7 813 282 039 062 500 000 000 000 000 ÷ 2 = 3 906 641 019 531 250 000 000 000 000 + 0;
  • 3 906 641 019 531 250 000 000 000 000 ÷ 2 = 1 953 320 509 765 625 000 000 000 000 + 0;
  • 1 953 320 509 765 625 000 000 000 000 ÷ 2 = 976 660 254 882 812 500 000 000 000 + 0;
  • 976 660 254 882 812 500 000 000 000 ÷ 2 = 488 330 127 441 406 250 000 000 000 + 0;
  • 488 330 127 441 406 250 000 000 000 ÷ 2 = 244 165 063 720 703 125 000 000 000 + 0;
  • 244 165 063 720 703 125 000 000 000 ÷ 2 = 122 082 531 860 351 562 500 000 000 + 0;
  • 122 082 531 860 351 562 500 000 000 ÷ 2 = 61 041 265 930 175 781 250 000 000 + 0;
  • 61 041 265 930 175 781 250 000 000 ÷ 2 = 30 520 632 965 087 890 625 000 000 + 0;
  • 30 520 632 965 087 890 625 000 000 ÷ 2 = 15 260 316 482 543 945 312 500 000 + 0;
  • 15 260 316 482 543 945 312 500 000 ÷ 2 = 7 630 158 241 271 972 656 250 000 + 0;
  • 7 630 158 241 271 972 656 250 000 ÷ 2 = 3 815 079 120 635 986 328 125 000 + 0;
  • 3 815 079 120 635 986 328 125 000 ÷ 2 = 1 907 539 560 317 993 164 062 500 + 0;
  • 1 907 539 560 317 993 164 062 500 ÷ 2 = 953 769 780 158 996 582 031 250 + 0;
  • 953 769 780 158 996 582 031 250 ÷ 2 = 476 884 890 079 498 291 015 625 + 0;
  • 476 884 890 079 498 291 015 625 ÷ 2 = 238 442 445 039 749 145 507 812 + 1;
  • 238 442 445 039 749 145 507 812 ÷ 2 = 119 221 222 519 874 572 753 906 + 0;
  • 119 221 222 519 874 572 753 906 ÷ 2 = 59 610 611 259 937 286 376 953 + 0;
  • 59 610 611 259 937 286 376 953 ÷ 2 = 29 805 305 629 968 643 188 476 + 1;
  • 29 805 305 629 968 643 188 476 ÷ 2 = 14 902 652 814 984 321 594 238 + 0;
  • 14 902 652 814 984 321 594 238 ÷ 2 = 7 451 326 407 492 160 797 119 + 0;
  • 7 451 326 407 492 160 797 119 ÷ 2 = 3 725 663 203 746 080 398 559 + 1;
  • 3 725 663 203 746 080 398 559 ÷ 2 = 1 862 831 601 873 040 199 279 + 1;
  • 1 862 831 601 873 040 199 279 ÷ 2 = 931 415 800 936 520 099 639 + 1;
  • 931 415 800 936 520 099 639 ÷ 2 = 465 707 900 468 260 049 819 + 1;
  • 465 707 900 468 260 049 819 ÷ 2 = 232 853 950 234 130 024 909 + 1;
  • 232 853 950 234 130 024 909 ÷ 2 = 116 426 975 117 065 012 454 + 1;
  • 116 426 975 117 065 012 454 ÷ 2 = 58 213 487 558 532 506 227 + 0;
  • 58 213 487 558 532 506 227 ÷ 2 = 29 106 743 779 266 253 113 + 1;
  • 29 106 743 779 266 253 113 ÷ 2 = 14 553 371 889 633 126 556 + 1;
  • 14 553 371 889 633 126 556 ÷ 2 = 7 276 685 944 816 563 278 + 0;
  • 7 276 685 944 816 563 278 ÷ 2 = 3 638 342 972 408 281 639 + 0;
  • 3 638 342 972 408 281 639 ÷ 2 = 1 819 171 486 204 140 819 + 1;
  • 1 819 171 486 204 140 819 ÷ 2 = 909 585 743 102 070 409 + 1;
  • 909 585 743 102 070 409 ÷ 2 = 454 792 871 551 035 204 + 1;
  • 454 792 871 551 035 204 ÷ 2 = 227 396 435 775 517 602 + 0;
  • 227 396 435 775 517 602 ÷ 2 = 113 698 217 887 758 801 + 0;
  • 113 698 217 887 758 801 ÷ 2 = 56 849 108 943 879 400 + 1;
  • 56 849 108 943 879 400 ÷ 2 = 28 424 554 471 939 700 + 0;
  • 28 424 554 471 939 700 ÷ 2 = 14 212 277 235 969 850 + 0;
  • 14 212 277 235 969 850 ÷ 2 = 7 106 138 617 984 925 + 0;
  • 7 106 138 617 984 925 ÷ 2 = 3 553 069 308 992 462 + 1;
  • 3 553 069 308 992 462 ÷ 2 = 1 776 534 654 496 231 + 0;
  • 1 776 534 654 496 231 ÷ 2 = 888 267 327 248 115 + 1;
  • 888 267 327 248 115 ÷ 2 = 444 133 663 624 057 + 1;
  • 444 133 663 624 057 ÷ 2 = 222 066 831 812 028 + 1;
  • 222 066 831 812 028 ÷ 2 = 111 033 415 906 014 + 0;
  • 111 033 415 906 014 ÷ 2 = 55 516 707 953 007 + 0;
  • 55 516 707 953 007 ÷ 2 = 27 758 353 976 503 + 1;
  • 27 758 353 976 503 ÷ 2 = 13 879 176 988 251 + 1;
  • 13 879 176 988 251 ÷ 2 = 6 939 588 494 125 + 1;
  • 6 939 588 494 125 ÷ 2 = 3 469 794 247 062 + 1;
  • 3 469 794 247 062 ÷ 2 = 1 734 897 123 531 + 0;
  • 1 734 897 123 531 ÷ 2 = 867 448 561 765 + 1;
  • 867 448 561 765 ÷ 2 = 433 724 280 882 + 1;
  • 433 724 280 882 ÷ 2 = 216 862 140 441 + 0;
  • 216 862 140 441 ÷ 2 = 108 431 070 220 + 1;
  • 108 431 070 220 ÷ 2 = 54 215 535 110 + 0;
  • 54 215 535 110 ÷ 2 = 27 107 767 555 + 0;
  • 27 107 767 555 ÷ 2 = 13 553 883 777 + 1;
  • 13 553 883 777 ÷ 2 = 6 776 941 888 + 1;
  • 6 776 941 888 ÷ 2 = 3 388 470 944 + 0;
  • 3 388 470 944 ÷ 2 = 1 694 235 472 + 0;
  • 1 694 235 472 ÷ 2 = 847 117 736 + 0;
  • 847 117 736 ÷ 2 = 423 558 868 + 0;
  • 423 558 868 ÷ 2 = 211 779 434 + 0;
  • 211 779 434 ÷ 2 = 105 889 717 + 0;
  • 105 889 717 ÷ 2 = 52 944 858 + 1;
  • 52 944 858 ÷ 2 = 26 472 429 + 0;
  • 26 472 429 ÷ 2 = 13 236 214 + 1;
  • 13 236 214 ÷ 2 = 6 618 107 + 0;
  • 6 618 107 ÷ 2 = 3 309 053 + 1;
  • 3 309 053 ÷ 2 = 1 654 526 + 1;
  • 1 654 526 ÷ 2 = 827 263 + 0;
  • 827 263 ÷ 2 = 413 631 + 1;
  • 413 631 ÷ 2 = 206 815 + 1;
  • 206 815 ÷ 2 = 103 407 + 1;
  • 103 407 ÷ 2 = 51 703 + 1;
  • 51 703 ÷ 2 = 25 851 + 1;
  • 25 851 ÷ 2 = 12 925 + 1;
  • 12 925 ÷ 2 = 6 462 + 1;
  • 6 462 ÷ 2 = 3 231 + 0;
  • 3 231 ÷ 2 = 1 615 + 1;
  • 1 615 ÷ 2 = 807 + 1;
  • 807 ÷ 2 = 403 + 1;
  • 403 ÷ 2 = 201 + 1;
  • 201 ÷ 2 = 100 + 1;
  • 100 ÷ 2 = 50 + 0;
  • 50 ÷ 2 = 25 + 0;
  • 25 ÷ 2 = 12 + 1;
  • 12 ÷ 2 = 6 + 0;
  • 6 ÷ 2 = 3 + 0;
  • 3 ÷ 2 = 1 + 1;
  • 1 ÷ 2 = 0 + 1;

2. Construct the base 2 representation of the positive number.

Take all the remainders starting from the bottom of the list constructed above.


1 000 100 101 000 000 000 000 000 000 009(10) =


1100 1001 1111 0111 1111 0110 1010 0000 0110 0101 1011 1100 1110 1000 1001 1100 1101 1111 1001 0010 0000 0000 0000 0000 1001(2)


3. Normalize the binary representation of the number.

Shift the decimal mark 99 positions to the left, so that only one non zero digit remains to the left of it:


1 000 100 101 000 000 000 000 000 000 009(10) =


1100 1001 1111 0111 1111 0110 1010 0000 0110 0101 1011 1100 1110 1000 1001 1100 1101 1111 1001 0010 0000 0000 0000 0000 1001(2) =


1100 1001 1111 0111 1111 0110 1010 0000 0110 0101 1011 1100 1110 1000 1001 1100 1101 1111 1001 0010 0000 0000 0000 0000 1001(2) × 20 =


1.1001 0011 1110 1111 1110 1101 0100 0000 1100 1011 0111 1001 1101 0001 0011 1001 1011 1111 0010 0100 0000 0000 0000 0001 001(2) × 299


4. Up to this moment, there are the following elements that would feed into the 32 bit single precision IEEE 754 binary floating point representation:

Sign 0 (a positive number)


Exponent (unadjusted): 99


Mantissa (not normalized):
1.1001 0011 1110 1111 1110 1101 0100 0000 1100 1011 0111 1001 1101 0001 0011 1001 1011 1111 0010 0100 0000 0000 0000 0001 001


5. Adjust the exponent.

Use the 8 bit excess/bias notation:


Exponent (adjusted) =


Exponent (unadjusted) + 2(8-1) - 1 =


99 + 2(8-1) - 1 =


(99 + 127)(10) =


226(10)


6. Convert the adjusted exponent from the decimal (base 10) to 8 bit binary.

Use the same technique of repeatedly dividing by 2:


  • division = quotient + remainder;
  • 226 ÷ 2 = 113 + 0;
  • 113 ÷ 2 = 56 + 1;
  • 56 ÷ 2 = 28 + 0;
  • 28 ÷ 2 = 14 + 0;
  • 14 ÷ 2 = 7 + 0;
  • 7 ÷ 2 = 3 + 1;
  • 3 ÷ 2 = 1 + 1;
  • 1 ÷ 2 = 0 + 1;

7. Construct the base 2 representation of the adjusted exponent.

Take all the remainders starting from the bottom of the list constructed above.


Exponent (adjusted) =


226(10) =


1110 0010(2)


8. Normalize the mantissa.

a) Remove the leading (the leftmost) bit, since it's allways 1, and the decimal point, if the case.


b) Adjust its length to 23 bits, by removing the excess bits, from the right (if any of the excess bits is set on 1, we are losing precision...).


Mantissa (normalized) =


1. 100 1001 1111 0111 1111 0110 1010 0000 0110 0101 1011 1100 1110 1000 1001 1100 1101 1111 1001 0010 0000 0000 0000 0000 1001 =


100 1001 1111 0111 1111 0110


9. The three elements that make up the number's 32 bit single precision IEEE 754 binary floating point representation:

Sign (1 bit) =
0 (a positive number)


Exponent (8 bits) =
1110 0010


Mantissa (23 bits) =
100 1001 1111 0111 1111 0110


The base ten decimal number 1 000 100 101 000 000 000 000 000 000 009 converted and written in 32 bit single precision IEEE 754 binary floating point representation:
0 - 1110 0010 - 100 1001 1111 0111 1111 0110

The latest decimal numbers converted from base ten to 32 bit single precision IEEE 754 floating point binary standard representation

Number 3 777 251 631 049 998 437 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard Apr 30 22:33 UTC (GMT)
Number 4 286 854 380 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard Apr 30 22:33 UTC (GMT)
Number 0.000 000 000 000 000 000 000 000 000 000 000 000 010 281 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard Apr 30 22:33 UTC (GMT)
Number 1 102 315 548 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard Apr 30 22:33 UTC (GMT)
Number 7 483 665 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard Apr 30 22:33 UTC (GMT)
Number 10 111 010 111 010 111 010 111 010 111 073 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard Apr 30 22:33 UTC (GMT)
Number 9 884 956 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard Apr 30 22:33 UTC (GMT)
Number 7.152 58 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard Apr 30 22:33 UTC (GMT)
Number 2.555 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard Apr 30 22:33 UTC (GMT)
Number 266 340 894 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard Apr 30 22:32 UTC (GMT)
All base ten decimal numbers converted to 32 bit single precision IEEE 754 binary floating point

How to convert decimal numbers from base ten to 32 bit single precision IEEE 754 binary floating point standard

Follow the steps below to convert a base 10 decimal number to 32 bit single precision IEEE 754 binary floating point:

  • 1. If the number to be converted is negative, start with its the positive version.
  • 2. First convert the integer part. Divide repeatedly by 2 the base ten positive representation of the integer number that is to be converted to binary, until we get a quotient that is equal to zero, keeping track of each remainder.
  • 3. Construct the base 2 representation of the positive integer part of the number, by taking all the remainders of the previous dividing operations, starting from the bottom of the list constructed above. Thus, the last remainder of the divisions becomes the first symbol (the leftmost) of the base two number, while the first remainder becomes the last symbol (the rightmost).
  • 4. Then convert the fractional part. Multiply the number repeatedly by 2, until we get a fractional part that is equal to zero, keeping track of each integer part of the results.
  • 5. Construct the base 2 representation of the fractional part of the number by taking all the integer parts of the previous multiplying operations, starting from the top of the constructed list above (they should appear in the binary representation, from left to right, in the order they have been calculated).
  • 6. Normalize the binary representation of the number, by shifting the decimal point (or if you prefer, the decimal mark) "n" positions either to the left or to the right, so that only one non zero digit remains to the left of the decimal point.
  • 7. Adjust the exponent in 8 bit excess/bias notation and then convert it from decimal (base 10) to 8 bit binary, by using the same technique of repeatedly dividing by 2, as shown above:
    Exponent (adjusted) = Exponent (unadjusted) + 2(8-1) - 1
  • 8. Normalize mantissa, remove the leading (leftmost) bit, since it's allways '1' (and the decimal sign if the case) and adjust its length to 23 bits, either by removing the excess bits from the right (losing precision...) or by adding extra '0' bits to the right.
  • 9. Sign (it takes 1 bit) is either 1 for a negative or 0 for a positive number.

Example: convert the negative number -25.347 from decimal system (base ten) to 32 bit single precision IEEE 754 binary floating point:

  • 1. Start with the positive version of the number:

    |-25.347| = 25.347

  • 2. First convert the integer part, 25. Divide it repeatedly by 2, keeping track of each remainder, until we get a quotient that is equal to zero:
    • division = quotient + remainder;
    • 25 ÷ 2 = 12 + 1;
    • 12 ÷ 2 = 6 + 0;
    • 6 ÷ 2 = 3 + 0;
    • 3 ÷ 2 = 1 + 1;
    • 1 ÷ 2 = 0 + 1;
    • We have encountered a quotient that is ZERO => FULL STOP
  • 3. Construct the base 2 representation of the integer part of the number by taking all the remainders of the previous dividing operations, starting from the bottom of the list constructed above:

    25(10) = 1 1001(2)

  • 4. Then convert the fractional part, 0.347. Multiply repeatedly by 2, keeping track of each integer part of the results, until we get a fractional part that is equal to zero:
    • #) multiplying = integer + fractional part;
    • 1) 0.347 × 2 = 0 + 0.694;
    • 2) 0.694 × 2 = 1 + 0.388;
    • 3) 0.388 × 2 = 0 + 0.776;
    • 4) 0.776 × 2 = 1 + 0.552;
    • 5) 0.552 × 2 = 1 + 0.104;
    • 6) 0.104 × 2 = 0 + 0.208;
    • 7) 0.208 × 2 = 0 + 0.416;
    • 8) 0.416 × 2 = 0 + 0.832;
    • 9) 0.832 × 2 = 1 + 0.664;
    • 10) 0.664 × 2 = 1 + 0.328;
    • 11) 0.328 × 2 = 0 + 0.656;
    • 12) 0.656 × 2 = 1 + 0.312;
    • 13) 0.312 × 2 = 0 + 0.624;
    • 14) 0.624 × 2 = 1 + 0.248;
    • 15) 0.248 × 2 = 0 + 0.496;
    • 16) 0.496 × 2 = 0 + 0.992;
    • 17) 0.992 × 2 = 1 + 0.984;
    • 18) 0.984 × 2 = 1 + 0.968;
    • 19) 0.968 × 2 = 1 + 0.936;
    • 20) 0.936 × 2 = 1 + 0.872;
    • 21) 0.872 × 2 = 1 + 0.744;
    • 22) 0.744 × 2 = 1 + 0.488;
    • 23) 0.488 × 2 = 0 + 0.976;
    • 24) 0.976 × 2 = 1 + 0.952;
    • We didn't get any fractional part that was equal to zero. But we had enough iterations (over Mantissa limit = 23) and at least one integer part that was different from zero => FULL STOP (losing precision...).
  • 5. Construct the base 2 representation of the fractional part of the number, by taking all the integer parts of the previous multiplying operations, starting from the top of the constructed list above:

    0.347(10) = 0.0101 1000 1101 0100 1111 1101(2)

  • 6. Summarizing - the positive number before normalization:

    25.347(10) = 1 1001.0101 1000 1101 0100 1111 1101(2)

  • 7. Normalize the binary representation of the number, shifting the decimal point 4 positions to the left so that only one non-zero digit stays to the left of the decimal point:

    25.347(10) =
    1 1001.0101 1000 1101 0100 1111 1101(2) =
    1 1001.0101 1000 1101 0100 1111 1101(2) × 20 =
    1.1001 0101 1000 1101 0100 1111 1101(2) × 24

  • 8. Up to this moment, there are the following elements that would feed into the 32 bit single precision IEEE 754 binary floating point:

    Sign: 1 (a negative number)

    Exponent (unadjusted): 4

    Mantissa (not-normalized): 1.1001 0101 1000 1101 0100 1111 1101

  • 9. Adjust the exponent in 8 bit excess/bias notation and then convert it from decimal (base 10) to 8 bit binary (base 2), by using the same technique of repeatedly dividing it by 2, as already demonstrated above:

    Exponent (adjusted) = Exponent (unadjusted) + 2(8-1) - 1 = (4 + 127)(10) = 131(10) =
    1000 0011(2)

  • 10. Normalize the mantissa, remove the leading (leftmost) bit, since it's allways '1' (and the decimal point) and adjust its length to 23 bits, by removing the excess bits from the right (losing precision...):

    Mantissa (not-normalized): 1.1001 0101 1000 1101 0100 1111 1101

    Mantissa (normalized): 100 1010 1100 0110 1010 0111

  • Conclusion:

    Sign (1 bit) = 1 (a negative number)

    Exponent (8 bits) = 1000 0011

    Mantissa (23 bits) = 100 1010 1100 0110 1010 0111

  • Number -25.347, converted from the decimal system (base 10) to 32 bit single precision IEEE 754 binary floating point =
    1 - 1000 0011 - 100 1010 1100 0110 1010 0111