32bit IEEE 754: Decimal ↗ Single Precision Floating Point Binary: 1 000 100 100 000 000 000 000 000 000 067 Convert the Number to 32 Bit Single Precision IEEE 754 Binary Floating Point Representation Standard, From a Base 10 Decimal System Number

Number 1 000 100 100 000 000 000 000 000 000 067(10) converted and written in 32 bit single precision IEEE 754 binary floating point representation (1 bit for sign, 8 bits for exponent, 23 bits for mantissa)

1. Divide the number repeatedly by 2.

Keep track of each remainder.

We stop when we get a quotient that is equal to zero.


  • division = quotient + remainder;
  • 1 000 100 100 000 000 000 000 000 000 067 ÷ 2 = 500 050 050 000 000 000 000 000 000 033 + 1;
  • 500 050 050 000 000 000 000 000 000 033 ÷ 2 = 250 025 025 000 000 000 000 000 000 016 + 1;
  • 250 025 025 000 000 000 000 000 000 016 ÷ 2 = 125 012 512 500 000 000 000 000 000 008 + 0;
  • 125 012 512 500 000 000 000 000 000 008 ÷ 2 = 62 506 256 250 000 000 000 000 000 004 + 0;
  • 62 506 256 250 000 000 000 000 000 004 ÷ 2 = 31 253 128 125 000 000 000 000 000 002 + 0;
  • 31 253 128 125 000 000 000 000 000 002 ÷ 2 = 15 626 564 062 500 000 000 000 000 001 + 0;
  • 15 626 564 062 500 000 000 000 000 001 ÷ 2 = 7 813 282 031 250 000 000 000 000 000 + 1;
  • 7 813 282 031 250 000 000 000 000 000 ÷ 2 = 3 906 641 015 625 000 000 000 000 000 + 0;
  • 3 906 641 015 625 000 000 000 000 000 ÷ 2 = 1 953 320 507 812 500 000 000 000 000 + 0;
  • 1 953 320 507 812 500 000 000 000 000 ÷ 2 = 976 660 253 906 250 000 000 000 000 + 0;
  • 976 660 253 906 250 000 000 000 000 ÷ 2 = 488 330 126 953 125 000 000 000 000 + 0;
  • 488 330 126 953 125 000 000 000 000 ÷ 2 = 244 165 063 476 562 500 000 000 000 + 0;
  • 244 165 063 476 562 500 000 000 000 ÷ 2 = 122 082 531 738 281 250 000 000 000 + 0;
  • 122 082 531 738 281 250 000 000 000 ÷ 2 = 61 041 265 869 140 625 000 000 000 + 0;
  • 61 041 265 869 140 625 000 000 000 ÷ 2 = 30 520 632 934 570 312 500 000 000 + 0;
  • 30 520 632 934 570 312 500 000 000 ÷ 2 = 15 260 316 467 285 156 250 000 000 + 0;
  • 15 260 316 467 285 156 250 000 000 ÷ 2 = 7 630 158 233 642 578 125 000 000 + 0;
  • 7 630 158 233 642 578 125 000 000 ÷ 2 = 3 815 079 116 821 289 062 500 000 + 0;
  • 3 815 079 116 821 289 062 500 000 ÷ 2 = 1 907 539 558 410 644 531 250 000 + 0;
  • 1 907 539 558 410 644 531 250 000 ÷ 2 = 953 769 779 205 322 265 625 000 + 0;
  • 953 769 779 205 322 265 625 000 ÷ 2 = 476 884 889 602 661 132 812 500 + 0;
  • 476 884 889 602 661 132 812 500 ÷ 2 = 238 442 444 801 330 566 406 250 + 0;
  • 238 442 444 801 330 566 406 250 ÷ 2 = 119 221 222 400 665 283 203 125 + 0;
  • 119 221 222 400 665 283 203 125 ÷ 2 = 59 610 611 200 332 641 601 562 + 1;
  • 59 610 611 200 332 641 601 562 ÷ 2 = 29 805 305 600 166 320 800 781 + 0;
  • 29 805 305 600 166 320 800 781 ÷ 2 = 14 902 652 800 083 160 400 390 + 1;
  • 14 902 652 800 083 160 400 390 ÷ 2 = 7 451 326 400 041 580 200 195 + 0;
  • 7 451 326 400 041 580 200 195 ÷ 2 = 3 725 663 200 020 790 100 097 + 1;
  • 3 725 663 200 020 790 100 097 ÷ 2 = 1 862 831 600 010 395 050 048 + 1;
  • 1 862 831 600 010 395 050 048 ÷ 2 = 931 415 800 005 197 525 024 + 0;
  • 931 415 800 005 197 525 024 ÷ 2 = 465 707 900 002 598 762 512 + 0;
  • 465 707 900 002 598 762 512 ÷ 2 = 232 853 950 001 299 381 256 + 0;
  • 232 853 950 001 299 381 256 ÷ 2 = 116 426 975 000 649 690 628 + 0;
  • 116 426 975 000 649 690 628 ÷ 2 = 58 213 487 500 324 845 314 + 0;
  • 58 213 487 500 324 845 314 ÷ 2 = 29 106 743 750 162 422 657 + 0;
  • 29 106 743 750 162 422 657 ÷ 2 = 14 553 371 875 081 211 328 + 1;
  • 14 553 371 875 081 211 328 ÷ 2 = 7 276 685 937 540 605 664 + 0;
  • 7 276 685 937 540 605 664 ÷ 2 = 3 638 342 968 770 302 832 + 0;
  • 3 638 342 968 770 302 832 ÷ 2 = 1 819 171 484 385 151 416 + 0;
  • 1 819 171 484 385 151 416 ÷ 2 = 909 585 742 192 575 708 + 0;
  • 909 585 742 192 575 708 ÷ 2 = 454 792 871 096 287 854 + 0;
  • 454 792 871 096 287 854 ÷ 2 = 227 396 435 548 143 927 + 0;
  • 227 396 435 548 143 927 ÷ 2 = 113 698 217 774 071 963 + 1;
  • 113 698 217 774 071 963 ÷ 2 = 56 849 108 887 035 981 + 1;
  • 56 849 108 887 035 981 ÷ 2 = 28 424 554 443 517 990 + 1;
  • 28 424 554 443 517 990 ÷ 2 = 14 212 277 221 758 995 + 0;
  • 14 212 277 221 758 995 ÷ 2 = 7 106 138 610 879 497 + 1;
  • 7 106 138 610 879 497 ÷ 2 = 3 553 069 305 439 748 + 1;
  • 3 553 069 305 439 748 ÷ 2 = 1 776 534 652 719 874 + 0;
  • 1 776 534 652 719 874 ÷ 2 = 888 267 326 359 937 + 0;
  • 888 267 326 359 937 ÷ 2 = 444 133 663 179 968 + 1;
  • 444 133 663 179 968 ÷ 2 = 222 066 831 589 984 + 0;
  • 222 066 831 589 984 ÷ 2 = 111 033 415 794 992 + 0;
  • 111 033 415 794 992 ÷ 2 = 55 516 707 897 496 + 0;
  • 55 516 707 897 496 ÷ 2 = 27 758 353 948 748 + 0;
  • 27 758 353 948 748 ÷ 2 = 13 879 176 974 374 + 0;
  • 13 879 176 974 374 ÷ 2 = 6 939 588 487 187 + 0;
  • 6 939 588 487 187 ÷ 2 = 3 469 794 243 593 + 1;
  • 3 469 794 243 593 ÷ 2 = 1 734 897 121 796 + 1;
  • 1 734 897 121 796 ÷ 2 = 867 448 560 898 + 0;
  • 867 448 560 898 ÷ 2 = 433 724 280 449 + 0;
  • 433 724 280 449 ÷ 2 = 216 862 140 224 + 1;
  • 216 862 140 224 ÷ 2 = 108 431 070 112 + 0;
  • 108 431 070 112 ÷ 2 = 54 215 535 056 + 0;
  • 54 215 535 056 ÷ 2 = 27 107 767 528 + 0;
  • 27 107 767 528 ÷ 2 = 13 553 883 764 + 0;
  • 13 553 883 764 ÷ 2 = 6 776 941 882 + 0;
  • 6 776 941 882 ÷ 2 = 3 388 470 941 + 0;
  • 3 388 470 941 ÷ 2 = 1 694 235 470 + 1;
  • 1 694 235 470 ÷ 2 = 847 117 735 + 0;
  • 847 117 735 ÷ 2 = 423 558 867 + 1;
  • 423 558 867 ÷ 2 = 211 779 433 + 1;
  • 211 779 433 ÷ 2 = 105 889 716 + 1;
  • 105 889 716 ÷ 2 = 52 944 858 + 0;
  • 52 944 858 ÷ 2 = 26 472 429 + 0;
  • 26 472 429 ÷ 2 = 13 236 214 + 1;
  • 13 236 214 ÷ 2 = 6 618 107 + 0;
  • 6 618 107 ÷ 2 = 3 309 053 + 1;
  • 3 309 053 ÷ 2 = 1 654 526 + 1;
  • 1 654 526 ÷ 2 = 827 263 + 0;
  • 827 263 ÷ 2 = 413 631 + 1;
  • 413 631 ÷ 2 = 206 815 + 1;
  • 206 815 ÷ 2 = 103 407 + 1;
  • 103 407 ÷ 2 = 51 703 + 1;
  • 51 703 ÷ 2 = 25 851 + 1;
  • 25 851 ÷ 2 = 12 925 + 1;
  • 12 925 ÷ 2 = 6 462 + 1;
  • 6 462 ÷ 2 = 3 231 + 0;
  • 3 231 ÷ 2 = 1 615 + 1;
  • 1 615 ÷ 2 = 807 + 1;
  • 807 ÷ 2 = 403 + 1;
  • 403 ÷ 2 = 201 + 1;
  • 201 ÷ 2 = 100 + 1;
  • 100 ÷ 2 = 50 + 0;
  • 50 ÷ 2 = 25 + 0;
  • 25 ÷ 2 = 12 + 1;
  • 12 ÷ 2 = 6 + 0;
  • 6 ÷ 2 = 3 + 0;
  • 3 ÷ 2 = 1 + 1;
  • 1 ÷ 2 = 0 + 1;

2. Construct the base 2 representation of the positive number.

Take all the remainders starting from the bottom of the list constructed above.


1 000 100 100 000 000 000 000 000 000 067(10) =


1100 1001 1111 0111 1111 0110 1001 1101 0000 0010 0110 0000 0100 1101 1100 0000 1000 0001 1010 1000 0000 0000 0000 0100 0011(2)


3. Normalize the binary representation of the number.

Shift the decimal mark 99 positions to the left, so that only one non zero digit remains to the left of it:


1 000 100 100 000 000 000 000 000 000 067(10) =


1100 1001 1111 0111 1111 0110 1001 1101 0000 0010 0110 0000 0100 1101 1100 0000 1000 0001 1010 1000 0000 0000 0000 0100 0011(2) =


1100 1001 1111 0111 1111 0110 1001 1101 0000 0010 0110 0000 0100 1101 1100 0000 1000 0001 1010 1000 0000 0000 0000 0100 0011(2) × 20 =


1.1001 0011 1110 1111 1110 1101 0011 1010 0000 0100 1100 0000 1001 1011 1000 0001 0000 0011 0101 0000 0000 0000 0000 1000 011(2) × 299


4. Up to this moment, there are the following elements that would feed into the 32 bit single precision IEEE 754 binary floating point representation:

Sign 0 (a positive number)


Exponent (unadjusted): 99


Mantissa (not normalized):
1.1001 0011 1110 1111 1110 1101 0011 1010 0000 0100 1100 0000 1001 1011 1000 0001 0000 0011 0101 0000 0000 0000 0000 1000 011


5. Adjust the exponent.

Use the 8 bit excess/bias notation:


Exponent (adjusted) =


Exponent (unadjusted) + 2(8-1) - 1 =


99 + 2(8-1) - 1 =


(99 + 127)(10) =


226(10)


6. Convert the adjusted exponent from the decimal (base 10) to 8 bit binary.

Use the same technique of repeatedly dividing by 2:


  • division = quotient + remainder;
  • 226 ÷ 2 = 113 + 0;
  • 113 ÷ 2 = 56 + 1;
  • 56 ÷ 2 = 28 + 0;
  • 28 ÷ 2 = 14 + 0;
  • 14 ÷ 2 = 7 + 0;
  • 7 ÷ 2 = 3 + 1;
  • 3 ÷ 2 = 1 + 1;
  • 1 ÷ 2 = 0 + 1;

7. Construct the base 2 representation of the adjusted exponent.

Take all the remainders starting from the bottom of the list constructed above.


Exponent (adjusted) =


226(10) =


1110 0010(2)


8. Normalize the mantissa.

a) Remove the leading (the leftmost) bit, since it's allways 1, and the decimal point, if the case.


b) Adjust its length to 23 bits, by removing the excess bits, from the right (if any of the excess bits is set on 1, we are losing precision...).


Mantissa (normalized) =


1. 100 1001 1111 0111 1111 0110 1001 1101 0000 0010 0110 0000 0100 1101 1100 0000 1000 0001 1010 1000 0000 0000 0000 0100 0011 =


100 1001 1111 0111 1111 0110


9. The three elements that make up the number's 32 bit single precision IEEE 754 binary floating point representation:

Sign (1 bit) =
0 (a positive number)


Exponent (8 bits) =
1110 0010


Mantissa (23 bits) =
100 1001 1111 0111 1111 0110


The base ten decimal number 1 000 100 100 000 000 000 000 000 000 067 converted and written in 32 bit single precision IEEE 754 binary floating point representation:
0 - 1110 0010 - 100 1001 1111 0111 1111 0110

The latest decimal numbers converted from base ten to 32 bit single precision IEEE 754 floating point binary standard representation

Number 10 001 101 010 101 001 010 099 899 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard May 01 10:23 UTC (GMT)
Number 4 039 999 922 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard May 01 10:23 UTC (GMT)
Number -0.000 011 1 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard May 01 10:23 UTC (GMT)
Number 0.375 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard May 01 10:23 UTC (GMT)
Number 6 015 021 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard May 01 10:23 UTC (GMT)
Number -528.2 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard May 01 10:23 UTC (GMT)
Number 359 923 656 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard May 01 10:23 UTC (GMT)
Number 9 992 840 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard May 01 10:23 UTC (GMT)
Number 11 100 100 110 035 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard May 01 10:23 UTC (GMT)
Number -42.32 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard May 01 10:23 UTC (GMT)
All base ten decimal numbers converted to 32 bit single precision IEEE 754 binary floating point

How to convert decimal numbers from base ten to 32 bit single precision IEEE 754 binary floating point standard

Follow the steps below to convert a base 10 decimal number to 32 bit single precision IEEE 754 binary floating point:

  • 1. If the number to be converted is negative, start with its the positive version.
  • 2. First convert the integer part. Divide repeatedly by 2 the base ten positive representation of the integer number that is to be converted to binary, until we get a quotient that is equal to zero, keeping track of each remainder.
  • 3. Construct the base 2 representation of the positive integer part of the number, by taking all the remainders of the previous dividing operations, starting from the bottom of the list constructed above. Thus, the last remainder of the divisions becomes the first symbol (the leftmost) of the base two number, while the first remainder becomes the last symbol (the rightmost).
  • 4. Then convert the fractional part. Multiply the number repeatedly by 2, until we get a fractional part that is equal to zero, keeping track of each integer part of the results.
  • 5. Construct the base 2 representation of the fractional part of the number by taking all the integer parts of the previous multiplying operations, starting from the top of the constructed list above (they should appear in the binary representation, from left to right, in the order they have been calculated).
  • 6. Normalize the binary representation of the number, by shifting the decimal point (or if you prefer, the decimal mark) "n" positions either to the left or to the right, so that only one non zero digit remains to the left of the decimal point.
  • 7. Adjust the exponent in 8 bit excess/bias notation and then convert it from decimal (base 10) to 8 bit binary, by using the same technique of repeatedly dividing by 2, as shown above:
    Exponent (adjusted) = Exponent (unadjusted) + 2(8-1) - 1
  • 8. Normalize mantissa, remove the leading (leftmost) bit, since it's allways '1' (and the decimal sign if the case) and adjust its length to 23 bits, either by removing the excess bits from the right (losing precision...) or by adding extra '0' bits to the right.
  • 9. Sign (it takes 1 bit) is either 1 for a negative or 0 for a positive number.

Example: convert the negative number -25.347 from decimal system (base ten) to 32 bit single precision IEEE 754 binary floating point:

  • 1. Start with the positive version of the number:

    |-25.347| = 25.347

  • 2. First convert the integer part, 25. Divide it repeatedly by 2, keeping track of each remainder, until we get a quotient that is equal to zero:
    • division = quotient + remainder;
    • 25 ÷ 2 = 12 + 1;
    • 12 ÷ 2 = 6 + 0;
    • 6 ÷ 2 = 3 + 0;
    • 3 ÷ 2 = 1 + 1;
    • 1 ÷ 2 = 0 + 1;
    • We have encountered a quotient that is ZERO => FULL STOP
  • 3. Construct the base 2 representation of the integer part of the number by taking all the remainders of the previous dividing operations, starting from the bottom of the list constructed above:

    25(10) = 1 1001(2)

  • 4. Then convert the fractional part, 0.347. Multiply repeatedly by 2, keeping track of each integer part of the results, until we get a fractional part that is equal to zero:
    • #) multiplying = integer + fractional part;
    • 1) 0.347 × 2 = 0 + 0.694;
    • 2) 0.694 × 2 = 1 + 0.388;
    • 3) 0.388 × 2 = 0 + 0.776;
    • 4) 0.776 × 2 = 1 + 0.552;
    • 5) 0.552 × 2 = 1 + 0.104;
    • 6) 0.104 × 2 = 0 + 0.208;
    • 7) 0.208 × 2 = 0 + 0.416;
    • 8) 0.416 × 2 = 0 + 0.832;
    • 9) 0.832 × 2 = 1 + 0.664;
    • 10) 0.664 × 2 = 1 + 0.328;
    • 11) 0.328 × 2 = 0 + 0.656;
    • 12) 0.656 × 2 = 1 + 0.312;
    • 13) 0.312 × 2 = 0 + 0.624;
    • 14) 0.624 × 2 = 1 + 0.248;
    • 15) 0.248 × 2 = 0 + 0.496;
    • 16) 0.496 × 2 = 0 + 0.992;
    • 17) 0.992 × 2 = 1 + 0.984;
    • 18) 0.984 × 2 = 1 + 0.968;
    • 19) 0.968 × 2 = 1 + 0.936;
    • 20) 0.936 × 2 = 1 + 0.872;
    • 21) 0.872 × 2 = 1 + 0.744;
    • 22) 0.744 × 2 = 1 + 0.488;
    • 23) 0.488 × 2 = 0 + 0.976;
    • 24) 0.976 × 2 = 1 + 0.952;
    • We didn't get any fractional part that was equal to zero. But we had enough iterations (over Mantissa limit = 23) and at least one integer part that was different from zero => FULL STOP (losing precision...).
  • 5. Construct the base 2 representation of the fractional part of the number, by taking all the integer parts of the previous multiplying operations, starting from the top of the constructed list above:

    0.347(10) = 0.0101 1000 1101 0100 1111 1101(2)

  • 6. Summarizing - the positive number before normalization:

    25.347(10) = 1 1001.0101 1000 1101 0100 1111 1101(2)

  • 7. Normalize the binary representation of the number, shifting the decimal point 4 positions to the left so that only one non-zero digit stays to the left of the decimal point:

    25.347(10) =
    1 1001.0101 1000 1101 0100 1111 1101(2) =
    1 1001.0101 1000 1101 0100 1111 1101(2) × 20 =
    1.1001 0101 1000 1101 0100 1111 1101(2) × 24

  • 8. Up to this moment, there are the following elements that would feed into the 32 bit single precision IEEE 754 binary floating point:

    Sign: 1 (a negative number)

    Exponent (unadjusted): 4

    Mantissa (not-normalized): 1.1001 0101 1000 1101 0100 1111 1101

  • 9. Adjust the exponent in 8 bit excess/bias notation and then convert it from decimal (base 10) to 8 bit binary (base 2), by using the same technique of repeatedly dividing it by 2, as already demonstrated above:

    Exponent (adjusted) = Exponent (unadjusted) + 2(8-1) - 1 = (4 + 127)(10) = 131(10) =
    1000 0011(2)

  • 10. Normalize the mantissa, remove the leading (leftmost) bit, since it's allways '1' (and the decimal point) and adjust its length to 23 bits, by removing the excess bits from the right (losing precision...):

    Mantissa (not-normalized): 1.1001 0101 1000 1101 0100 1111 1101

    Mantissa (normalized): 100 1010 1100 0110 1010 0111

  • Conclusion:

    Sign (1 bit) = 1 (a negative number)

    Exponent (8 bits) = 1000 0011

    Mantissa (23 bits) = 100 1010 1100 0110 1010 0111

  • Number -25.347, converted from the decimal system (base 10) to 32 bit single precision IEEE 754 binary floating point =
    1 - 1000 0011 - 100 1010 1100 0110 1010 0111