32bit IEEE 754: Decimal ↗ Single Precision Floating Point Binary: 1 000 011 000 011 101 009 999 999 999 993 Convert the Number to 32 Bit Single Precision IEEE 754 Binary Floating Point Representation Standard, From a Base 10 Decimal System Number

Number 1 000 011 000 011 101 009 999 999 999 993(10) converted and written in 32 bit single precision IEEE 754 binary floating point representation (1 bit for sign, 8 bits for exponent, 23 bits for mantissa)

1. Divide the number repeatedly by 2.

Keep track of each remainder.

We stop when we get a quotient that is equal to zero.


  • division = quotient + remainder;
  • 1 000 011 000 011 101 009 999 999 999 993 ÷ 2 = 500 005 500 005 550 504 999 999 999 996 + 1;
  • 500 005 500 005 550 504 999 999 999 996 ÷ 2 = 250 002 750 002 775 252 499 999 999 998 + 0;
  • 250 002 750 002 775 252 499 999 999 998 ÷ 2 = 125 001 375 001 387 626 249 999 999 999 + 0;
  • 125 001 375 001 387 626 249 999 999 999 ÷ 2 = 62 500 687 500 693 813 124 999 999 999 + 1;
  • 62 500 687 500 693 813 124 999 999 999 ÷ 2 = 31 250 343 750 346 906 562 499 999 999 + 1;
  • 31 250 343 750 346 906 562 499 999 999 ÷ 2 = 15 625 171 875 173 453 281 249 999 999 + 1;
  • 15 625 171 875 173 453 281 249 999 999 ÷ 2 = 7 812 585 937 586 726 640 624 999 999 + 1;
  • 7 812 585 937 586 726 640 624 999 999 ÷ 2 = 3 906 292 968 793 363 320 312 499 999 + 1;
  • 3 906 292 968 793 363 320 312 499 999 ÷ 2 = 1 953 146 484 396 681 660 156 249 999 + 1;
  • 1 953 146 484 396 681 660 156 249 999 ÷ 2 = 976 573 242 198 340 830 078 124 999 + 1;
  • 976 573 242 198 340 830 078 124 999 ÷ 2 = 488 286 621 099 170 415 039 062 499 + 1;
  • 488 286 621 099 170 415 039 062 499 ÷ 2 = 244 143 310 549 585 207 519 531 249 + 1;
  • 244 143 310 549 585 207 519 531 249 ÷ 2 = 122 071 655 274 792 603 759 765 624 + 1;
  • 122 071 655 274 792 603 759 765 624 ÷ 2 = 61 035 827 637 396 301 879 882 812 + 0;
  • 61 035 827 637 396 301 879 882 812 ÷ 2 = 30 517 913 818 698 150 939 941 406 + 0;
  • 30 517 913 818 698 150 939 941 406 ÷ 2 = 15 258 956 909 349 075 469 970 703 + 0;
  • 15 258 956 909 349 075 469 970 703 ÷ 2 = 7 629 478 454 674 537 734 985 351 + 1;
  • 7 629 478 454 674 537 734 985 351 ÷ 2 = 3 814 739 227 337 268 867 492 675 + 1;
  • 3 814 739 227 337 268 867 492 675 ÷ 2 = 1 907 369 613 668 634 433 746 337 + 1;
  • 1 907 369 613 668 634 433 746 337 ÷ 2 = 953 684 806 834 317 216 873 168 + 1;
  • 953 684 806 834 317 216 873 168 ÷ 2 = 476 842 403 417 158 608 436 584 + 0;
  • 476 842 403 417 158 608 436 584 ÷ 2 = 238 421 201 708 579 304 218 292 + 0;
  • 238 421 201 708 579 304 218 292 ÷ 2 = 119 210 600 854 289 652 109 146 + 0;
  • 119 210 600 854 289 652 109 146 ÷ 2 = 59 605 300 427 144 826 054 573 + 0;
  • 59 605 300 427 144 826 054 573 ÷ 2 = 29 802 650 213 572 413 027 286 + 1;
  • 29 802 650 213 572 413 027 286 ÷ 2 = 14 901 325 106 786 206 513 643 + 0;
  • 14 901 325 106 786 206 513 643 ÷ 2 = 7 450 662 553 393 103 256 821 + 1;
  • 7 450 662 553 393 103 256 821 ÷ 2 = 3 725 331 276 696 551 628 410 + 1;
  • 3 725 331 276 696 551 628 410 ÷ 2 = 1 862 665 638 348 275 814 205 + 0;
  • 1 862 665 638 348 275 814 205 ÷ 2 = 931 332 819 174 137 907 102 + 1;
  • 931 332 819 174 137 907 102 ÷ 2 = 465 666 409 587 068 953 551 + 0;
  • 465 666 409 587 068 953 551 ÷ 2 = 232 833 204 793 534 476 775 + 1;
  • 232 833 204 793 534 476 775 ÷ 2 = 116 416 602 396 767 238 387 + 1;
  • 116 416 602 396 767 238 387 ÷ 2 = 58 208 301 198 383 619 193 + 1;
  • 58 208 301 198 383 619 193 ÷ 2 = 29 104 150 599 191 809 596 + 1;
  • 29 104 150 599 191 809 596 ÷ 2 = 14 552 075 299 595 904 798 + 0;
  • 14 552 075 299 595 904 798 ÷ 2 = 7 276 037 649 797 952 399 + 0;
  • 7 276 037 649 797 952 399 ÷ 2 = 3 638 018 824 898 976 199 + 1;
  • 3 638 018 824 898 976 199 ÷ 2 = 1 819 009 412 449 488 099 + 1;
  • 1 819 009 412 449 488 099 ÷ 2 = 909 504 706 224 744 049 + 1;
  • 909 504 706 224 744 049 ÷ 2 = 454 752 353 112 372 024 + 1;
  • 454 752 353 112 372 024 ÷ 2 = 227 376 176 556 186 012 + 0;
  • 227 376 176 556 186 012 ÷ 2 = 113 688 088 278 093 006 + 0;
  • 113 688 088 278 093 006 ÷ 2 = 56 844 044 139 046 503 + 0;
  • 56 844 044 139 046 503 ÷ 2 = 28 422 022 069 523 251 + 1;
  • 28 422 022 069 523 251 ÷ 2 = 14 211 011 034 761 625 + 1;
  • 14 211 011 034 761 625 ÷ 2 = 7 105 505 517 380 812 + 1;
  • 7 105 505 517 380 812 ÷ 2 = 3 552 752 758 690 406 + 0;
  • 3 552 752 758 690 406 ÷ 2 = 1 776 376 379 345 203 + 0;
  • 1 776 376 379 345 203 ÷ 2 = 888 188 189 672 601 + 1;
  • 888 188 189 672 601 ÷ 2 = 444 094 094 836 300 + 1;
  • 444 094 094 836 300 ÷ 2 = 222 047 047 418 150 + 0;
  • 222 047 047 418 150 ÷ 2 = 111 023 523 709 075 + 0;
  • 111 023 523 709 075 ÷ 2 = 55 511 761 854 537 + 1;
  • 55 511 761 854 537 ÷ 2 = 27 755 880 927 268 + 1;
  • 27 755 880 927 268 ÷ 2 = 13 877 940 463 634 + 0;
  • 13 877 940 463 634 ÷ 2 = 6 938 970 231 817 + 0;
  • 6 938 970 231 817 ÷ 2 = 3 469 485 115 908 + 1;
  • 3 469 485 115 908 ÷ 2 = 1 734 742 557 954 + 0;
  • 1 734 742 557 954 ÷ 2 = 867 371 278 977 + 0;
  • 867 371 278 977 ÷ 2 = 433 685 639 488 + 1;
  • 433 685 639 488 ÷ 2 = 216 842 819 744 + 0;
  • 216 842 819 744 ÷ 2 = 108 421 409 872 + 0;
  • 108 421 409 872 ÷ 2 = 54 210 704 936 + 0;
  • 54 210 704 936 ÷ 2 = 27 105 352 468 + 0;
  • 27 105 352 468 ÷ 2 = 13 552 676 234 + 0;
  • 13 552 676 234 ÷ 2 = 6 776 338 117 + 0;
  • 6 776 338 117 ÷ 2 = 3 388 169 058 + 1;
  • 3 388 169 058 ÷ 2 = 1 694 084 529 + 0;
  • 1 694 084 529 ÷ 2 = 847 042 264 + 1;
  • 847 042 264 ÷ 2 = 423 521 132 + 0;
  • 423 521 132 ÷ 2 = 211 760 566 + 0;
  • 211 760 566 ÷ 2 = 105 880 283 + 0;
  • 105 880 283 ÷ 2 = 52 940 141 + 1;
  • 52 940 141 ÷ 2 = 26 470 070 + 1;
  • 26 470 070 ÷ 2 = 13 235 035 + 0;
  • 13 235 035 ÷ 2 = 6 617 517 + 1;
  • 6 617 517 ÷ 2 = 3 308 758 + 1;
  • 3 308 758 ÷ 2 = 1 654 379 + 0;
  • 1 654 379 ÷ 2 = 827 189 + 1;
  • 827 189 ÷ 2 = 413 594 + 1;
  • 413 594 ÷ 2 = 206 797 + 0;
  • 206 797 ÷ 2 = 103 398 + 1;
  • 103 398 ÷ 2 = 51 699 + 0;
  • 51 699 ÷ 2 = 25 849 + 1;
  • 25 849 ÷ 2 = 12 924 + 1;
  • 12 924 ÷ 2 = 6 462 + 0;
  • 6 462 ÷ 2 = 3 231 + 0;
  • 3 231 ÷ 2 = 1 615 + 1;
  • 1 615 ÷ 2 = 807 + 1;
  • 807 ÷ 2 = 403 + 1;
  • 403 ÷ 2 = 201 + 1;
  • 201 ÷ 2 = 100 + 1;
  • 100 ÷ 2 = 50 + 0;
  • 50 ÷ 2 = 25 + 0;
  • 25 ÷ 2 = 12 + 1;
  • 12 ÷ 2 = 6 + 0;
  • 6 ÷ 2 = 3 + 0;
  • 3 ÷ 2 = 1 + 1;
  • 1 ÷ 2 = 0 + 1;

2. Construct the base 2 representation of the positive number.

Take all the remainders starting from the bottom of the list constructed above.


1 000 011 000 011 101 009 999 999 999 993(10) =


1100 1001 1111 0011 0101 1011 0110 0010 1000 0001 0010 0110 0110 0111 0001 1110 0111 1010 1101 0000 1111 0001 1111 1111 1001(2)


3. Normalize the binary representation of the number.

Shift the decimal mark 99 positions to the left, so that only one non zero digit remains to the left of it:


1 000 011 000 011 101 009 999 999 999 993(10) =


1100 1001 1111 0011 0101 1011 0110 0010 1000 0001 0010 0110 0110 0111 0001 1110 0111 1010 1101 0000 1111 0001 1111 1111 1001(2) =


1100 1001 1111 0011 0101 1011 0110 0010 1000 0001 0010 0110 0110 0111 0001 1110 0111 1010 1101 0000 1111 0001 1111 1111 1001(2) × 20 =


1.1001 0011 1110 0110 1011 0110 1100 0101 0000 0010 0100 1100 1100 1110 0011 1100 1111 0101 1010 0001 1110 0011 1111 1111 001(2) × 299


4. Up to this moment, there are the following elements that would feed into the 32 bit single precision IEEE 754 binary floating point representation:

Sign 0 (a positive number)


Exponent (unadjusted): 99


Mantissa (not normalized):
1.1001 0011 1110 0110 1011 0110 1100 0101 0000 0010 0100 1100 1100 1110 0011 1100 1111 0101 1010 0001 1110 0011 1111 1111 001


5. Adjust the exponent.

Use the 8 bit excess/bias notation:


Exponent (adjusted) =


Exponent (unadjusted) + 2(8-1) - 1 =


99 + 2(8-1) - 1 =


(99 + 127)(10) =


226(10)


6. Convert the adjusted exponent from the decimal (base 10) to 8 bit binary.

Use the same technique of repeatedly dividing by 2:


  • division = quotient + remainder;
  • 226 ÷ 2 = 113 + 0;
  • 113 ÷ 2 = 56 + 1;
  • 56 ÷ 2 = 28 + 0;
  • 28 ÷ 2 = 14 + 0;
  • 14 ÷ 2 = 7 + 0;
  • 7 ÷ 2 = 3 + 1;
  • 3 ÷ 2 = 1 + 1;
  • 1 ÷ 2 = 0 + 1;

7. Construct the base 2 representation of the adjusted exponent.

Take all the remainders starting from the bottom of the list constructed above.


Exponent (adjusted) =


226(10) =


1110 0010(2)


8. Normalize the mantissa.

a) Remove the leading (the leftmost) bit, since it's allways 1, and the decimal point, if the case.


b) Adjust its length to 23 bits, by removing the excess bits, from the right (if any of the excess bits is set on 1, we are losing precision...).


Mantissa (normalized) =


1. 100 1001 1111 0011 0101 1011 0110 0010 1000 0001 0010 0110 0110 0111 0001 1110 0111 1010 1101 0000 1111 0001 1111 1111 1001 =


100 1001 1111 0011 0101 1011


9. The three elements that make up the number's 32 bit single precision IEEE 754 binary floating point representation:

Sign (1 bit) =
0 (a positive number)


Exponent (8 bits) =
1110 0010


Mantissa (23 bits) =
100 1001 1111 0011 0101 1011


The base ten decimal number 1 000 011 000 011 101 009 999 999 999 993 converted and written in 32 bit single precision IEEE 754 binary floating point representation:
0 - 1110 0010 - 100 1001 1111 0011 0101 1011

The latest decimal numbers converted from base ten to 32 bit single precision IEEE 754 floating point binary standard representation

Number 1 163 984 975 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard May 04 08:51 UTC (GMT)
Number 0.042 692 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard May 04 08:51 UTC (GMT)
Number 5 021 507 082 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard May 04 08:51 UTC (GMT)
Number -25.431 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard May 04 08:51 UTC (GMT)
Number 0.005 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard May 04 08:51 UTC (GMT)
Number 0.718 81 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard May 04 08:51 UTC (GMT)
Number 1.100 17 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard May 04 08:51 UTC (GMT)
Number -751.14 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard May 04 08:51 UTC (GMT)
Number 0.000 001 000 000 111 162 080 429 494 380 950 927 734 374 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard May 04 08:51 UTC (GMT)
Number 0.000 000 977 517 8 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard May 04 08:51 UTC (GMT)
All base ten decimal numbers converted to 32 bit single precision IEEE 754 binary floating point

How to convert decimal numbers from base ten to 32 bit single precision IEEE 754 binary floating point standard

Follow the steps below to convert a base 10 decimal number to 32 bit single precision IEEE 754 binary floating point:

  • 1. If the number to be converted is negative, start with its the positive version.
  • 2. First convert the integer part. Divide repeatedly by 2 the base ten positive representation of the integer number that is to be converted to binary, until we get a quotient that is equal to zero, keeping track of each remainder.
  • 3. Construct the base 2 representation of the positive integer part of the number, by taking all the remainders of the previous dividing operations, starting from the bottom of the list constructed above. Thus, the last remainder of the divisions becomes the first symbol (the leftmost) of the base two number, while the first remainder becomes the last symbol (the rightmost).
  • 4. Then convert the fractional part. Multiply the number repeatedly by 2, until we get a fractional part that is equal to zero, keeping track of each integer part of the results.
  • 5. Construct the base 2 representation of the fractional part of the number by taking all the integer parts of the previous multiplying operations, starting from the top of the constructed list above (they should appear in the binary representation, from left to right, in the order they have been calculated).
  • 6. Normalize the binary representation of the number, by shifting the decimal point (or if you prefer, the decimal mark) "n" positions either to the left or to the right, so that only one non zero digit remains to the left of the decimal point.
  • 7. Adjust the exponent in 8 bit excess/bias notation and then convert it from decimal (base 10) to 8 bit binary, by using the same technique of repeatedly dividing by 2, as shown above:
    Exponent (adjusted) = Exponent (unadjusted) + 2(8-1) - 1
  • 8. Normalize mantissa, remove the leading (leftmost) bit, since it's allways '1' (and the decimal sign if the case) and adjust its length to 23 bits, either by removing the excess bits from the right (losing precision...) or by adding extra '0' bits to the right.
  • 9. Sign (it takes 1 bit) is either 1 for a negative or 0 for a positive number.

Example: convert the negative number -25.347 from decimal system (base ten) to 32 bit single precision IEEE 754 binary floating point:

  • 1. Start with the positive version of the number:

    |-25.347| = 25.347

  • 2. First convert the integer part, 25. Divide it repeatedly by 2, keeping track of each remainder, until we get a quotient that is equal to zero:
    • division = quotient + remainder;
    • 25 ÷ 2 = 12 + 1;
    • 12 ÷ 2 = 6 + 0;
    • 6 ÷ 2 = 3 + 0;
    • 3 ÷ 2 = 1 + 1;
    • 1 ÷ 2 = 0 + 1;
    • We have encountered a quotient that is ZERO => FULL STOP
  • 3. Construct the base 2 representation of the integer part of the number by taking all the remainders of the previous dividing operations, starting from the bottom of the list constructed above:

    25(10) = 1 1001(2)

  • 4. Then convert the fractional part, 0.347. Multiply repeatedly by 2, keeping track of each integer part of the results, until we get a fractional part that is equal to zero:
    • #) multiplying = integer + fractional part;
    • 1) 0.347 × 2 = 0 + 0.694;
    • 2) 0.694 × 2 = 1 + 0.388;
    • 3) 0.388 × 2 = 0 + 0.776;
    • 4) 0.776 × 2 = 1 + 0.552;
    • 5) 0.552 × 2 = 1 + 0.104;
    • 6) 0.104 × 2 = 0 + 0.208;
    • 7) 0.208 × 2 = 0 + 0.416;
    • 8) 0.416 × 2 = 0 + 0.832;
    • 9) 0.832 × 2 = 1 + 0.664;
    • 10) 0.664 × 2 = 1 + 0.328;
    • 11) 0.328 × 2 = 0 + 0.656;
    • 12) 0.656 × 2 = 1 + 0.312;
    • 13) 0.312 × 2 = 0 + 0.624;
    • 14) 0.624 × 2 = 1 + 0.248;
    • 15) 0.248 × 2 = 0 + 0.496;
    • 16) 0.496 × 2 = 0 + 0.992;
    • 17) 0.992 × 2 = 1 + 0.984;
    • 18) 0.984 × 2 = 1 + 0.968;
    • 19) 0.968 × 2 = 1 + 0.936;
    • 20) 0.936 × 2 = 1 + 0.872;
    • 21) 0.872 × 2 = 1 + 0.744;
    • 22) 0.744 × 2 = 1 + 0.488;
    • 23) 0.488 × 2 = 0 + 0.976;
    • 24) 0.976 × 2 = 1 + 0.952;
    • We didn't get any fractional part that was equal to zero. But we had enough iterations (over Mantissa limit = 23) and at least one integer part that was different from zero => FULL STOP (losing precision...).
  • 5. Construct the base 2 representation of the fractional part of the number, by taking all the integer parts of the previous multiplying operations, starting from the top of the constructed list above:

    0.347(10) = 0.0101 1000 1101 0100 1111 1101(2)

  • 6. Summarizing - the positive number before normalization:

    25.347(10) = 1 1001.0101 1000 1101 0100 1111 1101(2)

  • 7. Normalize the binary representation of the number, shifting the decimal point 4 positions to the left so that only one non-zero digit stays to the left of the decimal point:

    25.347(10) =
    1 1001.0101 1000 1101 0100 1111 1101(2) =
    1 1001.0101 1000 1101 0100 1111 1101(2) × 20 =
    1.1001 0101 1000 1101 0100 1111 1101(2) × 24

  • 8. Up to this moment, there are the following elements that would feed into the 32 bit single precision IEEE 754 binary floating point:

    Sign: 1 (a negative number)

    Exponent (unadjusted): 4

    Mantissa (not-normalized): 1.1001 0101 1000 1101 0100 1111 1101

  • 9. Adjust the exponent in 8 bit excess/bias notation and then convert it from decimal (base 10) to 8 bit binary (base 2), by using the same technique of repeatedly dividing it by 2, as already demonstrated above:

    Exponent (adjusted) = Exponent (unadjusted) + 2(8-1) - 1 = (4 + 127)(10) = 131(10) =
    1000 0011(2)

  • 10. Normalize the mantissa, remove the leading (leftmost) bit, since it's allways '1' (and the decimal point) and adjust its length to 23 bits, by removing the excess bits from the right (losing precision...):

    Mantissa (not-normalized): 1.1001 0101 1000 1101 0100 1111 1101

    Mantissa (normalized): 100 1010 1100 0110 1010 0111

  • Conclusion:

    Sign (1 bit) = 1 (a negative number)

    Exponent (8 bits) = 1000 0011

    Mantissa (23 bits) = 100 1010 1100 0110 1010 0111

  • Number -25.347, converted from the decimal system (base 10) to 32 bit single precision IEEE 754 binary floating point =
    1 - 1000 0011 - 100 1010 1100 0110 1010 0111