1 000 011 000 000 001 010 000 000 000 930 Converted to 32 Bit Single Precision IEEE 754 Binary Floating Point Representation Standard

Convert decimal 1 000 011 000 000 001 010 000 000 000 930(10) to 32 bit single precision IEEE 754 binary floating point representation standard (1 bit for sign, 8 bits for exponent, 23 bits for mantissa)

What are the steps to convert decimal number
1 000 011 000 000 001 010 000 000 000 930(10) to 32 bit single precision IEEE 754 binary floating point representation (1 bit for sign, 8 bits for exponent, 23 bits for mantissa)

1. Divide the number repeatedly by 2.

Keep track of each remainder.

We stop when we get a quotient that is equal to zero.


  • division = quotient + remainder;
  • 1 000 011 000 000 001 010 000 000 000 930 ÷ 2 = 500 005 500 000 000 505 000 000 000 465 + 0;
  • 500 005 500 000 000 505 000 000 000 465 ÷ 2 = 250 002 750 000 000 252 500 000 000 232 + 1;
  • 250 002 750 000 000 252 500 000 000 232 ÷ 2 = 125 001 375 000 000 126 250 000 000 116 + 0;
  • 125 001 375 000 000 126 250 000 000 116 ÷ 2 = 62 500 687 500 000 063 125 000 000 058 + 0;
  • 62 500 687 500 000 063 125 000 000 058 ÷ 2 = 31 250 343 750 000 031 562 500 000 029 + 0;
  • 31 250 343 750 000 031 562 500 000 029 ÷ 2 = 15 625 171 875 000 015 781 250 000 014 + 1;
  • 15 625 171 875 000 015 781 250 000 014 ÷ 2 = 7 812 585 937 500 007 890 625 000 007 + 0;
  • 7 812 585 937 500 007 890 625 000 007 ÷ 2 = 3 906 292 968 750 003 945 312 500 003 + 1;
  • 3 906 292 968 750 003 945 312 500 003 ÷ 2 = 1 953 146 484 375 001 972 656 250 001 + 1;
  • 1 953 146 484 375 001 972 656 250 001 ÷ 2 = 976 573 242 187 500 986 328 125 000 + 1;
  • 976 573 242 187 500 986 328 125 000 ÷ 2 = 488 286 621 093 750 493 164 062 500 + 0;
  • 488 286 621 093 750 493 164 062 500 ÷ 2 = 244 143 310 546 875 246 582 031 250 + 0;
  • 244 143 310 546 875 246 582 031 250 ÷ 2 = 122 071 655 273 437 623 291 015 625 + 0;
  • 122 071 655 273 437 623 291 015 625 ÷ 2 = 61 035 827 636 718 811 645 507 812 + 1;
  • 61 035 827 636 718 811 645 507 812 ÷ 2 = 30 517 913 818 359 405 822 753 906 + 0;
  • 30 517 913 818 359 405 822 753 906 ÷ 2 = 15 258 956 909 179 702 911 376 953 + 0;
  • 15 258 956 909 179 702 911 376 953 ÷ 2 = 7 629 478 454 589 851 455 688 476 + 1;
  • 7 629 478 454 589 851 455 688 476 ÷ 2 = 3 814 739 227 294 925 727 844 238 + 0;
  • 3 814 739 227 294 925 727 844 238 ÷ 2 = 1 907 369 613 647 462 863 922 119 + 0;
  • 1 907 369 613 647 462 863 922 119 ÷ 2 = 953 684 806 823 731 431 961 059 + 1;
  • 953 684 806 823 731 431 961 059 ÷ 2 = 476 842 403 411 865 715 980 529 + 1;
  • 476 842 403 411 865 715 980 529 ÷ 2 = 238 421 201 705 932 857 990 264 + 1;
  • 238 421 201 705 932 857 990 264 ÷ 2 = 119 210 600 852 966 428 995 132 + 0;
  • 119 210 600 852 966 428 995 132 ÷ 2 = 59 605 300 426 483 214 497 566 + 0;
  • 59 605 300 426 483 214 497 566 ÷ 2 = 29 802 650 213 241 607 248 783 + 0;
  • 29 802 650 213 241 607 248 783 ÷ 2 = 14 901 325 106 620 803 624 391 + 1;
  • 14 901 325 106 620 803 624 391 ÷ 2 = 7 450 662 553 310 401 812 195 + 1;
  • 7 450 662 553 310 401 812 195 ÷ 2 = 3 725 331 276 655 200 906 097 + 1;
  • 3 725 331 276 655 200 906 097 ÷ 2 = 1 862 665 638 327 600 453 048 + 1;
  • 1 862 665 638 327 600 453 048 ÷ 2 = 931 332 819 163 800 226 524 + 0;
  • 931 332 819 163 800 226 524 ÷ 2 = 465 666 409 581 900 113 262 + 0;
  • 465 666 409 581 900 113 262 ÷ 2 = 232 833 204 790 950 056 631 + 0;
  • 232 833 204 790 950 056 631 ÷ 2 = 116 416 602 395 475 028 315 + 1;
  • 116 416 602 395 475 028 315 ÷ 2 = 58 208 301 197 737 514 157 + 1;
  • 58 208 301 197 737 514 157 ÷ 2 = 29 104 150 598 868 757 078 + 1;
  • 29 104 150 598 868 757 078 ÷ 2 = 14 552 075 299 434 378 539 + 0;
  • 14 552 075 299 434 378 539 ÷ 2 = 7 276 037 649 717 189 269 + 1;
  • 7 276 037 649 717 189 269 ÷ 2 = 3 638 018 824 858 594 634 + 1;
  • 3 638 018 824 858 594 634 ÷ 2 = 1 819 009 412 429 297 317 + 0;
  • 1 819 009 412 429 297 317 ÷ 2 = 909 504 706 214 648 658 + 1;
  • 909 504 706 214 648 658 ÷ 2 = 454 752 353 107 324 329 + 0;
  • 454 752 353 107 324 329 ÷ 2 = 227 376 176 553 662 164 + 1;
  • 227 376 176 553 662 164 ÷ 2 = 113 688 088 276 831 082 + 0;
  • 113 688 088 276 831 082 ÷ 2 = 56 844 044 138 415 541 + 0;
  • 56 844 044 138 415 541 ÷ 2 = 28 422 022 069 207 770 + 1;
  • 28 422 022 069 207 770 ÷ 2 = 14 211 011 034 603 885 + 0;
  • 14 211 011 034 603 885 ÷ 2 = 7 105 505 517 301 942 + 1;
  • 7 105 505 517 301 942 ÷ 2 = 3 552 752 758 650 971 + 0;
  • 3 552 752 758 650 971 ÷ 2 = 1 776 376 379 325 485 + 1;
  • 1 776 376 379 325 485 ÷ 2 = 888 188 189 662 742 + 1;
  • 888 188 189 662 742 ÷ 2 = 444 094 094 831 371 + 0;
  • 444 094 094 831 371 ÷ 2 = 222 047 047 415 685 + 1;
  • 222 047 047 415 685 ÷ 2 = 111 023 523 707 842 + 1;
  • 111 023 523 707 842 ÷ 2 = 55 511 761 853 921 + 0;
  • 55 511 761 853 921 ÷ 2 = 27 755 880 926 960 + 1;
  • 27 755 880 926 960 ÷ 2 = 13 877 940 463 480 + 0;
  • 13 877 940 463 480 ÷ 2 = 6 938 970 231 740 + 0;
  • 6 938 970 231 740 ÷ 2 = 3 469 485 115 870 + 0;
  • 3 469 485 115 870 ÷ 2 = 1 734 742 557 935 + 0;
  • 1 734 742 557 935 ÷ 2 = 867 371 278 967 + 1;
  • 867 371 278 967 ÷ 2 = 433 685 639 483 + 1;
  • 433 685 639 483 ÷ 2 = 216 842 819 741 + 1;
  • 216 842 819 741 ÷ 2 = 108 421 409 870 + 1;
  • 108 421 409 870 ÷ 2 = 54 210 704 935 + 0;
  • 54 210 704 935 ÷ 2 = 27 105 352 467 + 1;
  • 27 105 352 467 ÷ 2 = 13 552 676 233 + 1;
  • 13 552 676 233 ÷ 2 = 6 776 338 116 + 1;
  • 6 776 338 116 ÷ 2 = 3 388 169 058 + 0;
  • 3 388 169 058 ÷ 2 = 1 694 084 529 + 0;
  • 1 694 084 529 ÷ 2 = 847 042 264 + 1;
  • 847 042 264 ÷ 2 = 423 521 132 + 0;
  • 423 521 132 ÷ 2 = 211 760 566 + 0;
  • 211 760 566 ÷ 2 = 105 880 283 + 0;
  • 105 880 283 ÷ 2 = 52 940 141 + 1;
  • 52 940 141 ÷ 2 = 26 470 070 + 1;
  • 26 470 070 ÷ 2 = 13 235 035 + 0;
  • 13 235 035 ÷ 2 = 6 617 517 + 1;
  • 6 617 517 ÷ 2 = 3 308 758 + 1;
  • 3 308 758 ÷ 2 = 1 654 379 + 0;
  • 1 654 379 ÷ 2 = 827 189 + 1;
  • 827 189 ÷ 2 = 413 594 + 1;
  • 413 594 ÷ 2 = 206 797 + 0;
  • 206 797 ÷ 2 = 103 398 + 1;
  • 103 398 ÷ 2 = 51 699 + 0;
  • 51 699 ÷ 2 = 25 849 + 1;
  • 25 849 ÷ 2 = 12 924 + 1;
  • 12 924 ÷ 2 = 6 462 + 0;
  • 6 462 ÷ 2 = 3 231 + 0;
  • 3 231 ÷ 2 = 1 615 + 1;
  • 1 615 ÷ 2 = 807 + 1;
  • 807 ÷ 2 = 403 + 1;
  • 403 ÷ 2 = 201 + 1;
  • 201 ÷ 2 = 100 + 1;
  • 100 ÷ 2 = 50 + 0;
  • 50 ÷ 2 = 25 + 0;
  • 25 ÷ 2 = 12 + 1;
  • 12 ÷ 2 = 6 + 0;
  • 6 ÷ 2 = 3 + 0;
  • 3 ÷ 2 = 1 + 1;
  • 1 ÷ 2 = 0 + 1;

2. Construct the base 2 representation of the positive number.

Take all the remainders starting from the bottom of the list constructed above.

1 000 011 000 000 001 010 000 000 000 930(10) =


1100 1001 1111 0011 0101 1011 0110 0010 0111 0111 1000 0101 1011 0101 0010 1011 0111 0001 1110 0011 1001 0010 0011 1010 0010(2)


3. Normalize the binary representation of the number.

Shift the decimal mark 99 positions to the left, so that only one non zero digit remains to the left of it:


1 000 011 000 000 001 010 000 000 000 930(10) =


1100 1001 1111 0011 0101 1011 0110 0010 0111 0111 1000 0101 1011 0101 0010 1011 0111 0001 1110 0011 1001 0010 0011 1010 0010(2) =


1100 1001 1111 0011 0101 1011 0110 0010 0111 0111 1000 0101 1011 0101 0010 1011 0111 0001 1110 0011 1001 0010 0011 1010 0010(2) × 20 =


1.1001 0011 1110 0110 1011 0110 1100 0100 1110 1111 0000 1011 0110 1010 0101 0110 1110 0011 1100 0111 0010 0100 0111 0100 010(2) × 299


4. Up to this moment, there are the following elements that would feed into the 32 bit single precision IEEE 754 binary floating point representation:

Sign 0 (a positive number)


Exponent (unadjusted): 99


Mantissa (not normalized):
1.1001 0011 1110 0110 1011 0110 1100 0100 1110 1111 0000 1011 0110 1010 0101 0110 1110 0011 1100 0111 0010 0100 0111 0100 010


5. Adjust the exponent.

Use the 8 bit excess/bias notation:


Exponent (adjusted) =


Exponent (unadjusted) + 2(8-1) - 1 =


99 + 2(8-1) - 1 =


(99 + 127)(10) =


226(10)


6. Convert the adjusted exponent from the decimal (base 10) to 8 bit binary.

Use the same technique of repeatedly dividing by 2:


  • division = quotient + remainder;
  • 226 ÷ 2 = 113 + 0;
  • 113 ÷ 2 = 56 + 1;
  • 56 ÷ 2 = 28 + 0;
  • 28 ÷ 2 = 14 + 0;
  • 14 ÷ 2 = 7 + 0;
  • 7 ÷ 2 = 3 + 1;
  • 3 ÷ 2 = 1 + 1;
  • 1 ÷ 2 = 0 + 1;

7. Construct the base 2 representation of the adjusted exponent.

Take all the remainders starting from the bottom of the list constructed above.


Exponent (adjusted) =


226(10) =


1110 0010(2)


8. Normalize the mantissa.

a) Remove the leading (the leftmost) bit, since it's allways 1, and the decimal point, if the case.


b) Adjust its length to 23 bits, by removing the excess bits, from the right (if any of the excess bits is set on 1, we are losing precision...).


Mantissa (normalized) =


1. 100 1001 1111 0011 0101 1011 0110 0010 0111 0111 1000 0101 1011 0101 0010 1011 0111 0001 1110 0011 1001 0010 0011 1010 0010 =


100 1001 1111 0011 0101 1011


9. The three elements that make up the number's 32 bit single precision IEEE 754 binary floating point representation:

Sign (1 bit) =
0 (a positive number)


Exponent (8 bits) =
1110 0010


Mantissa (23 bits) =
100 1001 1111 0011 0101 1011


Decimal number 1 000 011 000 000 001 010 000 000 000 930 converted to 32 bit single precision IEEE 754 binary floating point representation:

0 - 1110 0010 - 100 1001 1111 0011 0101 1011


How to convert decimal numbers from base ten to 32 bit single precision IEEE 754 binary floating point standard

Follow the steps below to convert a base 10 decimal number to 32 bit single precision IEEE 754 binary floating point:

  • 1. If the number to be converted is negative, start with its the positive version.
  • 2. First convert the integer part. Divide repeatedly by 2 the base ten positive representation of the integer number that is to be converted to binary, until we get a quotient that is equal to zero, keeping track of each remainder.
  • 3. Construct the base 2 representation of the positive integer part of the number, by taking all the remainders of the previous dividing operations, starting from the bottom of the list constructed above. Thus, the last remainder of the divisions becomes the first symbol (the leftmost) of the base two number, while the first remainder becomes the last symbol (the rightmost).
  • 4. Then convert the fractional part. Multiply the number repeatedly by 2, until we get a fractional part that is equal to zero, keeping track of each integer part of the results.
  • 5. Construct the base 2 representation of the fractional part of the number by taking all the integer parts of the previous multiplying operations, starting from the top of the constructed list above (they should appear in the binary representation, from left to right, in the order they have been calculated).
  • 6. Normalize the binary representation of the number, by shifting the decimal point (or if you prefer, the decimal mark) "n" positions either to the left or to the right, so that only one non zero digit remains to the left of the decimal point.
  • 7. Adjust the exponent in 8 bit excess/bias notation and then convert it from decimal (base 10) to 8 bit binary, by using the same technique of repeatedly dividing by 2, as shown above:
    Exponent (adjusted) = Exponent (unadjusted) + 2(8-1) - 1
  • 8. Normalize mantissa, remove the leading (leftmost) bit, since it's allways '1' (and the decimal sign if the case) and adjust its length to 23 bits, either by removing the excess bits from the right (losing precision...) or by adding extra '0' bits to the right.
  • 9. Sign (it takes 1 bit) is either 1 for a negative or 0 for a positive number.

Example: convert the negative number -25.347 from decimal system (base ten) to 32 bit single precision IEEE 754 binary floating point:

  • 1. Start with the positive version of the number:

    |-25.347| = 25.347

  • 2. First convert the integer part, 25. Divide it repeatedly by 2, keeping track of each remainder, until we get a quotient that is equal to zero:
    • division = quotient + remainder;
    • 25 ÷ 2 = 12 + 1;
    • 12 ÷ 2 = 6 + 0;
    • 6 ÷ 2 = 3 + 0;
    • 3 ÷ 2 = 1 + 1;
    • 1 ÷ 2 = 0 + 1;
    • We have encountered a quotient that is ZERO => FULL STOP
  • 3. Construct the base 2 representation of the integer part of the number by taking all the remainders of the previous dividing operations, starting from the bottom of the list constructed above:

    25(10) = 1 1001(2)

  • 4. Then convert the fractional part, 0.347. Multiply repeatedly by 2, keeping track of each integer part of the results, until we get a fractional part that is equal to zero:
    • #) multiplying = integer + fractional part;
    • 1) 0.347 × 2 = 0 + 0.694;
    • 2) 0.694 × 2 = 1 + 0.388;
    • 3) 0.388 × 2 = 0 + 0.776;
    • 4) 0.776 × 2 = 1 + 0.552;
    • 5) 0.552 × 2 = 1 + 0.104;
    • 6) 0.104 × 2 = 0 + 0.208;
    • 7) 0.208 × 2 = 0 + 0.416;
    • 8) 0.416 × 2 = 0 + 0.832;
    • 9) 0.832 × 2 = 1 + 0.664;
    • 10) 0.664 × 2 = 1 + 0.328;
    • 11) 0.328 × 2 = 0 + 0.656;
    • 12) 0.656 × 2 = 1 + 0.312;
    • 13) 0.312 × 2 = 0 + 0.624;
    • 14) 0.624 × 2 = 1 + 0.248;
    • 15) 0.248 × 2 = 0 + 0.496;
    • 16) 0.496 × 2 = 0 + 0.992;
    • 17) 0.992 × 2 = 1 + 0.984;
    • 18) 0.984 × 2 = 1 + 0.968;
    • 19) 0.968 × 2 = 1 + 0.936;
    • 20) 0.936 × 2 = 1 + 0.872;
    • 21) 0.872 × 2 = 1 + 0.744;
    • 22) 0.744 × 2 = 1 + 0.488;
    • 23) 0.488 × 2 = 0 + 0.976;
    • 24) 0.976 × 2 = 1 + 0.952;
    • We didn't get any fractional part that was equal to zero. But we had enough iterations (over Mantissa limit = 23) and at least one integer part that was different from zero => FULL STOP (losing precision...).
  • 5. Construct the base 2 representation of the fractional part of the number, by taking all the integer parts of the previous multiplying operations, starting from the top of the constructed list above:

    0.347(10) = 0.0101 1000 1101 0100 1111 1101(2)

  • 6. Summarizing - the positive number before normalization:

    25.347(10) = 1 1001.0101 1000 1101 0100 1111 1101(2)

  • 7. Normalize the binary representation of the number, shifting the decimal point 4 positions to the left so that only one non-zero digit stays to the left of the decimal point:

    25.347(10) =
    1 1001.0101 1000 1101 0100 1111 1101(2) =
    1 1001.0101 1000 1101 0100 1111 1101(2) × 20 =
    1.1001 0101 1000 1101 0100 1111 1101(2) × 24

  • 8. Up to this moment, there are the following elements that would feed into the 32 bit single precision IEEE 754 binary floating point:

    Sign: 1 (a negative number)

    Exponent (unadjusted): 4

    Mantissa (not-normalized): 1.1001 0101 1000 1101 0100 1111 1101

  • 9. Adjust the exponent in 8 bit excess/bias notation and then convert it from decimal (base 10) to 8 bit binary (base 2), by using the same technique of repeatedly dividing it by 2, as already demonstrated above:

    Exponent (adjusted) = Exponent (unadjusted) + 2(8-1) - 1 = (4 + 127)(10) = 131(10) =
    1000 0011(2)

  • 10. Normalize the mantissa, remove the leading (leftmost) bit, since it's allways '1' (and the decimal point) and adjust its length to 23 bits, by removing the excess bits from the right (losing precision...):

    Mantissa (not-normalized): 1.1001 0101 1000 1101 0100 1111 1101

    Mantissa (normalized): 100 1010 1100 0110 1010 0111

  • Conclusion:

    Sign (1 bit) = 1 (a negative number)

    Exponent (8 bits) = 1000 0011

    Mantissa (23 bits) = 100 1010 1100 0110 1010 0111

  • Number -25.347, converted from the decimal system (base 10) to 32 bit single precision IEEE 754 binary floating point =
    1 - 1000 0011 - 100 1010 1100 0110 1010 0111