32bit IEEE 754: Decimal ↗ Single Precision Floating Point Binary: 1 000 010 110 011 100 999 999 999 999 993 Convert the Number to 32 Bit Single Precision IEEE 754 Binary Floating Point Representation Standard, From a Base 10 Decimal System Number

Number 1 000 010 110 011 100 999 999 999 999 993(10) converted and written in 32 bit single precision IEEE 754 binary floating point representation (1 bit for sign, 8 bits for exponent, 23 bits for mantissa)

1. Divide the number repeatedly by 2.

Keep track of each remainder.

We stop when we get a quotient that is equal to zero.


  • division = quotient + remainder;
  • 1 000 010 110 011 100 999 999 999 999 993 ÷ 2 = 500 005 055 005 550 499 999 999 999 996 + 1;
  • 500 005 055 005 550 499 999 999 999 996 ÷ 2 = 250 002 527 502 775 249 999 999 999 998 + 0;
  • 250 002 527 502 775 249 999 999 999 998 ÷ 2 = 125 001 263 751 387 624 999 999 999 999 + 0;
  • 125 001 263 751 387 624 999 999 999 999 ÷ 2 = 62 500 631 875 693 812 499 999 999 999 + 1;
  • 62 500 631 875 693 812 499 999 999 999 ÷ 2 = 31 250 315 937 846 906 249 999 999 999 + 1;
  • 31 250 315 937 846 906 249 999 999 999 ÷ 2 = 15 625 157 968 923 453 124 999 999 999 + 1;
  • 15 625 157 968 923 453 124 999 999 999 ÷ 2 = 7 812 578 984 461 726 562 499 999 999 + 1;
  • 7 812 578 984 461 726 562 499 999 999 ÷ 2 = 3 906 289 492 230 863 281 249 999 999 + 1;
  • 3 906 289 492 230 863 281 249 999 999 ÷ 2 = 1 953 144 746 115 431 640 624 999 999 + 1;
  • 1 953 144 746 115 431 640 624 999 999 ÷ 2 = 976 572 373 057 715 820 312 499 999 + 1;
  • 976 572 373 057 715 820 312 499 999 ÷ 2 = 488 286 186 528 857 910 156 249 999 + 1;
  • 488 286 186 528 857 910 156 249 999 ÷ 2 = 244 143 093 264 428 955 078 124 999 + 1;
  • 244 143 093 264 428 955 078 124 999 ÷ 2 = 122 071 546 632 214 477 539 062 499 + 1;
  • 122 071 546 632 214 477 539 062 499 ÷ 2 = 61 035 773 316 107 238 769 531 249 + 1;
  • 61 035 773 316 107 238 769 531 249 ÷ 2 = 30 517 886 658 053 619 384 765 624 + 1;
  • 30 517 886 658 053 619 384 765 624 ÷ 2 = 15 258 943 329 026 809 692 382 812 + 0;
  • 15 258 943 329 026 809 692 382 812 ÷ 2 = 7 629 471 664 513 404 846 191 406 + 0;
  • 7 629 471 664 513 404 846 191 406 ÷ 2 = 3 814 735 832 256 702 423 095 703 + 0;
  • 3 814 735 832 256 702 423 095 703 ÷ 2 = 1 907 367 916 128 351 211 547 851 + 1;
  • 1 907 367 916 128 351 211 547 851 ÷ 2 = 953 683 958 064 175 605 773 925 + 1;
  • 953 683 958 064 175 605 773 925 ÷ 2 = 476 841 979 032 087 802 886 962 + 1;
  • 476 841 979 032 087 802 886 962 ÷ 2 = 238 420 989 516 043 901 443 481 + 0;
  • 238 420 989 516 043 901 443 481 ÷ 2 = 119 210 494 758 021 950 721 740 + 1;
  • 119 210 494 758 021 950 721 740 ÷ 2 = 59 605 247 379 010 975 360 870 + 0;
  • 59 605 247 379 010 975 360 870 ÷ 2 = 29 802 623 689 505 487 680 435 + 0;
  • 29 802 623 689 505 487 680 435 ÷ 2 = 14 901 311 844 752 743 840 217 + 1;
  • 14 901 311 844 752 743 840 217 ÷ 2 = 7 450 655 922 376 371 920 108 + 1;
  • 7 450 655 922 376 371 920 108 ÷ 2 = 3 725 327 961 188 185 960 054 + 0;
  • 3 725 327 961 188 185 960 054 ÷ 2 = 1 862 663 980 594 092 980 027 + 0;
  • 1 862 663 980 594 092 980 027 ÷ 2 = 931 331 990 297 046 490 013 + 1;
  • 931 331 990 297 046 490 013 ÷ 2 = 465 665 995 148 523 245 006 + 1;
  • 465 665 995 148 523 245 006 ÷ 2 = 232 832 997 574 261 622 503 + 0;
  • 232 832 997 574 261 622 503 ÷ 2 = 116 416 498 787 130 811 251 + 1;
  • 116 416 498 787 130 811 251 ÷ 2 = 58 208 249 393 565 405 625 + 1;
  • 58 208 249 393 565 405 625 ÷ 2 = 29 104 124 696 782 702 812 + 1;
  • 29 104 124 696 782 702 812 ÷ 2 = 14 552 062 348 391 351 406 + 0;
  • 14 552 062 348 391 351 406 ÷ 2 = 7 276 031 174 195 675 703 + 0;
  • 7 276 031 174 195 675 703 ÷ 2 = 3 638 015 587 097 837 851 + 1;
  • 3 638 015 587 097 837 851 ÷ 2 = 1 819 007 793 548 918 925 + 1;
  • 1 819 007 793 548 918 925 ÷ 2 = 909 503 896 774 459 462 + 1;
  • 909 503 896 774 459 462 ÷ 2 = 454 751 948 387 229 731 + 0;
  • 454 751 948 387 229 731 ÷ 2 = 227 375 974 193 614 865 + 1;
  • 227 375 974 193 614 865 ÷ 2 = 113 687 987 096 807 432 + 1;
  • 113 687 987 096 807 432 ÷ 2 = 56 843 993 548 403 716 + 0;
  • 56 843 993 548 403 716 ÷ 2 = 28 421 996 774 201 858 + 0;
  • 28 421 996 774 201 858 ÷ 2 = 14 210 998 387 100 929 + 0;
  • 14 210 998 387 100 929 ÷ 2 = 7 105 499 193 550 464 + 1;
  • 7 105 499 193 550 464 ÷ 2 = 3 552 749 596 775 232 + 0;
  • 3 552 749 596 775 232 ÷ 2 = 1 776 374 798 387 616 + 0;
  • 1 776 374 798 387 616 ÷ 2 = 888 187 399 193 808 + 0;
  • 888 187 399 193 808 ÷ 2 = 444 093 699 596 904 + 0;
  • 444 093 699 596 904 ÷ 2 = 222 046 849 798 452 + 0;
  • 222 046 849 798 452 ÷ 2 = 111 023 424 899 226 + 0;
  • 111 023 424 899 226 ÷ 2 = 55 511 712 449 613 + 0;
  • 55 511 712 449 613 ÷ 2 = 27 755 856 224 806 + 1;
  • 27 755 856 224 806 ÷ 2 = 13 877 928 112 403 + 0;
  • 13 877 928 112 403 ÷ 2 = 6 938 964 056 201 + 1;
  • 6 938 964 056 201 ÷ 2 = 3 469 482 028 100 + 1;
  • 3 469 482 028 100 ÷ 2 = 1 734 741 014 050 + 0;
  • 1 734 741 014 050 ÷ 2 = 867 370 507 025 + 0;
  • 867 370 507 025 ÷ 2 = 433 685 253 512 + 1;
  • 433 685 253 512 ÷ 2 = 216 842 626 756 + 0;
  • 216 842 626 756 ÷ 2 = 108 421 313 378 + 0;
  • 108 421 313 378 ÷ 2 = 54 210 656 689 + 0;
  • 54 210 656 689 ÷ 2 = 27 105 328 344 + 1;
  • 27 105 328 344 ÷ 2 = 13 552 664 172 + 0;
  • 13 552 664 172 ÷ 2 = 6 776 332 086 + 0;
  • 6 776 332 086 ÷ 2 = 3 388 166 043 + 0;
  • 3 388 166 043 ÷ 2 = 1 694 083 021 + 1;
  • 1 694 083 021 ÷ 2 = 847 041 510 + 1;
  • 847 041 510 ÷ 2 = 423 520 755 + 0;
  • 423 520 755 ÷ 2 = 211 760 377 + 1;
  • 211 760 377 ÷ 2 = 105 880 188 + 1;
  • 105 880 188 ÷ 2 = 52 940 094 + 0;
  • 52 940 094 ÷ 2 = 26 470 047 + 0;
  • 26 470 047 ÷ 2 = 13 235 023 + 1;
  • 13 235 023 ÷ 2 = 6 617 511 + 1;
  • 6 617 511 ÷ 2 = 3 308 755 + 1;
  • 3 308 755 ÷ 2 = 1 654 377 + 1;
  • 1 654 377 ÷ 2 = 827 188 + 1;
  • 827 188 ÷ 2 = 413 594 + 0;
  • 413 594 ÷ 2 = 206 797 + 0;
  • 206 797 ÷ 2 = 103 398 + 1;
  • 103 398 ÷ 2 = 51 699 + 0;
  • 51 699 ÷ 2 = 25 849 + 1;
  • 25 849 ÷ 2 = 12 924 + 1;
  • 12 924 ÷ 2 = 6 462 + 0;
  • 6 462 ÷ 2 = 3 231 + 0;
  • 3 231 ÷ 2 = 1 615 + 1;
  • 1 615 ÷ 2 = 807 + 1;
  • 807 ÷ 2 = 403 + 1;
  • 403 ÷ 2 = 201 + 1;
  • 201 ÷ 2 = 100 + 1;
  • 100 ÷ 2 = 50 + 0;
  • 50 ÷ 2 = 25 + 0;
  • 25 ÷ 2 = 12 + 1;
  • 12 ÷ 2 = 6 + 0;
  • 6 ÷ 2 = 3 + 0;
  • 3 ÷ 2 = 1 + 1;
  • 1 ÷ 2 = 0 + 1;

2. Construct the base 2 representation of the positive number.

Take all the remainders starting from the bottom of the list constructed above.


1 000 010 110 011 100 999 999 999 999 993(10) =


1100 1001 1111 0011 0100 1111 1001 1011 0001 0001 0011 0100 0000 0100 0110 1110 0111 0110 0110 0101 1100 0111 1111 1111 1001(2)


3. Normalize the binary representation of the number.

Shift the decimal mark 99 positions to the left, so that only one non zero digit remains to the left of it:


1 000 010 110 011 100 999 999 999 999 993(10) =


1100 1001 1111 0011 0100 1111 1001 1011 0001 0001 0011 0100 0000 0100 0110 1110 0111 0110 0110 0101 1100 0111 1111 1111 1001(2) =


1100 1001 1111 0011 0100 1111 1001 1011 0001 0001 0011 0100 0000 0100 0110 1110 0111 0110 0110 0101 1100 0111 1111 1111 1001(2) × 20 =


1.1001 0011 1110 0110 1001 1111 0011 0110 0010 0010 0110 1000 0000 1000 1101 1100 1110 1100 1100 1011 1000 1111 1111 1111 001(2) × 299


4. Up to this moment, there are the following elements that would feed into the 32 bit single precision IEEE 754 binary floating point representation:

Sign 0 (a positive number)


Exponent (unadjusted): 99


Mantissa (not normalized):
1.1001 0011 1110 0110 1001 1111 0011 0110 0010 0010 0110 1000 0000 1000 1101 1100 1110 1100 1100 1011 1000 1111 1111 1111 001


5. Adjust the exponent.

Use the 8 bit excess/bias notation:


Exponent (adjusted) =


Exponent (unadjusted) + 2(8-1) - 1 =


99 + 2(8-1) - 1 =


(99 + 127)(10) =


226(10)


6. Convert the adjusted exponent from the decimal (base 10) to 8 bit binary.

Use the same technique of repeatedly dividing by 2:


  • division = quotient + remainder;
  • 226 ÷ 2 = 113 + 0;
  • 113 ÷ 2 = 56 + 1;
  • 56 ÷ 2 = 28 + 0;
  • 28 ÷ 2 = 14 + 0;
  • 14 ÷ 2 = 7 + 0;
  • 7 ÷ 2 = 3 + 1;
  • 3 ÷ 2 = 1 + 1;
  • 1 ÷ 2 = 0 + 1;

7. Construct the base 2 representation of the adjusted exponent.

Take all the remainders starting from the bottom of the list constructed above.


Exponent (adjusted) =


226(10) =


1110 0010(2)


8. Normalize the mantissa.

a) Remove the leading (the leftmost) bit, since it's allways 1, and the decimal point, if the case.


b) Adjust its length to 23 bits, by removing the excess bits, from the right (if any of the excess bits is set on 1, we are losing precision...).


Mantissa (normalized) =


1. 100 1001 1111 0011 0100 1111 1001 1011 0001 0001 0011 0100 0000 0100 0110 1110 0111 0110 0110 0101 1100 0111 1111 1111 1001 =


100 1001 1111 0011 0100 1111


9. The three elements that make up the number's 32 bit single precision IEEE 754 binary floating point representation:

Sign (1 bit) =
0 (a positive number)


Exponent (8 bits) =
1110 0010


Mantissa (23 bits) =
100 1001 1111 0011 0100 1111


The base ten decimal number 1 000 010 110 011 100 999 999 999 999 993 converted and written in 32 bit single precision IEEE 754 binary floating point representation:
0 - 1110 0010 - 100 1001 1111 0011 0100 1111

The latest decimal numbers converted from base ten to 32 bit single precision IEEE 754 floating point binary standard representation

Number 3.410 3 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard May 19 07:27 UTC (GMT)
Number 418 543 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard May 19 07:27 UTC (GMT)
Number 214 904 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard May 19 07:27 UTC (GMT)
Number 4 399 999 921 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard May 19 07:27 UTC (GMT)
Number 350 111 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard May 19 07:27 UTC (GMT)
Number 125 495 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard May 19 07:27 UTC (GMT)
Number 254.1 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard May 19 07:27 UTC (GMT)
Number 1 608 532 842 929 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard May 19 07:27 UTC (GMT)
Number 0.000 000 000 000 000 000 067 534 854 9 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard May 19 07:27 UTC (GMT)
Number -253.83 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard May 19 07:27 UTC (GMT)
All base ten decimal numbers converted to 32 bit single precision IEEE 754 binary floating point

How to convert decimal numbers from base ten to 32 bit single precision IEEE 754 binary floating point standard

Follow the steps below to convert a base 10 decimal number to 32 bit single precision IEEE 754 binary floating point:

  • 1. If the number to be converted is negative, start with its the positive version.
  • 2. First convert the integer part. Divide repeatedly by 2 the base ten positive representation of the integer number that is to be converted to binary, until we get a quotient that is equal to zero, keeping track of each remainder.
  • 3. Construct the base 2 representation of the positive integer part of the number, by taking all the remainders of the previous dividing operations, starting from the bottom of the list constructed above. Thus, the last remainder of the divisions becomes the first symbol (the leftmost) of the base two number, while the first remainder becomes the last symbol (the rightmost).
  • 4. Then convert the fractional part. Multiply the number repeatedly by 2, until we get a fractional part that is equal to zero, keeping track of each integer part of the results.
  • 5. Construct the base 2 representation of the fractional part of the number by taking all the integer parts of the previous multiplying operations, starting from the top of the constructed list above (they should appear in the binary representation, from left to right, in the order they have been calculated).
  • 6. Normalize the binary representation of the number, by shifting the decimal point (or if you prefer, the decimal mark) "n" positions either to the left or to the right, so that only one non zero digit remains to the left of the decimal point.
  • 7. Adjust the exponent in 8 bit excess/bias notation and then convert it from decimal (base 10) to 8 bit binary, by using the same technique of repeatedly dividing by 2, as shown above:
    Exponent (adjusted) = Exponent (unadjusted) + 2(8-1) - 1
  • 8. Normalize mantissa, remove the leading (leftmost) bit, since it's allways '1' (and the decimal sign if the case) and adjust its length to 23 bits, either by removing the excess bits from the right (losing precision...) or by adding extra '0' bits to the right.
  • 9. Sign (it takes 1 bit) is either 1 for a negative or 0 for a positive number.

Example: convert the negative number -25.347 from decimal system (base ten) to 32 bit single precision IEEE 754 binary floating point:

  • 1. Start with the positive version of the number:

    |-25.347| = 25.347

  • 2. First convert the integer part, 25. Divide it repeatedly by 2, keeping track of each remainder, until we get a quotient that is equal to zero:
    • division = quotient + remainder;
    • 25 ÷ 2 = 12 + 1;
    • 12 ÷ 2 = 6 + 0;
    • 6 ÷ 2 = 3 + 0;
    • 3 ÷ 2 = 1 + 1;
    • 1 ÷ 2 = 0 + 1;
    • We have encountered a quotient that is ZERO => FULL STOP
  • 3. Construct the base 2 representation of the integer part of the number by taking all the remainders of the previous dividing operations, starting from the bottom of the list constructed above:

    25(10) = 1 1001(2)

  • 4. Then convert the fractional part, 0.347. Multiply repeatedly by 2, keeping track of each integer part of the results, until we get a fractional part that is equal to zero:
    • #) multiplying = integer + fractional part;
    • 1) 0.347 × 2 = 0 + 0.694;
    • 2) 0.694 × 2 = 1 + 0.388;
    • 3) 0.388 × 2 = 0 + 0.776;
    • 4) 0.776 × 2 = 1 + 0.552;
    • 5) 0.552 × 2 = 1 + 0.104;
    • 6) 0.104 × 2 = 0 + 0.208;
    • 7) 0.208 × 2 = 0 + 0.416;
    • 8) 0.416 × 2 = 0 + 0.832;
    • 9) 0.832 × 2 = 1 + 0.664;
    • 10) 0.664 × 2 = 1 + 0.328;
    • 11) 0.328 × 2 = 0 + 0.656;
    • 12) 0.656 × 2 = 1 + 0.312;
    • 13) 0.312 × 2 = 0 + 0.624;
    • 14) 0.624 × 2 = 1 + 0.248;
    • 15) 0.248 × 2 = 0 + 0.496;
    • 16) 0.496 × 2 = 0 + 0.992;
    • 17) 0.992 × 2 = 1 + 0.984;
    • 18) 0.984 × 2 = 1 + 0.968;
    • 19) 0.968 × 2 = 1 + 0.936;
    • 20) 0.936 × 2 = 1 + 0.872;
    • 21) 0.872 × 2 = 1 + 0.744;
    • 22) 0.744 × 2 = 1 + 0.488;
    • 23) 0.488 × 2 = 0 + 0.976;
    • 24) 0.976 × 2 = 1 + 0.952;
    • We didn't get any fractional part that was equal to zero. But we had enough iterations (over Mantissa limit = 23) and at least one integer part that was different from zero => FULL STOP (losing precision...).
  • 5. Construct the base 2 representation of the fractional part of the number, by taking all the integer parts of the previous multiplying operations, starting from the top of the constructed list above:

    0.347(10) = 0.0101 1000 1101 0100 1111 1101(2)

  • 6. Summarizing - the positive number before normalization:

    25.347(10) = 1 1001.0101 1000 1101 0100 1111 1101(2)

  • 7. Normalize the binary representation of the number, shifting the decimal point 4 positions to the left so that only one non-zero digit stays to the left of the decimal point:

    25.347(10) =
    1 1001.0101 1000 1101 0100 1111 1101(2) =
    1 1001.0101 1000 1101 0100 1111 1101(2) × 20 =
    1.1001 0101 1000 1101 0100 1111 1101(2) × 24

  • 8. Up to this moment, there are the following elements that would feed into the 32 bit single precision IEEE 754 binary floating point:

    Sign: 1 (a negative number)

    Exponent (unadjusted): 4

    Mantissa (not-normalized): 1.1001 0101 1000 1101 0100 1111 1101

  • 9. Adjust the exponent in 8 bit excess/bias notation and then convert it from decimal (base 10) to 8 bit binary (base 2), by using the same technique of repeatedly dividing it by 2, as already demonstrated above:

    Exponent (adjusted) = Exponent (unadjusted) + 2(8-1) - 1 = (4 + 127)(10) = 131(10) =
    1000 0011(2)

  • 10. Normalize the mantissa, remove the leading (leftmost) bit, since it's allways '1' (and the decimal point) and adjust its length to 23 bits, by removing the excess bits from the right (losing precision...):

    Mantissa (not-normalized): 1.1001 0101 1000 1101 0100 1111 1101

    Mantissa (normalized): 100 1010 1100 0110 1010 0111

  • Conclusion:

    Sign (1 bit) = 1 (a negative number)

    Exponent (8 bits) = 1000 0011

    Mantissa (23 bits) = 100 1010 1100 0110 1010 0111

  • Number -25.347, converted from the decimal system (base 10) to 32 bit single precision IEEE 754 binary floating point =
    1 - 1000 0011 - 100 1010 1100 0110 1010 0111