1 000 010 110 001 099 999 999 999 998 938 Converted to 32 Bit Single Precision IEEE 754 Binary Floating Point Representation Standard

Convert decimal 1 000 010 110 001 099 999 999 999 998 938(10) to 32 bit single precision IEEE 754 binary floating point representation standard (1 bit for sign, 8 bits for exponent, 23 bits for mantissa)

What are the steps to convert decimal number
1 000 010 110 001 099 999 999 999 998 938(10) to 32 bit single precision IEEE 754 binary floating point representation (1 bit for sign, 8 bits for exponent, 23 bits for mantissa)

1. Divide the number repeatedly by 2.

Keep track of each remainder.

We stop when we get a quotient that is equal to zero.


  • division = quotient + remainder;
  • 1 000 010 110 001 099 999 999 999 998 938 ÷ 2 = 500 005 055 000 549 999 999 999 999 469 + 0;
  • 500 005 055 000 549 999 999 999 999 469 ÷ 2 = 250 002 527 500 274 999 999 999 999 734 + 1;
  • 250 002 527 500 274 999 999 999 999 734 ÷ 2 = 125 001 263 750 137 499 999 999 999 867 + 0;
  • 125 001 263 750 137 499 999 999 999 867 ÷ 2 = 62 500 631 875 068 749 999 999 999 933 + 1;
  • 62 500 631 875 068 749 999 999 999 933 ÷ 2 = 31 250 315 937 534 374 999 999 999 966 + 1;
  • 31 250 315 937 534 374 999 999 999 966 ÷ 2 = 15 625 157 968 767 187 499 999 999 983 + 0;
  • 15 625 157 968 767 187 499 999 999 983 ÷ 2 = 7 812 578 984 383 593 749 999 999 991 + 1;
  • 7 812 578 984 383 593 749 999 999 991 ÷ 2 = 3 906 289 492 191 796 874 999 999 995 + 1;
  • 3 906 289 492 191 796 874 999 999 995 ÷ 2 = 1 953 144 746 095 898 437 499 999 997 + 1;
  • 1 953 144 746 095 898 437 499 999 997 ÷ 2 = 976 572 373 047 949 218 749 999 998 + 1;
  • 976 572 373 047 949 218 749 999 998 ÷ 2 = 488 286 186 523 974 609 374 999 999 + 0;
  • 488 286 186 523 974 609 374 999 999 ÷ 2 = 244 143 093 261 987 304 687 499 999 + 1;
  • 244 143 093 261 987 304 687 499 999 ÷ 2 = 122 071 546 630 993 652 343 749 999 + 1;
  • 122 071 546 630 993 652 343 749 999 ÷ 2 = 61 035 773 315 496 826 171 874 999 + 1;
  • 61 035 773 315 496 826 171 874 999 ÷ 2 = 30 517 886 657 748 413 085 937 499 + 1;
  • 30 517 886 657 748 413 085 937 499 ÷ 2 = 15 258 943 328 874 206 542 968 749 + 1;
  • 15 258 943 328 874 206 542 968 749 ÷ 2 = 7 629 471 664 437 103 271 484 374 + 1;
  • 7 629 471 664 437 103 271 484 374 ÷ 2 = 3 814 735 832 218 551 635 742 187 + 0;
  • 3 814 735 832 218 551 635 742 187 ÷ 2 = 1 907 367 916 109 275 817 871 093 + 1;
  • 1 907 367 916 109 275 817 871 093 ÷ 2 = 953 683 958 054 637 908 935 546 + 1;
  • 953 683 958 054 637 908 935 546 ÷ 2 = 476 841 979 027 318 954 467 773 + 0;
  • 476 841 979 027 318 954 467 773 ÷ 2 = 238 420 989 513 659 477 233 886 + 1;
  • 238 420 989 513 659 477 233 886 ÷ 2 = 119 210 494 756 829 738 616 943 + 0;
  • 119 210 494 756 829 738 616 943 ÷ 2 = 59 605 247 378 414 869 308 471 + 1;
  • 59 605 247 378 414 869 308 471 ÷ 2 = 29 802 623 689 207 434 654 235 + 1;
  • 29 802 623 689 207 434 654 235 ÷ 2 = 14 901 311 844 603 717 327 117 + 1;
  • 14 901 311 844 603 717 327 117 ÷ 2 = 7 450 655 922 301 858 663 558 + 1;
  • 7 450 655 922 301 858 663 558 ÷ 2 = 3 725 327 961 150 929 331 779 + 0;
  • 3 725 327 961 150 929 331 779 ÷ 2 = 1 862 663 980 575 464 665 889 + 1;
  • 1 862 663 980 575 464 665 889 ÷ 2 = 931 331 990 287 732 332 944 + 1;
  • 931 331 990 287 732 332 944 ÷ 2 = 465 665 995 143 866 166 472 + 0;
  • 465 665 995 143 866 166 472 ÷ 2 = 232 832 997 571 933 083 236 + 0;
  • 232 832 997 571 933 083 236 ÷ 2 = 116 416 498 785 966 541 618 + 0;
  • 116 416 498 785 966 541 618 ÷ 2 = 58 208 249 392 983 270 809 + 0;
  • 58 208 249 392 983 270 809 ÷ 2 = 29 104 124 696 491 635 404 + 1;
  • 29 104 124 696 491 635 404 ÷ 2 = 14 552 062 348 245 817 702 + 0;
  • 14 552 062 348 245 817 702 ÷ 2 = 7 276 031 174 122 908 851 + 0;
  • 7 276 031 174 122 908 851 ÷ 2 = 3 638 015 587 061 454 425 + 1;
  • 3 638 015 587 061 454 425 ÷ 2 = 1 819 007 793 530 727 212 + 1;
  • 1 819 007 793 530 727 212 ÷ 2 = 909 503 896 765 363 606 + 0;
  • 909 503 896 765 363 606 ÷ 2 = 454 751 948 382 681 803 + 0;
  • 454 751 948 382 681 803 ÷ 2 = 227 375 974 191 340 901 + 1;
  • 227 375 974 191 340 901 ÷ 2 = 113 687 987 095 670 450 + 1;
  • 113 687 987 095 670 450 ÷ 2 = 56 843 993 547 835 225 + 0;
  • 56 843 993 547 835 225 ÷ 2 = 28 421 996 773 917 612 + 1;
  • 28 421 996 773 917 612 ÷ 2 = 14 210 998 386 958 806 + 0;
  • 14 210 998 386 958 806 ÷ 2 = 7 105 499 193 479 403 + 0;
  • 7 105 499 193 479 403 ÷ 2 = 3 552 749 596 739 701 + 1;
  • 3 552 749 596 739 701 ÷ 2 = 1 776 374 798 369 850 + 1;
  • 1 776 374 798 369 850 ÷ 2 = 888 187 399 184 925 + 0;
  • 888 187 399 184 925 ÷ 2 = 444 093 699 592 462 + 1;
  • 444 093 699 592 462 ÷ 2 = 222 046 849 796 231 + 0;
  • 222 046 849 796 231 ÷ 2 = 111 023 424 898 115 + 1;
  • 111 023 424 898 115 ÷ 2 = 55 511 712 449 057 + 1;
  • 55 511 712 449 057 ÷ 2 = 27 755 856 224 528 + 1;
  • 27 755 856 224 528 ÷ 2 = 13 877 928 112 264 + 0;
  • 13 877 928 112 264 ÷ 2 = 6 938 964 056 132 + 0;
  • 6 938 964 056 132 ÷ 2 = 3 469 482 028 066 + 0;
  • 3 469 482 028 066 ÷ 2 = 1 734 741 014 033 + 0;
  • 1 734 741 014 033 ÷ 2 = 867 370 507 016 + 1;
  • 867 370 507 016 ÷ 2 = 433 685 253 508 + 0;
  • 433 685 253 508 ÷ 2 = 216 842 626 754 + 0;
  • 216 842 626 754 ÷ 2 = 108 421 313 377 + 0;
  • 108 421 313 377 ÷ 2 = 54 210 656 688 + 1;
  • 54 210 656 688 ÷ 2 = 27 105 328 344 + 0;
  • 27 105 328 344 ÷ 2 = 13 552 664 172 + 0;
  • 13 552 664 172 ÷ 2 = 6 776 332 086 + 0;
  • 6 776 332 086 ÷ 2 = 3 388 166 043 + 0;
  • 3 388 166 043 ÷ 2 = 1 694 083 021 + 1;
  • 1 694 083 021 ÷ 2 = 847 041 510 + 1;
  • 847 041 510 ÷ 2 = 423 520 755 + 0;
  • 423 520 755 ÷ 2 = 211 760 377 + 1;
  • 211 760 377 ÷ 2 = 105 880 188 + 1;
  • 105 880 188 ÷ 2 = 52 940 094 + 0;
  • 52 940 094 ÷ 2 = 26 470 047 + 0;
  • 26 470 047 ÷ 2 = 13 235 023 + 1;
  • 13 235 023 ÷ 2 = 6 617 511 + 1;
  • 6 617 511 ÷ 2 = 3 308 755 + 1;
  • 3 308 755 ÷ 2 = 1 654 377 + 1;
  • 1 654 377 ÷ 2 = 827 188 + 1;
  • 827 188 ÷ 2 = 413 594 + 0;
  • 413 594 ÷ 2 = 206 797 + 0;
  • 206 797 ÷ 2 = 103 398 + 1;
  • 103 398 ÷ 2 = 51 699 + 0;
  • 51 699 ÷ 2 = 25 849 + 1;
  • 25 849 ÷ 2 = 12 924 + 1;
  • 12 924 ÷ 2 = 6 462 + 0;
  • 6 462 ÷ 2 = 3 231 + 0;
  • 3 231 ÷ 2 = 1 615 + 1;
  • 1 615 ÷ 2 = 807 + 1;
  • 807 ÷ 2 = 403 + 1;
  • 403 ÷ 2 = 201 + 1;
  • 201 ÷ 2 = 100 + 1;
  • 100 ÷ 2 = 50 + 0;
  • 50 ÷ 2 = 25 + 0;
  • 25 ÷ 2 = 12 + 1;
  • 12 ÷ 2 = 6 + 0;
  • 6 ÷ 2 = 3 + 0;
  • 3 ÷ 2 = 1 + 1;
  • 1 ÷ 2 = 0 + 1;

2. Construct the base 2 representation of the positive number.

Take all the remainders starting from the bottom of the list constructed above.

1 000 010 110 001 099 999 999 999 998 938(10) =


1100 1001 1111 0011 0100 1111 1001 1011 0000 1000 1000 0111 0101 1001 0110 0110 0100 0011 0111 1010 1101 1111 1011 1101 1010(2)


3. Normalize the binary representation of the number.

Shift the decimal mark 99 positions to the left, so that only one non zero digit remains to the left of it:


1 000 010 110 001 099 999 999 999 998 938(10) =


1100 1001 1111 0011 0100 1111 1001 1011 0000 1000 1000 0111 0101 1001 0110 0110 0100 0011 0111 1010 1101 1111 1011 1101 1010(2) =


1100 1001 1111 0011 0100 1111 1001 1011 0000 1000 1000 0111 0101 1001 0110 0110 0100 0011 0111 1010 1101 1111 1011 1101 1010(2) × 20 =


1.1001 0011 1110 0110 1001 1111 0011 0110 0001 0001 0000 1110 1011 0010 1100 1100 1000 0110 1111 0101 1011 1111 0111 1011 010(2) × 299


4. Up to this moment, there are the following elements that would feed into the 32 bit single precision IEEE 754 binary floating point representation:

Sign 0 (a positive number)


Exponent (unadjusted): 99


Mantissa (not normalized):
1.1001 0011 1110 0110 1001 1111 0011 0110 0001 0001 0000 1110 1011 0010 1100 1100 1000 0110 1111 0101 1011 1111 0111 1011 010


5. Adjust the exponent.

Use the 8 bit excess/bias notation:


Exponent (adjusted) =


Exponent (unadjusted) + 2(8-1) - 1 =


99 + 2(8-1) - 1 =


(99 + 127)(10) =


226(10)


6. Convert the adjusted exponent from the decimal (base 10) to 8 bit binary.

Use the same technique of repeatedly dividing by 2:


  • division = quotient + remainder;
  • 226 ÷ 2 = 113 + 0;
  • 113 ÷ 2 = 56 + 1;
  • 56 ÷ 2 = 28 + 0;
  • 28 ÷ 2 = 14 + 0;
  • 14 ÷ 2 = 7 + 0;
  • 7 ÷ 2 = 3 + 1;
  • 3 ÷ 2 = 1 + 1;
  • 1 ÷ 2 = 0 + 1;

7. Construct the base 2 representation of the adjusted exponent.

Take all the remainders starting from the bottom of the list constructed above.


Exponent (adjusted) =


226(10) =


1110 0010(2)


8. Normalize the mantissa.

a) Remove the leading (the leftmost) bit, since it's allways 1, and the decimal point, if the case.


b) Adjust its length to 23 bits, by removing the excess bits, from the right (if any of the excess bits is set on 1, we are losing precision...).


Mantissa (normalized) =


1. 100 1001 1111 0011 0100 1111 1001 1011 0000 1000 1000 0111 0101 1001 0110 0110 0100 0011 0111 1010 1101 1111 1011 1101 1010 =


100 1001 1111 0011 0100 1111


9. The three elements that make up the number's 32 bit single precision IEEE 754 binary floating point representation:

Sign (1 bit) =
0 (a positive number)


Exponent (8 bits) =
1110 0010


Mantissa (23 bits) =
100 1001 1111 0011 0100 1111


Decimal number 1 000 010 110 001 099 999 999 999 998 938 converted to 32 bit single precision IEEE 754 binary floating point representation:

0 - 1110 0010 - 100 1001 1111 0011 0100 1111


How to convert decimal numbers from base ten to 32 bit single precision IEEE 754 binary floating point standard

Follow the steps below to convert a base 10 decimal number to 32 bit single precision IEEE 754 binary floating point:

  • 1. If the number to be converted is negative, start with its the positive version.
  • 2. First convert the integer part. Divide repeatedly by 2 the base ten positive representation of the integer number that is to be converted to binary, until we get a quotient that is equal to zero, keeping track of each remainder.
  • 3. Construct the base 2 representation of the positive integer part of the number, by taking all the remainders of the previous dividing operations, starting from the bottom of the list constructed above. Thus, the last remainder of the divisions becomes the first symbol (the leftmost) of the base two number, while the first remainder becomes the last symbol (the rightmost).
  • 4. Then convert the fractional part. Multiply the number repeatedly by 2, until we get a fractional part that is equal to zero, keeping track of each integer part of the results.
  • 5. Construct the base 2 representation of the fractional part of the number by taking all the integer parts of the previous multiplying operations, starting from the top of the constructed list above (they should appear in the binary representation, from left to right, in the order they have been calculated).
  • 6. Normalize the binary representation of the number, by shifting the decimal point (or if you prefer, the decimal mark) "n" positions either to the left or to the right, so that only one non zero digit remains to the left of the decimal point.
  • 7. Adjust the exponent in 8 bit excess/bias notation and then convert it from decimal (base 10) to 8 bit binary, by using the same technique of repeatedly dividing by 2, as shown above:
    Exponent (adjusted) = Exponent (unadjusted) + 2(8-1) - 1
  • 8. Normalize mantissa, remove the leading (leftmost) bit, since it's allways '1' (and the decimal sign if the case) and adjust its length to 23 bits, either by removing the excess bits from the right (losing precision...) or by adding extra '0' bits to the right.
  • 9. Sign (it takes 1 bit) is either 1 for a negative or 0 for a positive number.

Example: convert the negative number -25.347 from decimal system (base ten) to 32 bit single precision IEEE 754 binary floating point:

  • 1. Start with the positive version of the number:

    |-25.347| = 25.347

  • 2. First convert the integer part, 25. Divide it repeatedly by 2, keeping track of each remainder, until we get a quotient that is equal to zero:
    • division = quotient + remainder;
    • 25 ÷ 2 = 12 + 1;
    • 12 ÷ 2 = 6 + 0;
    • 6 ÷ 2 = 3 + 0;
    • 3 ÷ 2 = 1 + 1;
    • 1 ÷ 2 = 0 + 1;
    • We have encountered a quotient that is ZERO => FULL STOP
  • 3. Construct the base 2 representation of the integer part of the number by taking all the remainders of the previous dividing operations, starting from the bottom of the list constructed above:

    25(10) = 1 1001(2)

  • 4. Then convert the fractional part, 0.347. Multiply repeatedly by 2, keeping track of each integer part of the results, until we get a fractional part that is equal to zero:
    • #) multiplying = integer + fractional part;
    • 1) 0.347 × 2 = 0 + 0.694;
    • 2) 0.694 × 2 = 1 + 0.388;
    • 3) 0.388 × 2 = 0 + 0.776;
    • 4) 0.776 × 2 = 1 + 0.552;
    • 5) 0.552 × 2 = 1 + 0.104;
    • 6) 0.104 × 2 = 0 + 0.208;
    • 7) 0.208 × 2 = 0 + 0.416;
    • 8) 0.416 × 2 = 0 + 0.832;
    • 9) 0.832 × 2 = 1 + 0.664;
    • 10) 0.664 × 2 = 1 + 0.328;
    • 11) 0.328 × 2 = 0 + 0.656;
    • 12) 0.656 × 2 = 1 + 0.312;
    • 13) 0.312 × 2 = 0 + 0.624;
    • 14) 0.624 × 2 = 1 + 0.248;
    • 15) 0.248 × 2 = 0 + 0.496;
    • 16) 0.496 × 2 = 0 + 0.992;
    • 17) 0.992 × 2 = 1 + 0.984;
    • 18) 0.984 × 2 = 1 + 0.968;
    • 19) 0.968 × 2 = 1 + 0.936;
    • 20) 0.936 × 2 = 1 + 0.872;
    • 21) 0.872 × 2 = 1 + 0.744;
    • 22) 0.744 × 2 = 1 + 0.488;
    • 23) 0.488 × 2 = 0 + 0.976;
    • 24) 0.976 × 2 = 1 + 0.952;
    • We didn't get any fractional part that was equal to zero. But we had enough iterations (over Mantissa limit = 23) and at least one integer part that was different from zero => FULL STOP (losing precision...).
  • 5. Construct the base 2 representation of the fractional part of the number, by taking all the integer parts of the previous multiplying operations, starting from the top of the constructed list above:

    0.347(10) = 0.0101 1000 1101 0100 1111 1101(2)

  • 6. Summarizing - the positive number before normalization:

    25.347(10) = 1 1001.0101 1000 1101 0100 1111 1101(2)

  • 7. Normalize the binary representation of the number, shifting the decimal point 4 positions to the left so that only one non-zero digit stays to the left of the decimal point:

    25.347(10) =
    1 1001.0101 1000 1101 0100 1111 1101(2) =
    1 1001.0101 1000 1101 0100 1111 1101(2) × 20 =
    1.1001 0101 1000 1101 0100 1111 1101(2) × 24

  • 8. Up to this moment, there are the following elements that would feed into the 32 bit single precision IEEE 754 binary floating point:

    Sign: 1 (a negative number)

    Exponent (unadjusted): 4

    Mantissa (not-normalized): 1.1001 0101 1000 1101 0100 1111 1101

  • 9. Adjust the exponent in 8 bit excess/bias notation and then convert it from decimal (base 10) to 8 bit binary (base 2), by using the same technique of repeatedly dividing it by 2, as already demonstrated above:

    Exponent (adjusted) = Exponent (unadjusted) + 2(8-1) - 1 = (4 + 127)(10) = 131(10) =
    1000 0011(2)

  • 10. Normalize the mantissa, remove the leading (leftmost) bit, since it's allways '1' (and the decimal point) and adjust its length to 23 bits, by removing the excess bits from the right (losing precision...):

    Mantissa (not-normalized): 1.1001 0101 1000 1101 0100 1111 1101

    Mantissa (normalized): 100 1010 1100 0110 1010 0111

  • Conclusion:

    Sign (1 bit) = 1 (a negative number)

    Exponent (8 bits) = 1000 0011

    Mantissa (23 bits) = 100 1010 1100 0110 1010 0111

  • Number -25.347, converted from the decimal system (base 10) to 32 bit single precision IEEE 754 binary floating point =
    1 - 1000 0011 - 100 1010 1100 0110 1010 0111