32bit IEEE 754: Decimal ↗ Single Precision Floating Point Binary: 1 000 001 111 111 000 001 010 001 111 016 Convert the Number to 32 Bit Single Precision IEEE 754 Binary Floating Point Representation Standard, From a Base 10 Decimal System Number

Number 1 000 001 111 111 000 001 010 001 111 016(10) converted and written in 32 bit single precision IEEE 754 binary floating point representation (1 bit for sign, 8 bits for exponent, 23 bits for mantissa)

1. Divide the number repeatedly by 2.

Keep track of each remainder.

We stop when we get a quotient that is equal to zero.


  • division = quotient + remainder;
  • 1 000 001 111 111 000 001 010 001 111 016 ÷ 2 = 500 000 555 555 500 000 505 000 555 508 + 0;
  • 500 000 555 555 500 000 505 000 555 508 ÷ 2 = 250 000 277 777 750 000 252 500 277 754 + 0;
  • 250 000 277 777 750 000 252 500 277 754 ÷ 2 = 125 000 138 888 875 000 126 250 138 877 + 0;
  • 125 000 138 888 875 000 126 250 138 877 ÷ 2 = 62 500 069 444 437 500 063 125 069 438 + 1;
  • 62 500 069 444 437 500 063 125 069 438 ÷ 2 = 31 250 034 722 218 750 031 562 534 719 + 0;
  • 31 250 034 722 218 750 031 562 534 719 ÷ 2 = 15 625 017 361 109 375 015 781 267 359 + 1;
  • 15 625 017 361 109 375 015 781 267 359 ÷ 2 = 7 812 508 680 554 687 507 890 633 679 + 1;
  • 7 812 508 680 554 687 507 890 633 679 ÷ 2 = 3 906 254 340 277 343 753 945 316 839 + 1;
  • 3 906 254 340 277 343 753 945 316 839 ÷ 2 = 1 953 127 170 138 671 876 972 658 419 + 1;
  • 1 953 127 170 138 671 876 972 658 419 ÷ 2 = 976 563 585 069 335 938 486 329 209 + 1;
  • 976 563 585 069 335 938 486 329 209 ÷ 2 = 488 281 792 534 667 969 243 164 604 + 1;
  • 488 281 792 534 667 969 243 164 604 ÷ 2 = 244 140 896 267 333 984 621 582 302 + 0;
  • 244 140 896 267 333 984 621 582 302 ÷ 2 = 122 070 448 133 666 992 310 791 151 + 0;
  • 122 070 448 133 666 992 310 791 151 ÷ 2 = 61 035 224 066 833 496 155 395 575 + 1;
  • 61 035 224 066 833 496 155 395 575 ÷ 2 = 30 517 612 033 416 748 077 697 787 + 1;
  • 30 517 612 033 416 748 077 697 787 ÷ 2 = 15 258 806 016 708 374 038 848 893 + 1;
  • 15 258 806 016 708 374 038 848 893 ÷ 2 = 7 629 403 008 354 187 019 424 446 + 1;
  • 7 629 403 008 354 187 019 424 446 ÷ 2 = 3 814 701 504 177 093 509 712 223 + 0;
  • 3 814 701 504 177 093 509 712 223 ÷ 2 = 1 907 350 752 088 546 754 856 111 + 1;
  • 1 907 350 752 088 546 754 856 111 ÷ 2 = 953 675 376 044 273 377 428 055 + 1;
  • 953 675 376 044 273 377 428 055 ÷ 2 = 476 837 688 022 136 688 714 027 + 1;
  • 476 837 688 022 136 688 714 027 ÷ 2 = 238 418 844 011 068 344 357 013 + 1;
  • 238 418 844 011 068 344 357 013 ÷ 2 = 119 209 422 005 534 172 178 506 + 1;
  • 119 209 422 005 534 172 178 506 ÷ 2 = 59 604 711 002 767 086 089 253 + 0;
  • 59 604 711 002 767 086 089 253 ÷ 2 = 29 802 355 501 383 543 044 626 + 1;
  • 29 802 355 501 383 543 044 626 ÷ 2 = 14 901 177 750 691 771 522 313 + 0;
  • 14 901 177 750 691 771 522 313 ÷ 2 = 7 450 588 875 345 885 761 156 + 1;
  • 7 450 588 875 345 885 761 156 ÷ 2 = 3 725 294 437 672 942 880 578 + 0;
  • 3 725 294 437 672 942 880 578 ÷ 2 = 1 862 647 218 836 471 440 289 + 0;
  • 1 862 647 218 836 471 440 289 ÷ 2 = 931 323 609 418 235 720 144 + 1;
  • 931 323 609 418 235 720 144 ÷ 2 = 465 661 804 709 117 860 072 + 0;
  • 465 661 804 709 117 860 072 ÷ 2 = 232 830 902 354 558 930 036 + 0;
  • 232 830 902 354 558 930 036 ÷ 2 = 116 415 451 177 279 465 018 + 0;
  • 116 415 451 177 279 465 018 ÷ 2 = 58 207 725 588 639 732 509 + 0;
  • 58 207 725 588 639 732 509 ÷ 2 = 29 103 862 794 319 866 254 + 1;
  • 29 103 862 794 319 866 254 ÷ 2 = 14 551 931 397 159 933 127 + 0;
  • 14 551 931 397 159 933 127 ÷ 2 = 7 275 965 698 579 966 563 + 1;
  • 7 275 965 698 579 966 563 ÷ 2 = 3 637 982 849 289 983 281 + 1;
  • 3 637 982 849 289 983 281 ÷ 2 = 1 818 991 424 644 991 640 + 1;
  • 1 818 991 424 644 991 640 ÷ 2 = 909 495 712 322 495 820 + 0;
  • 909 495 712 322 495 820 ÷ 2 = 454 747 856 161 247 910 + 0;
  • 454 747 856 161 247 910 ÷ 2 = 227 373 928 080 623 955 + 0;
  • 227 373 928 080 623 955 ÷ 2 = 113 686 964 040 311 977 + 1;
  • 113 686 964 040 311 977 ÷ 2 = 56 843 482 020 155 988 + 1;
  • 56 843 482 020 155 988 ÷ 2 = 28 421 741 010 077 994 + 0;
  • 28 421 741 010 077 994 ÷ 2 = 14 210 870 505 038 997 + 0;
  • 14 210 870 505 038 997 ÷ 2 = 7 105 435 252 519 498 + 1;
  • 7 105 435 252 519 498 ÷ 2 = 3 552 717 626 259 749 + 0;
  • 3 552 717 626 259 749 ÷ 2 = 1 776 358 813 129 874 + 1;
  • 1 776 358 813 129 874 ÷ 2 = 888 179 406 564 937 + 0;
  • 888 179 406 564 937 ÷ 2 = 444 089 703 282 468 + 1;
  • 444 089 703 282 468 ÷ 2 = 222 044 851 641 234 + 0;
  • 222 044 851 641 234 ÷ 2 = 111 022 425 820 617 + 0;
  • 111 022 425 820 617 ÷ 2 = 55 511 212 910 308 + 1;
  • 55 511 212 910 308 ÷ 2 = 27 755 606 455 154 + 0;
  • 27 755 606 455 154 ÷ 2 = 13 877 803 227 577 + 0;
  • 13 877 803 227 577 ÷ 2 = 6 938 901 613 788 + 1;
  • 6 938 901 613 788 ÷ 2 = 3 469 450 806 894 + 0;
  • 3 469 450 806 894 ÷ 2 = 1 734 725 403 447 + 0;
  • 1 734 725 403 447 ÷ 2 = 867 362 701 723 + 1;
  • 867 362 701 723 ÷ 2 = 433 681 350 861 + 1;
  • 433 681 350 861 ÷ 2 = 216 840 675 430 + 1;
  • 216 840 675 430 ÷ 2 = 108 420 337 715 + 0;
  • 108 420 337 715 ÷ 2 = 54 210 168 857 + 1;
  • 54 210 168 857 ÷ 2 = 27 105 084 428 + 1;
  • 27 105 084 428 ÷ 2 = 13 552 542 214 + 0;
  • 13 552 542 214 ÷ 2 = 6 776 271 107 + 0;
  • 6 776 271 107 ÷ 2 = 3 388 135 553 + 1;
  • 3 388 135 553 ÷ 2 = 1 694 067 776 + 1;
  • 1 694 067 776 ÷ 2 = 847 033 888 + 0;
  • 847 033 888 ÷ 2 = 423 516 944 + 0;
  • 423 516 944 ÷ 2 = 211 758 472 + 0;
  • 211 758 472 ÷ 2 = 105 879 236 + 0;
  • 105 879 236 ÷ 2 = 52 939 618 + 0;
  • 52 939 618 ÷ 2 = 26 469 809 + 0;
  • 26 469 809 ÷ 2 = 13 234 904 + 1;
  • 13 234 904 ÷ 2 = 6 617 452 + 0;
  • 6 617 452 ÷ 2 = 3 308 726 + 0;
  • 3 308 726 ÷ 2 = 1 654 363 + 0;
  • 1 654 363 ÷ 2 = 827 181 + 1;
  • 827 181 ÷ 2 = 413 590 + 1;
  • 413 590 ÷ 2 = 206 795 + 0;
  • 206 795 ÷ 2 = 103 397 + 1;
  • 103 397 ÷ 2 = 51 698 + 1;
  • 51 698 ÷ 2 = 25 849 + 0;
  • 25 849 ÷ 2 = 12 924 + 1;
  • 12 924 ÷ 2 = 6 462 + 0;
  • 6 462 ÷ 2 = 3 231 + 0;
  • 3 231 ÷ 2 = 1 615 + 1;
  • 1 615 ÷ 2 = 807 + 1;
  • 807 ÷ 2 = 403 + 1;
  • 403 ÷ 2 = 201 + 1;
  • 201 ÷ 2 = 100 + 1;
  • 100 ÷ 2 = 50 + 0;
  • 50 ÷ 2 = 25 + 0;
  • 25 ÷ 2 = 12 + 1;
  • 12 ÷ 2 = 6 + 0;
  • 6 ÷ 2 = 3 + 0;
  • 3 ÷ 2 = 1 + 1;
  • 1 ÷ 2 = 0 + 1;

2. Construct the base 2 representation of the positive number.

Take all the remainders starting from the bottom of the list constructed above.


1 000 001 111 111 000 001 010 001 111 016(10) =


1100 1001 1111 0010 1101 1000 1000 0001 1001 1011 1001 0010 0101 0100 1100 0111 0100 0010 0101 0111 1101 1110 0111 1110 1000(2)


3. Normalize the binary representation of the number.

Shift the decimal mark 99 positions to the left, so that only one non zero digit remains to the left of it:


1 000 001 111 111 000 001 010 001 111 016(10) =


1100 1001 1111 0010 1101 1000 1000 0001 1001 1011 1001 0010 0101 0100 1100 0111 0100 0010 0101 0111 1101 1110 0111 1110 1000(2) =


1100 1001 1111 0010 1101 1000 1000 0001 1001 1011 1001 0010 0101 0100 1100 0111 0100 0010 0101 0111 1101 1110 0111 1110 1000(2) × 20 =


1.1001 0011 1110 0101 1011 0001 0000 0011 0011 0111 0010 0100 1010 1001 1000 1110 1000 0100 1010 1111 1011 1100 1111 1101 000(2) × 299


4. Up to this moment, there are the following elements that would feed into the 32 bit single precision IEEE 754 binary floating point representation:

Sign 0 (a positive number)


Exponent (unadjusted): 99


Mantissa (not normalized):
1.1001 0011 1110 0101 1011 0001 0000 0011 0011 0111 0010 0100 1010 1001 1000 1110 1000 0100 1010 1111 1011 1100 1111 1101 000


5. Adjust the exponent.

Use the 8 bit excess/bias notation:


Exponent (adjusted) =


Exponent (unadjusted) + 2(8-1) - 1 =


99 + 2(8-1) - 1 =


(99 + 127)(10) =


226(10)


6. Convert the adjusted exponent from the decimal (base 10) to 8 bit binary.

Use the same technique of repeatedly dividing by 2:


  • division = quotient + remainder;
  • 226 ÷ 2 = 113 + 0;
  • 113 ÷ 2 = 56 + 1;
  • 56 ÷ 2 = 28 + 0;
  • 28 ÷ 2 = 14 + 0;
  • 14 ÷ 2 = 7 + 0;
  • 7 ÷ 2 = 3 + 1;
  • 3 ÷ 2 = 1 + 1;
  • 1 ÷ 2 = 0 + 1;

7. Construct the base 2 representation of the adjusted exponent.

Take all the remainders starting from the bottom of the list constructed above.


Exponent (adjusted) =


226(10) =


1110 0010(2)


8. Normalize the mantissa.

a) Remove the leading (the leftmost) bit, since it's allways 1, and the decimal point, if the case.


b) Adjust its length to 23 bits, by removing the excess bits, from the right (if any of the excess bits is set on 1, we are losing precision...).


Mantissa (normalized) =


1. 100 1001 1111 0010 1101 1000 1000 0001 1001 1011 1001 0010 0101 0100 1100 0111 0100 0010 0101 0111 1101 1110 0111 1110 1000 =


100 1001 1111 0010 1101 1000


9. The three elements that make up the number's 32 bit single precision IEEE 754 binary floating point representation:

Sign (1 bit) =
0 (a positive number)


Exponent (8 bits) =
1110 0010


Mantissa (23 bits) =
100 1001 1111 0010 1101 1000


The base ten decimal number 1 000 001 111 111 000 001 010 001 111 016 converted and written in 32 bit single precision IEEE 754 binary floating point representation:
0 - 1110 0010 - 100 1001 1111 0010 1101 1000

The latest decimal numbers converted from base ten to 32 bit single precision IEEE 754 floating point binary standard representation

Number -125.03 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard May 17 11:04 UTC (GMT)
Number 545 041 416 244 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard May 17 11:04 UTC (GMT)
Number 0.000 000 000 000 000 000 065 327 8 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard May 17 11:04 UTC (GMT)
Number 19.866 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard May 17 11:04 UTC (GMT)
Number 4 140 063 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard May 17 11:04 UTC (GMT)
Number 4.2 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard May 17 11:04 UTC (GMT)
Number 1 015 739 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard May 17 11:04 UTC (GMT)
Number 491.210 92 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard May 17 11:04 UTC (GMT)
Number -98 860 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard May 17 11:04 UTC (GMT)
Number 35 525 621 592 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard May 17 11:04 UTC (GMT)
All base ten decimal numbers converted to 32 bit single precision IEEE 754 binary floating point

How to convert decimal numbers from base ten to 32 bit single precision IEEE 754 binary floating point standard

Follow the steps below to convert a base 10 decimal number to 32 bit single precision IEEE 754 binary floating point:

  • 1. If the number to be converted is negative, start with its the positive version.
  • 2. First convert the integer part. Divide repeatedly by 2 the base ten positive representation of the integer number that is to be converted to binary, until we get a quotient that is equal to zero, keeping track of each remainder.
  • 3. Construct the base 2 representation of the positive integer part of the number, by taking all the remainders of the previous dividing operations, starting from the bottom of the list constructed above. Thus, the last remainder of the divisions becomes the first symbol (the leftmost) of the base two number, while the first remainder becomes the last symbol (the rightmost).
  • 4. Then convert the fractional part. Multiply the number repeatedly by 2, until we get a fractional part that is equal to zero, keeping track of each integer part of the results.
  • 5. Construct the base 2 representation of the fractional part of the number by taking all the integer parts of the previous multiplying operations, starting from the top of the constructed list above (they should appear in the binary representation, from left to right, in the order they have been calculated).
  • 6. Normalize the binary representation of the number, by shifting the decimal point (or if you prefer, the decimal mark) "n" positions either to the left or to the right, so that only one non zero digit remains to the left of the decimal point.
  • 7. Adjust the exponent in 8 bit excess/bias notation and then convert it from decimal (base 10) to 8 bit binary, by using the same technique of repeatedly dividing by 2, as shown above:
    Exponent (adjusted) = Exponent (unadjusted) + 2(8-1) - 1
  • 8. Normalize mantissa, remove the leading (leftmost) bit, since it's allways '1' (and the decimal sign if the case) and adjust its length to 23 bits, either by removing the excess bits from the right (losing precision...) or by adding extra '0' bits to the right.
  • 9. Sign (it takes 1 bit) is either 1 for a negative or 0 for a positive number.

Example: convert the negative number -25.347 from decimal system (base ten) to 32 bit single precision IEEE 754 binary floating point:

  • 1. Start with the positive version of the number:

    |-25.347| = 25.347

  • 2. First convert the integer part, 25. Divide it repeatedly by 2, keeping track of each remainder, until we get a quotient that is equal to zero:
    • division = quotient + remainder;
    • 25 ÷ 2 = 12 + 1;
    • 12 ÷ 2 = 6 + 0;
    • 6 ÷ 2 = 3 + 0;
    • 3 ÷ 2 = 1 + 1;
    • 1 ÷ 2 = 0 + 1;
    • We have encountered a quotient that is ZERO => FULL STOP
  • 3. Construct the base 2 representation of the integer part of the number by taking all the remainders of the previous dividing operations, starting from the bottom of the list constructed above:

    25(10) = 1 1001(2)

  • 4. Then convert the fractional part, 0.347. Multiply repeatedly by 2, keeping track of each integer part of the results, until we get a fractional part that is equal to zero:
    • #) multiplying = integer + fractional part;
    • 1) 0.347 × 2 = 0 + 0.694;
    • 2) 0.694 × 2 = 1 + 0.388;
    • 3) 0.388 × 2 = 0 + 0.776;
    • 4) 0.776 × 2 = 1 + 0.552;
    • 5) 0.552 × 2 = 1 + 0.104;
    • 6) 0.104 × 2 = 0 + 0.208;
    • 7) 0.208 × 2 = 0 + 0.416;
    • 8) 0.416 × 2 = 0 + 0.832;
    • 9) 0.832 × 2 = 1 + 0.664;
    • 10) 0.664 × 2 = 1 + 0.328;
    • 11) 0.328 × 2 = 0 + 0.656;
    • 12) 0.656 × 2 = 1 + 0.312;
    • 13) 0.312 × 2 = 0 + 0.624;
    • 14) 0.624 × 2 = 1 + 0.248;
    • 15) 0.248 × 2 = 0 + 0.496;
    • 16) 0.496 × 2 = 0 + 0.992;
    • 17) 0.992 × 2 = 1 + 0.984;
    • 18) 0.984 × 2 = 1 + 0.968;
    • 19) 0.968 × 2 = 1 + 0.936;
    • 20) 0.936 × 2 = 1 + 0.872;
    • 21) 0.872 × 2 = 1 + 0.744;
    • 22) 0.744 × 2 = 1 + 0.488;
    • 23) 0.488 × 2 = 0 + 0.976;
    • 24) 0.976 × 2 = 1 + 0.952;
    • We didn't get any fractional part that was equal to zero. But we had enough iterations (over Mantissa limit = 23) and at least one integer part that was different from zero => FULL STOP (losing precision...).
  • 5. Construct the base 2 representation of the fractional part of the number, by taking all the integer parts of the previous multiplying operations, starting from the top of the constructed list above:

    0.347(10) = 0.0101 1000 1101 0100 1111 1101(2)

  • 6. Summarizing - the positive number before normalization:

    25.347(10) = 1 1001.0101 1000 1101 0100 1111 1101(2)

  • 7. Normalize the binary representation of the number, shifting the decimal point 4 positions to the left so that only one non-zero digit stays to the left of the decimal point:

    25.347(10) =
    1 1001.0101 1000 1101 0100 1111 1101(2) =
    1 1001.0101 1000 1101 0100 1111 1101(2) × 20 =
    1.1001 0101 1000 1101 0100 1111 1101(2) × 24

  • 8. Up to this moment, there are the following elements that would feed into the 32 bit single precision IEEE 754 binary floating point:

    Sign: 1 (a negative number)

    Exponent (unadjusted): 4

    Mantissa (not-normalized): 1.1001 0101 1000 1101 0100 1111 1101

  • 9. Adjust the exponent in 8 bit excess/bias notation and then convert it from decimal (base 10) to 8 bit binary (base 2), by using the same technique of repeatedly dividing it by 2, as already demonstrated above:

    Exponent (adjusted) = Exponent (unadjusted) + 2(8-1) - 1 = (4 + 127)(10) = 131(10) =
    1000 0011(2)

  • 10. Normalize the mantissa, remove the leading (leftmost) bit, since it's allways '1' (and the decimal point) and adjust its length to 23 bits, by removing the excess bits from the right (losing precision...):

    Mantissa (not-normalized): 1.1001 0101 1000 1101 0100 1111 1101

    Mantissa (normalized): 100 1010 1100 0110 1010 0111

  • Conclusion:

    Sign (1 bit) = 1 (a negative number)

    Exponent (8 bits) = 1000 0011

    Mantissa (23 bits) = 100 1010 1100 0110 1010 0111

  • Number -25.347, converted from the decimal system (base 10) to 32 bit single precision IEEE 754 binary floating point =
    1 - 1000 0011 - 100 1010 1100 0110 1010 0111