32bit IEEE 754: Decimal ↗ Single Precision Floating Point Binary: 1 000 001 011 110 110 010 101 099 999 947 Convert the Number to 32 Bit Single Precision IEEE 754 Binary Floating Point Representation Standard, From a Base 10 Decimal System Number

Number 1 000 001 011 110 110 010 101 099 999 947(10) converted and written in 32 bit single precision IEEE 754 binary floating point representation (1 bit for sign, 8 bits for exponent, 23 bits for mantissa)

1. Divide the number repeatedly by 2.

Keep track of each remainder.

We stop when we get a quotient that is equal to zero.


  • division = quotient + remainder;
  • 1 000 001 011 110 110 010 101 099 999 947 ÷ 2 = 500 000 505 555 055 005 050 549 999 973 + 1;
  • 500 000 505 555 055 005 050 549 999 973 ÷ 2 = 250 000 252 777 527 502 525 274 999 986 + 1;
  • 250 000 252 777 527 502 525 274 999 986 ÷ 2 = 125 000 126 388 763 751 262 637 499 993 + 0;
  • 125 000 126 388 763 751 262 637 499 993 ÷ 2 = 62 500 063 194 381 875 631 318 749 996 + 1;
  • 62 500 063 194 381 875 631 318 749 996 ÷ 2 = 31 250 031 597 190 937 815 659 374 998 + 0;
  • 31 250 031 597 190 937 815 659 374 998 ÷ 2 = 15 625 015 798 595 468 907 829 687 499 + 0;
  • 15 625 015 798 595 468 907 829 687 499 ÷ 2 = 7 812 507 899 297 734 453 914 843 749 + 1;
  • 7 812 507 899 297 734 453 914 843 749 ÷ 2 = 3 906 253 949 648 867 226 957 421 874 + 1;
  • 3 906 253 949 648 867 226 957 421 874 ÷ 2 = 1 953 126 974 824 433 613 478 710 937 + 0;
  • 1 953 126 974 824 433 613 478 710 937 ÷ 2 = 976 563 487 412 216 806 739 355 468 + 1;
  • 976 563 487 412 216 806 739 355 468 ÷ 2 = 488 281 743 706 108 403 369 677 734 + 0;
  • 488 281 743 706 108 403 369 677 734 ÷ 2 = 244 140 871 853 054 201 684 838 867 + 0;
  • 244 140 871 853 054 201 684 838 867 ÷ 2 = 122 070 435 926 527 100 842 419 433 + 1;
  • 122 070 435 926 527 100 842 419 433 ÷ 2 = 61 035 217 963 263 550 421 209 716 + 1;
  • 61 035 217 963 263 550 421 209 716 ÷ 2 = 30 517 608 981 631 775 210 604 858 + 0;
  • 30 517 608 981 631 775 210 604 858 ÷ 2 = 15 258 804 490 815 887 605 302 429 + 0;
  • 15 258 804 490 815 887 605 302 429 ÷ 2 = 7 629 402 245 407 943 802 651 214 + 1;
  • 7 629 402 245 407 943 802 651 214 ÷ 2 = 3 814 701 122 703 971 901 325 607 + 0;
  • 3 814 701 122 703 971 901 325 607 ÷ 2 = 1 907 350 561 351 985 950 662 803 + 1;
  • 1 907 350 561 351 985 950 662 803 ÷ 2 = 953 675 280 675 992 975 331 401 + 1;
  • 953 675 280 675 992 975 331 401 ÷ 2 = 476 837 640 337 996 487 665 700 + 1;
  • 476 837 640 337 996 487 665 700 ÷ 2 = 238 418 820 168 998 243 832 850 + 0;
  • 238 418 820 168 998 243 832 850 ÷ 2 = 119 209 410 084 499 121 916 425 + 0;
  • 119 209 410 084 499 121 916 425 ÷ 2 = 59 604 705 042 249 560 958 212 + 1;
  • 59 604 705 042 249 560 958 212 ÷ 2 = 29 802 352 521 124 780 479 106 + 0;
  • 29 802 352 521 124 780 479 106 ÷ 2 = 14 901 176 260 562 390 239 553 + 0;
  • 14 901 176 260 562 390 239 553 ÷ 2 = 7 450 588 130 281 195 119 776 + 1;
  • 7 450 588 130 281 195 119 776 ÷ 2 = 3 725 294 065 140 597 559 888 + 0;
  • 3 725 294 065 140 597 559 888 ÷ 2 = 1 862 647 032 570 298 779 944 + 0;
  • 1 862 647 032 570 298 779 944 ÷ 2 = 931 323 516 285 149 389 972 + 0;
  • 931 323 516 285 149 389 972 ÷ 2 = 465 661 758 142 574 694 986 + 0;
  • 465 661 758 142 574 694 986 ÷ 2 = 232 830 879 071 287 347 493 + 0;
  • 232 830 879 071 287 347 493 ÷ 2 = 116 415 439 535 643 673 746 + 1;
  • 116 415 439 535 643 673 746 ÷ 2 = 58 207 719 767 821 836 873 + 0;
  • 58 207 719 767 821 836 873 ÷ 2 = 29 103 859 883 910 918 436 + 1;
  • 29 103 859 883 910 918 436 ÷ 2 = 14 551 929 941 955 459 218 + 0;
  • 14 551 929 941 955 459 218 ÷ 2 = 7 275 964 970 977 729 609 + 0;
  • 7 275 964 970 977 729 609 ÷ 2 = 3 637 982 485 488 864 804 + 1;
  • 3 637 982 485 488 864 804 ÷ 2 = 1 818 991 242 744 432 402 + 0;
  • 1 818 991 242 744 432 402 ÷ 2 = 909 495 621 372 216 201 + 0;
  • 909 495 621 372 216 201 ÷ 2 = 454 747 810 686 108 100 + 1;
  • 454 747 810 686 108 100 ÷ 2 = 227 373 905 343 054 050 + 0;
  • 227 373 905 343 054 050 ÷ 2 = 113 686 952 671 527 025 + 0;
  • 113 686 952 671 527 025 ÷ 2 = 56 843 476 335 763 512 + 1;
  • 56 843 476 335 763 512 ÷ 2 = 28 421 738 167 881 756 + 0;
  • 28 421 738 167 881 756 ÷ 2 = 14 210 869 083 940 878 + 0;
  • 14 210 869 083 940 878 ÷ 2 = 7 105 434 541 970 439 + 0;
  • 7 105 434 541 970 439 ÷ 2 = 3 552 717 270 985 219 + 1;
  • 3 552 717 270 985 219 ÷ 2 = 1 776 358 635 492 609 + 1;
  • 1 776 358 635 492 609 ÷ 2 = 888 179 317 746 304 + 1;
  • 888 179 317 746 304 ÷ 2 = 444 089 658 873 152 + 0;
  • 444 089 658 873 152 ÷ 2 = 222 044 829 436 576 + 0;
  • 222 044 829 436 576 ÷ 2 = 111 022 414 718 288 + 0;
  • 111 022 414 718 288 ÷ 2 = 55 511 207 359 144 + 0;
  • 55 511 207 359 144 ÷ 2 = 27 755 603 679 572 + 0;
  • 27 755 603 679 572 ÷ 2 = 13 877 801 839 786 + 0;
  • 13 877 801 839 786 ÷ 2 = 6 938 900 919 893 + 0;
  • 6 938 900 919 893 ÷ 2 = 3 469 450 459 946 + 1;
  • 3 469 450 459 946 ÷ 2 = 1 734 725 229 973 + 0;
  • 1 734 725 229 973 ÷ 2 = 867 362 614 986 + 1;
  • 867 362 614 986 ÷ 2 = 433 681 307 493 + 0;
  • 433 681 307 493 ÷ 2 = 216 840 653 746 + 1;
  • 216 840 653 746 ÷ 2 = 108 420 326 873 + 0;
  • 108 420 326 873 ÷ 2 = 54 210 163 436 + 1;
  • 54 210 163 436 ÷ 2 = 27 105 081 718 + 0;
  • 27 105 081 718 ÷ 2 = 13 552 540 859 + 0;
  • 13 552 540 859 ÷ 2 = 6 776 270 429 + 1;
  • 6 776 270 429 ÷ 2 = 3 388 135 214 + 1;
  • 3 388 135 214 ÷ 2 = 1 694 067 607 + 0;
  • 1 694 067 607 ÷ 2 = 847 033 803 + 1;
  • 847 033 803 ÷ 2 = 423 516 901 + 1;
  • 423 516 901 ÷ 2 = 211 758 450 + 1;
  • 211 758 450 ÷ 2 = 105 879 225 + 0;
  • 105 879 225 ÷ 2 = 52 939 612 + 1;
  • 52 939 612 ÷ 2 = 26 469 806 + 0;
  • 26 469 806 ÷ 2 = 13 234 903 + 0;
  • 13 234 903 ÷ 2 = 6 617 451 + 1;
  • 6 617 451 ÷ 2 = 3 308 725 + 1;
  • 3 308 725 ÷ 2 = 1 654 362 + 1;
  • 1 654 362 ÷ 2 = 827 181 + 0;
  • 827 181 ÷ 2 = 413 590 + 1;
  • 413 590 ÷ 2 = 206 795 + 0;
  • 206 795 ÷ 2 = 103 397 + 1;
  • 103 397 ÷ 2 = 51 698 + 1;
  • 51 698 ÷ 2 = 25 849 + 0;
  • 25 849 ÷ 2 = 12 924 + 1;
  • 12 924 ÷ 2 = 6 462 + 0;
  • 6 462 ÷ 2 = 3 231 + 0;
  • 3 231 ÷ 2 = 1 615 + 1;
  • 1 615 ÷ 2 = 807 + 1;
  • 807 ÷ 2 = 403 + 1;
  • 403 ÷ 2 = 201 + 1;
  • 201 ÷ 2 = 100 + 1;
  • 100 ÷ 2 = 50 + 0;
  • 50 ÷ 2 = 25 + 0;
  • 25 ÷ 2 = 12 + 1;
  • 12 ÷ 2 = 6 + 0;
  • 6 ÷ 2 = 3 + 0;
  • 3 ÷ 2 = 1 + 1;
  • 1 ÷ 2 = 0 + 1;

2. Construct the base 2 representation of the positive number.

Take all the remainders starting from the bottom of the list constructed above.


1 000 001 011 110 110 010 101 099 999 947(10) =


1100 1001 1111 0010 1101 0111 0010 1110 1100 1010 1010 0000 0011 1000 1001 0010 0101 0000 0100 1001 1101 0011 0010 1100 1011(2)


3. Normalize the binary representation of the number.

Shift the decimal mark 99 positions to the left, so that only one non zero digit remains to the left of it:


1 000 001 011 110 110 010 101 099 999 947(10) =


1100 1001 1111 0010 1101 0111 0010 1110 1100 1010 1010 0000 0011 1000 1001 0010 0101 0000 0100 1001 1101 0011 0010 1100 1011(2) =


1100 1001 1111 0010 1101 0111 0010 1110 1100 1010 1010 0000 0011 1000 1001 0010 0101 0000 0100 1001 1101 0011 0010 1100 1011(2) × 20 =


1.1001 0011 1110 0101 1010 1110 0101 1101 1001 0101 0100 0000 0111 0001 0010 0100 1010 0000 1001 0011 1010 0110 0101 1001 011(2) × 299


4. Up to this moment, there are the following elements that would feed into the 32 bit single precision IEEE 754 binary floating point representation:

Sign 0 (a positive number)


Exponent (unadjusted): 99


Mantissa (not normalized):
1.1001 0011 1110 0101 1010 1110 0101 1101 1001 0101 0100 0000 0111 0001 0010 0100 1010 0000 1001 0011 1010 0110 0101 1001 011


5. Adjust the exponent.

Use the 8 bit excess/bias notation:


Exponent (adjusted) =


Exponent (unadjusted) + 2(8-1) - 1 =


99 + 2(8-1) - 1 =


(99 + 127)(10) =


226(10)


6. Convert the adjusted exponent from the decimal (base 10) to 8 bit binary.

Use the same technique of repeatedly dividing by 2:


  • division = quotient + remainder;
  • 226 ÷ 2 = 113 + 0;
  • 113 ÷ 2 = 56 + 1;
  • 56 ÷ 2 = 28 + 0;
  • 28 ÷ 2 = 14 + 0;
  • 14 ÷ 2 = 7 + 0;
  • 7 ÷ 2 = 3 + 1;
  • 3 ÷ 2 = 1 + 1;
  • 1 ÷ 2 = 0 + 1;

7. Construct the base 2 representation of the adjusted exponent.

Take all the remainders starting from the bottom of the list constructed above.


Exponent (adjusted) =


226(10) =


1110 0010(2)


8. Normalize the mantissa.

a) Remove the leading (the leftmost) bit, since it's allways 1, and the decimal point, if the case.


b) Adjust its length to 23 bits, by removing the excess bits, from the right (if any of the excess bits is set on 1, we are losing precision...).


Mantissa (normalized) =


1. 100 1001 1111 0010 1101 0111 0010 1110 1100 1010 1010 0000 0011 1000 1001 0010 0101 0000 0100 1001 1101 0011 0010 1100 1011 =


100 1001 1111 0010 1101 0111


9. The three elements that make up the number's 32 bit single precision IEEE 754 binary floating point representation:

Sign (1 bit) =
0 (a positive number)


Exponent (8 bits) =
1110 0010


Mantissa (23 bits) =
100 1001 1111 0010 1101 0111


The base ten decimal number 1 000 001 011 110 110 010 101 099 999 947 converted and written in 32 bit single precision IEEE 754 binary floating point representation:
0 - 1110 0010 - 100 1001 1111 0010 1101 0111

The latest decimal numbers converted from base ten to 32 bit single precision IEEE 754 floating point binary standard representation

Number 104 968 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard May 22 01:18 UTC (GMT)
Number 1 200 319 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard May 22 01:18 UTC (GMT)
Number 11 325 412 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard May 22 01:18 UTC (GMT)
Number 499 999 966 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard May 22 01:18 UTC (GMT)
Number 3 313 215 735 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard May 22 01:18 UTC (GMT)
Number 1 258 848 304 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard May 22 01:18 UTC (GMT)
Number -2 841 542 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard May 22 01:18 UTC (GMT)
Number 33 554 432.25 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard May 22 01:18 UTC (GMT)
Number 960 430 991 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard May 22 01:18 UTC (GMT)
Number -0.000 013 1 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard May 22 01:18 UTC (GMT)
All base ten decimal numbers converted to 32 bit single precision IEEE 754 binary floating point

How to convert decimal numbers from base ten to 32 bit single precision IEEE 754 binary floating point standard

Follow the steps below to convert a base 10 decimal number to 32 bit single precision IEEE 754 binary floating point:

  • 1. If the number to be converted is negative, start with its the positive version.
  • 2. First convert the integer part. Divide repeatedly by 2 the base ten positive representation of the integer number that is to be converted to binary, until we get a quotient that is equal to zero, keeping track of each remainder.
  • 3. Construct the base 2 representation of the positive integer part of the number, by taking all the remainders of the previous dividing operations, starting from the bottom of the list constructed above. Thus, the last remainder of the divisions becomes the first symbol (the leftmost) of the base two number, while the first remainder becomes the last symbol (the rightmost).
  • 4. Then convert the fractional part. Multiply the number repeatedly by 2, until we get a fractional part that is equal to zero, keeping track of each integer part of the results.
  • 5. Construct the base 2 representation of the fractional part of the number by taking all the integer parts of the previous multiplying operations, starting from the top of the constructed list above (they should appear in the binary representation, from left to right, in the order they have been calculated).
  • 6. Normalize the binary representation of the number, by shifting the decimal point (or if you prefer, the decimal mark) "n" positions either to the left or to the right, so that only one non zero digit remains to the left of the decimal point.
  • 7. Adjust the exponent in 8 bit excess/bias notation and then convert it from decimal (base 10) to 8 bit binary, by using the same technique of repeatedly dividing by 2, as shown above:
    Exponent (adjusted) = Exponent (unadjusted) + 2(8-1) - 1
  • 8. Normalize mantissa, remove the leading (leftmost) bit, since it's allways '1' (and the decimal sign if the case) and adjust its length to 23 bits, either by removing the excess bits from the right (losing precision...) or by adding extra '0' bits to the right.
  • 9. Sign (it takes 1 bit) is either 1 for a negative or 0 for a positive number.

Example: convert the negative number -25.347 from decimal system (base ten) to 32 bit single precision IEEE 754 binary floating point:

  • 1. Start with the positive version of the number:

    |-25.347| = 25.347

  • 2. First convert the integer part, 25. Divide it repeatedly by 2, keeping track of each remainder, until we get a quotient that is equal to zero:
    • division = quotient + remainder;
    • 25 ÷ 2 = 12 + 1;
    • 12 ÷ 2 = 6 + 0;
    • 6 ÷ 2 = 3 + 0;
    • 3 ÷ 2 = 1 + 1;
    • 1 ÷ 2 = 0 + 1;
    • We have encountered a quotient that is ZERO => FULL STOP
  • 3. Construct the base 2 representation of the integer part of the number by taking all the remainders of the previous dividing operations, starting from the bottom of the list constructed above:

    25(10) = 1 1001(2)

  • 4. Then convert the fractional part, 0.347. Multiply repeatedly by 2, keeping track of each integer part of the results, until we get a fractional part that is equal to zero:
    • #) multiplying = integer + fractional part;
    • 1) 0.347 × 2 = 0 + 0.694;
    • 2) 0.694 × 2 = 1 + 0.388;
    • 3) 0.388 × 2 = 0 + 0.776;
    • 4) 0.776 × 2 = 1 + 0.552;
    • 5) 0.552 × 2 = 1 + 0.104;
    • 6) 0.104 × 2 = 0 + 0.208;
    • 7) 0.208 × 2 = 0 + 0.416;
    • 8) 0.416 × 2 = 0 + 0.832;
    • 9) 0.832 × 2 = 1 + 0.664;
    • 10) 0.664 × 2 = 1 + 0.328;
    • 11) 0.328 × 2 = 0 + 0.656;
    • 12) 0.656 × 2 = 1 + 0.312;
    • 13) 0.312 × 2 = 0 + 0.624;
    • 14) 0.624 × 2 = 1 + 0.248;
    • 15) 0.248 × 2 = 0 + 0.496;
    • 16) 0.496 × 2 = 0 + 0.992;
    • 17) 0.992 × 2 = 1 + 0.984;
    • 18) 0.984 × 2 = 1 + 0.968;
    • 19) 0.968 × 2 = 1 + 0.936;
    • 20) 0.936 × 2 = 1 + 0.872;
    • 21) 0.872 × 2 = 1 + 0.744;
    • 22) 0.744 × 2 = 1 + 0.488;
    • 23) 0.488 × 2 = 0 + 0.976;
    • 24) 0.976 × 2 = 1 + 0.952;
    • We didn't get any fractional part that was equal to zero. But we had enough iterations (over Mantissa limit = 23) and at least one integer part that was different from zero => FULL STOP (losing precision...).
  • 5. Construct the base 2 representation of the fractional part of the number, by taking all the integer parts of the previous multiplying operations, starting from the top of the constructed list above:

    0.347(10) = 0.0101 1000 1101 0100 1111 1101(2)

  • 6. Summarizing - the positive number before normalization:

    25.347(10) = 1 1001.0101 1000 1101 0100 1111 1101(2)

  • 7. Normalize the binary representation of the number, shifting the decimal point 4 positions to the left so that only one non-zero digit stays to the left of the decimal point:

    25.347(10) =
    1 1001.0101 1000 1101 0100 1111 1101(2) =
    1 1001.0101 1000 1101 0100 1111 1101(2) × 20 =
    1.1001 0101 1000 1101 0100 1111 1101(2) × 24

  • 8. Up to this moment, there are the following elements that would feed into the 32 bit single precision IEEE 754 binary floating point:

    Sign: 1 (a negative number)

    Exponent (unadjusted): 4

    Mantissa (not-normalized): 1.1001 0101 1000 1101 0100 1111 1101

  • 9. Adjust the exponent in 8 bit excess/bias notation and then convert it from decimal (base 10) to 8 bit binary (base 2), by using the same technique of repeatedly dividing it by 2, as already demonstrated above:

    Exponent (adjusted) = Exponent (unadjusted) + 2(8-1) - 1 = (4 + 127)(10) = 131(10) =
    1000 0011(2)

  • 10. Normalize the mantissa, remove the leading (leftmost) bit, since it's allways '1' (and the decimal point) and adjust its length to 23 bits, by removing the excess bits from the right (losing precision...):

    Mantissa (not-normalized): 1.1001 0101 1000 1101 0100 1111 1101

    Mantissa (normalized): 100 1010 1100 0110 1010 0111

  • Conclusion:

    Sign (1 bit) = 1 (a negative number)

    Exponent (8 bits) = 1000 0011

    Mantissa (23 bits) = 100 1010 1100 0110 1010 0111

  • Number -25.347, converted from the decimal system (base 10) to 32 bit single precision IEEE 754 binary floating point =
    1 - 1000 0011 - 100 1010 1100 0110 1010 0111