32bit IEEE 754: Decimal ↗ Single Precision Floating Point Binary: 1 000 001 011 000 000 010 999 999 999 966 Convert the Number to 32 Bit Single Precision IEEE 754 Binary Floating Point Representation Standard, From a Base 10 Decimal System Number

Number 1 000 001 011 000 000 010 999 999 999 966(10) converted and written in 32 bit single precision IEEE 754 binary floating point representation (1 bit for sign, 8 bits for exponent, 23 bits for mantissa)

1. Divide the number repeatedly by 2.

Keep track of each remainder.

We stop when we get a quotient that is equal to zero.


  • division = quotient + remainder;
  • 1 000 001 011 000 000 010 999 999 999 966 ÷ 2 = 500 000 505 500 000 005 499 999 999 983 + 0;
  • 500 000 505 500 000 005 499 999 999 983 ÷ 2 = 250 000 252 750 000 002 749 999 999 991 + 1;
  • 250 000 252 750 000 002 749 999 999 991 ÷ 2 = 125 000 126 375 000 001 374 999 999 995 + 1;
  • 125 000 126 375 000 001 374 999 999 995 ÷ 2 = 62 500 063 187 500 000 687 499 999 997 + 1;
  • 62 500 063 187 500 000 687 499 999 997 ÷ 2 = 31 250 031 593 750 000 343 749 999 998 + 1;
  • 31 250 031 593 750 000 343 749 999 998 ÷ 2 = 15 625 015 796 875 000 171 874 999 999 + 0;
  • 15 625 015 796 875 000 171 874 999 999 ÷ 2 = 7 812 507 898 437 500 085 937 499 999 + 1;
  • 7 812 507 898 437 500 085 937 499 999 ÷ 2 = 3 906 253 949 218 750 042 968 749 999 + 1;
  • 3 906 253 949 218 750 042 968 749 999 ÷ 2 = 1 953 126 974 609 375 021 484 374 999 + 1;
  • 1 953 126 974 609 375 021 484 374 999 ÷ 2 = 976 563 487 304 687 510 742 187 499 + 1;
  • 976 563 487 304 687 510 742 187 499 ÷ 2 = 488 281 743 652 343 755 371 093 749 + 1;
  • 488 281 743 652 343 755 371 093 749 ÷ 2 = 244 140 871 826 171 877 685 546 874 + 1;
  • 244 140 871 826 171 877 685 546 874 ÷ 2 = 122 070 435 913 085 938 842 773 437 + 0;
  • 122 070 435 913 085 938 842 773 437 ÷ 2 = 61 035 217 956 542 969 421 386 718 + 1;
  • 61 035 217 956 542 969 421 386 718 ÷ 2 = 30 517 608 978 271 484 710 693 359 + 0;
  • 30 517 608 978 271 484 710 693 359 ÷ 2 = 15 258 804 489 135 742 355 346 679 + 1;
  • 15 258 804 489 135 742 355 346 679 ÷ 2 = 7 629 402 244 567 871 177 673 339 + 1;
  • 7 629 402 244 567 871 177 673 339 ÷ 2 = 3 814 701 122 283 935 588 836 669 + 1;
  • 3 814 701 122 283 935 588 836 669 ÷ 2 = 1 907 350 561 141 967 794 418 334 + 1;
  • 1 907 350 561 141 967 794 418 334 ÷ 2 = 953 675 280 570 983 897 209 167 + 0;
  • 953 675 280 570 983 897 209 167 ÷ 2 = 476 837 640 285 491 948 604 583 + 1;
  • 476 837 640 285 491 948 604 583 ÷ 2 = 238 418 820 142 745 974 302 291 + 1;
  • 238 418 820 142 745 974 302 291 ÷ 2 = 119 209 410 071 372 987 151 145 + 1;
  • 119 209 410 071 372 987 151 145 ÷ 2 = 59 604 705 035 686 493 575 572 + 1;
  • 59 604 705 035 686 493 575 572 ÷ 2 = 29 802 352 517 843 246 787 786 + 0;
  • 29 802 352 517 843 246 787 786 ÷ 2 = 14 901 176 258 921 623 393 893 + 0;
  • 14 901 176 258 921 623 393 893 ÷ 2 = 7 450 588 129 460 811 696 946 + 1;
  • 7 450 588 129 460 811 696 946 ÷ 2 = 3 725 294 064 730 405 848 473 + 0;
  • 3 725 294 064 730 405 848 473 ÷ 2 = 1 862 647 032 365 202 924 236 + 1;
  • 1 862 647 032 365 202 924 236 ÷ 2 = 931 323 516 182 601 462 118 + 0;
  • 931 323 516 182 601 462 118 ÷ 2 = 465 661 758 091 300 731 059 + 0;
  • 465 661 758 091 300 731 059 ÷ 2 = 232 830 879 045 650 365 529 + 1;
  • 232 830 879 045 650 365 529 ÷ 2 = 116 415 439 522 825 182 764 + 1;
  • 116 415 439 522 825 182 764 ÷ 2 = 58 207 719 761 412 591 382 + 0;
  • 58 207 719 761 412 591 382 ÷ 2 = 29 103 859 880 706 295 691 + 0;
  • 29 103 859 880 706 295 691 ÷ 2 = 14 551 929 940 353 147 845 + 1;
  • 14 551 929 940 353 147 845 ÷ 2 = 7 275 964 970 176 573 922 + 1;
  • 7 275 964 970 176 573 922 ÷ 2 = 3 637 982 485 088 286 961 + 0;
  • 3 637 982 485 088 286 961 ÷ 2 = 1 818 991 242 544 143 480 + 1;
  • 1 818 991 242 544 143 480 ÷ 2 = 909 495 621 272 071 740 + 0;
  • 909 495 621 272 071 740 ÷ 2 = 454 747 810 636 035 870 + 0;
  • 454 747 810 636 035 870 ÷ 2 = 227 373 905 318 017 935 + 0;
  • 227 373 905 318 017 935 ÷ 2 = 113 686 952 659 008 967 + 1;
  • 113 686 952 659 008 967 ÷ 2 = 56 843 476 329 504 483 + 1;
  • 56 843 476 329 504 483 ÷ 2 = 28 421 738 164 752 241 + 1;
  • 28 421 738 164 752 241 ÷ 2 = 14 210 869 082 376 120 + 1;
  • 14 210 869 082 376 120 ÷ 2 = 7 105 434 541 188 060 + 0;
  • 7 105 434 541 188 060 ÷ 2 = 3 552 717 270 594 030 + 0;
  • 3 552 717 270 594 030 ÷ 2 = 1 776 358 635 297 015 + 0;
  • 1 776 358 635 297 015 ÷ 2 = 888 179 317 648 507 + 1;
  • 888 179 317 648 507 ÷ 2 = 444 089 658 824 253 + 1;
  • 444 089 658 824 253 ÷ 2 = 222 044 829 412 126 + 1;
  • 222 044 829 412 126 ÷ 2 = 111 022 414 706 063 + 0;
  • 111 022 414 706 063 ÷ 2 = 55 511 207 353 031 + 1;
  • 55 511 207 353 031 ÷ 2 = 27 755 603 676 515 + 1;
  • 27 755 603 676 515 ÷ 2 = 13 877 801 838 257 + 1;
  • 13 877 801 838 257 ÷ 2 = 6 938 900 919 128 + 1;
  • 6 938 900 919 128 ÷ 2 = 3 469 450 459 564 + 0;
  • 3 469 450 459 564 ÷ 2 = 1 734 725 229 782 + 0;
  • 1 734 725 229 782 ÷ 2 = 867 362 614 891 + 0;
  • 867 362 614 891 ÷ 2 = 433 681 307 445 + 1;
  • 433 681 307 445 ÷ 2 = 216 840 653 722 + 1;
  • 216 840 653 722 ÷ 2 = 108 420 326 861 + 0;
  • 108 420 326 861 ÷ 2 = 54 210 163 430 + 1;
  • 54 210 163 430 ÷ 2 = 27 105 081 715 + 0;
  • 27 105 081 715 ÷ 2 = 13 552 540 857 + 1;
  • 13 552 540 857 ÷ 2 = 6 776 270 428 + 1;
  • 6 776 270 428 ÷ 2 = 3 388 135 214 + 0;
  • 3 388 135 214 ÷ 2 = 1 694 067 607 + 0;
  • 1 694 067 607 ÷ 2 = 847 033 803 + 1;
  • 847 033 803 ÷ 2 = 423 516 901 + 1;
  • 423 516 901 ÷ 2 = 211 758 450 + 1;
  • 211 758 450 ÷ 2 = 105 879 225 + 0;
  • 105 879 225 ÷ 2 = 52 939 612 + 1;
  • 52 939 612 ÷ 2 = 26 469 806 + 0;
  • 26 469 806 ÷ 2 = 13 234 903 + 0;
  • 13 234 903 ÷ 2 = 6 617 451 + 1;
  • 6 617 451 ÷ 2 = 3 308 725 + 1;
  • 3 308 725 ÷ 2 = 1 654 362 + 1;
  • 1 654 362 ÷ 2 = 827 181 + 0;
  • 827 181 ÷ 2 = 413 590 + 1;
  • 413 590 ÷ 2 = 206 795 + 0;
  • 206 795 ÷ 2 = 103 397 + 1;
  • 103 397 ÷ 2 = 51 698 + 1;
  • 51 698 ÷ 2 = 25 849 + 0;
  • 25 849 ÷ 2 = 12 924 + 1;
  • 12 924 ÷ 2 = 6 462 + 0;
  • 6 462 ÷ 2 = 3 231 + 0;
  • 3 231 ÷ 2 = 1 615 + 1;
  • 1 615 ÷ 2 = 807 + 1;
  • 807 ÷ 2 = 403 + 1;
  • 403 ÷ 2 = 201 + 1;
  • 201 ÷ 2 = 100 + 1;
  • 100 ÷ 2 = 50 + 0;
  • 50 ÷ 2 = 25 + 0;
  • 25 ÷ 2 = 12 + 1;
  • 12 ÷ 2 = 6 + 0;
  • 6 ÷ 2 = 3 + 0;
  • 3 ÷ 2 = 1 + 1;
  • 1 ÷ 2 = 0 + 1;

2. Construct the base 2 representation of the positive number.

Take all the remainders starting from the bottom of the list constructed above.


1 000 001 011 000 000 010 999 999 999 966(10) =


1100 1001 1111 0010 1101 0111 0010 1110 0110 1011 0001 1110 1110 0011 1100 0101 1001 1001 0100 1111 0111 1010 1111 1101 1110(2)


3. Normalize the binary representation of the number.

Shift the decimal mark 99 positions to the left, so that only one non zero digit remains to the left of it:


1 000 001 011 000 000 010 999 999 999 966(10) =


1100 1001 1111 0010 1101 0111 0010 1110 0110 1011 0001 1110 1110 0011 1100 0101 1001 1001 0100 1111 0111 1010 1111 1101 1110(2) =


1100 1001 1111 0010 1101 0111 0010 1110 0110 1011 0001 1110 1110 0011 1100 0101 1001 1001 0100 1111 0111 1010 1111 1101 1110(2) × 20 =


1.1001 0011 1110 0101 1010 1110 0101 1100 1101 0110 0011 1101 1100 0111 1000 1011 0011 0010 1001 1110 1111 0101 1111 1011 110(2) × 299


4. Up to this moment, there are the following elements that would feed into the 32 bit single precision IEEE 754 binary floating point representation:

Sign 0 (a positive number)


Exponent (unadjusted): 99


Mantissa (not normalized):
1.1001 0011 1110 0101 1010 1110 0101 1100 1101 0110 0011 1101 1100 0111 1000 1011 0011 0010 1001 1110 1111 0101 1111 1011 110


5. Adjust the exponent.

Use the 8 bit excess/bias notation:


Exponent (adjusted) =


Exponent (unadjusted) + 2(8-1) - 1 =


99 + 2(8-1) - 1 =


(99 + 127)(10) =


226(10)


6. Convert the adjusted exponent from the decimal (base 10) to 8 bit binary.

Use the same technique of repeatedly dividing by 2:


  • division = quotient + remainder;
  • 226 ÷ 2 = 113 + 0;
  • 113 ÷ 2 = 56 + 1;
  • 56 ÷ 2 = 28 + 0;
  • 28 ÷ 2 = 14 + 0;
  • 14 ÷ 2 = 7 + 0;
  • 7 ÷ 2 = 3 + 1;
  • 3 ÷ 2 = 1 + 1;
  • 1 ÷ 2 = 0 + 1;

7. Construct the base 2 representation of the adjusted exponent.

Take all the remainders starting from the bottom of the list constructed above.


Exponent (adjusted) =


226(10) =


1110 0010(2)


8. Normalize the mantissa.

a) Remove the leading (the leftmost) bit, since it's allways 1, and the decimal point, if the case.


b) Adjust its length to 23 bits, by removing the excess bits, from the right (if any of the excess bits is set on 1, we are losing precision...).


Mantissa (normalized) =


1. 100 1001 1111 0010 1101 0111 0010 1110 0110 1011 0001 1110 1110 0011 1100 0101 1001 1001 0100 1111 0111 1010 1111 1101 1110 =


100 1001 1111 0010 1101 0111


9. The three elements that make up the number's 32 bit single precision IEEE 754 binary floating point representation:

Sign (1 bit) =
0 (a positive number)


Exponent (8 bits) =
1110 0010


Mantissa (23 bits) =
100 1001 1111 0010 1101 0111


The base ten decimal number 1 000 001 011 000 000 010 999 999 999 966 converted and written in 32 bit single precision IEEE 754 binary floating point representation:
0 - 1110 0010 - 100 1001 1111 0010 1101 0111

The latest decimal numbers converted from base ten to 32 bit single precision IEEE 754 floating point binary standard representation

Number -14 751 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard May 18 18:52 UTC (GMT)
Number 32 752 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard May 18 18:52 UTC (GMT)
Number 0.002 394 522 356 732 212 773 527 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard May 18 18:52 UTC (GMT)
Number 1.245 1 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard May 18 18:52 UTC (GMT)
Number 0.000 111 579 895 019 531 4 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard May 18 18:52 UTC (GMT)
Number 2 045.5 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard May 18 18:52 UTC (GMT)
Number 600 310 063 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard May 18 18:52 UTC (GMT)
Number 72.125 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard May 18 18:52 UTC (GMT)
Number 1 062 207 557 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard May 18 18:52 UTC (GMT)
Number 587 888 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard May 18 18:52 UTC (GMT)
All base ten decimal numbers converted to 32 bit single precision IEEE 754 binary floating point

How to convert decimal numbers from base ten to 32 bit single precision IEEE 754 binary floating point standard

Follow the steps below to convert a base 10 decimal number to 32 bit single precision IEEE 754 binary floating point:

  • 1. If the number to be converted is negative, start with its the positive version.
  • 2. First convert the integer part. Divide repeatedly by 2 the base ten positive representation of the integer number that is to be converted to binary, until we get a quotient that is equal to zero, keeping track of each remainder.
  • 3. Construct the base 2 representation of the positive integer part of the number, by taking all the remainders of the previous dividing operations, starting from the bottom of the list constructed above. Thus, the last remainder of the divisions becomes the first symbol (the leftmost) of the base two number, while the first remainder becomes the last symbol (the rightmost).
  • 4. Then convert the fractional part. Multiply the number repeatedly by 2, until we get a fractional part that is equal to zero, keeping track of each integer part of the results.
  • 5. Construct the base 2 representation of the fractional part of the number by taking all the integer parts of the previous multiplying operations, starting from the top of the constructed list above (they should appear in the binary representation, from left to right, in the order they have been calculated).
  • 6. Normalize the binary representation of the number, by shifting the decimal point (or if you prefer, the decimal mark) "n" positions either to the left or to the right, so that only one non zero digit remains to the left of the decimal point.
  • 7. Adjust the exponent in 8 bit excess/bias notation and then convert it from decimal (base 10) to 8 bit binary, by using the same technique of repeatedly dividing by 2, as shown above:
    Exponent (adjusted) = Exponent (unadjusted) + 2(8-1) - 1
  • 8. Normalize mantissa, remove the leading (leftmost) bit, since it's allways '1' (and the decimal sign if the case) and adjust its length to 23 bits, either by removing the excess bits from the right (losing precision...) or by adding extra '0' bits to the right.
  • 9. Sign (it takes 1 bit) is either 1 for a negative or 0 for a positive number.

Example: convert the negative number -25.347 from decimal system (base ten) to 32 bit single precision IEEE 754 binary floating point:

  • 1. Start with the positive version of the number:

    |-25.347| = 25.347

  • 2. First convert the integer part, 25. Divide it repeatedly by 2, keeping track of each remainder, until we get a quotient that is equal to zero:
    • division = quotient + remainder;
    • 25 ÷ 2 = 12 + 1;
    • 12 ÷ 2 = 6 + 0;
    • 6 ÷ 2 = 3 + 0;
    • 3 ÷ 2 = 1 + 1;
    • 1 ÷ 2 = 0 + 1;
    • We have encountered a quotient that is ZERO => FULL STOP
  • 3. Construct the base 2 representation of the integer part of the number by taking all the remainders of the previous dividing operations, starting from the bottom of the list constructed above:

    25(10) = 1 1001(2)

  • 4. Then convert the fractional part, 0.347. Multiply repeatedly by 2, keeping track of each integer part of the results, until we get a fractional part that is equal to zero:
    • #) multiplying = integer + fractional part;
    • 1) 0.347 × 2 = 0 + 0.694;
    • 2) 0.694 × 2 = 1 + 0.388;
    • 3) 0.388 × 2 = 0 + 0.776;
    • 4) 0.776 × 2 = 1 + 0.552;
    • 5) 0.552 × 2 = 1 + 0.104;
    • 6) 0.104 × 2 = 0 + 0.208;
    • 7) 0.208 × 2 = 0 + 0.416;
    • 8) 0.416 × 2 = 0 + 0.832;
    • 9) 0.832 × 2 = 1 + 0.664;
    • 10) 0.664 × 2 = 1 + 0.328;
    • 11) 0.328 × 2 = 0 + 0.656;
    • 12) 0.656 × 2 = 1 + 0.312;
    • 13) 0.312 × 2 = 0 + 0.624;
    • 14) 0.624 × 2 = 1 + 0.248;
    • 15) 0.248 × 2 = 0 + 0.496;
    • 16) 0.496 × 2 = 0 + 0.992;
    • 17) 0.992 × 2 = 1 + 0.984;
    • 18) 0.984 × 2 = 1 + 0.968;
    • 19) 0.968 × 2 = 1 + 0.936;
    • 20) 0.936 × 2 = 1 + 0.872;
    • 21) 0.872 × 2 = 1 + 0.744;
    • 22) 0.744 × 2 = 1 + 0.488;
    • 23) 0.488 × 2 = 0 + 0.976;
    • 24) 0.976 × 2 = 1 + 0.952;
    • We didn't get any fractional part that was equal to zero. But we had enough iterations (over Mantissa limit = 23) and at least one integer part that was different from zero => FULL STOP (losing precision...).
  • 5. Construct the base 2 representation of the fractional part of the number, by taking all the integer parts of the previous multiplying operations, starting from the top of the constructed list above:

    0.347(10) = 0.0101 1000 1101 0100 1111 1101(2)

  • 6. Summarizing - the positive number before normalization:

    25.347(10) = 1 1001.0101 1000 1101 0100 1111 1101(2)

  • 7. Normalize the binary representation of the number, shifting the decimal point 4 positions to the left so that only one non-zero digit stays to the left of the decimal point:

    25.347(10) =
    1 1001.0101 1000 1101 0100 1111 1101(2) =
    1 1001.0101 1000 1101 0100 1111 1101(2) × 20 =
    1.1001 0101 1000 1101 0100 1111 1101(2) × 24

  • 8. Up to this moment, there are the following elements that would feed into the 32 bit single precision IEEE 754 binary floating point:

    Sign: 1 (a negative number)

    Exponent (unadjusted): 4

    Mantissa (not-normalized): 1.1001 0101 1000 1101 0100 1111 1101

  • 9. Adjust the exponent in 8 bit excess/bias notation and then convert it from decimal (base 10) to 8 bit binary (base 2), by using the same technique of repeatedly dividing it by 2, as already demonstrated above:

    Exponent (adjusted) = Exponent (unadjusted) + 2(8-1) - 1 = (4 + 127)(10) = 131(10) =
    1000 0011(2)

  • 10. Normalize the mantissa, remove the leading (leftmost) bit, since it's allways '1' (and the decimal point) and adjust its length to 23 bits, by removing the excess bits from the right (losing precision...):

    Mantissa (not-normalized): 1.1001 0101 1000 1101 0100 1111 1101

    Mantissa (normalized): 100 1010 1100 0110 1010 0111

  • Conclusion:

    Sign (1 bit) = 1 (a negative number)

    Exponent (8 bits) = 1000 0011

    Mantissa (23 bits) = 100 1010 1100 0110 1010 0111

  • Number -25.347, converted from the decimal system (base 10) to 32 bit single precision IEEE 754 binary floating point =
    1 - 1000 0011 - 100 1010 1100 0110 1010 0111