32bit IEEE 754: Decimal ↗ Single Precision Floating Point Binary: 1 000 000 011 009 999 999 999 999 999 961 Convert the Number to 32 Bit Single Precision IEEE 754 Binary Floating Point Representation Standard, From a Base 10 Decimal System Number

Number 1 000 000 011 009 999 999 999 999 999 961(10) converted and written in 32 bit single precision IEEE 754 binary floating point representation (1 bit for sign, 8 bits for exponent, 23 bits for mantissa)

1. Divide the number repeatedly by 2.

Keep track of each remainder.

We stop when we get a quotient that is equal to zero.


  • division = quotient + remainder;
  • 1 000 000 011 009 999 999 999 999 999 961 ÷ 2 = 500 000 005 504 999 999 999 999 999 980 + 1;
  • 500 000 005 504 999 999 999 999 999 980 ÷ 2 = 250 000 002 752 499 999 999 999 999 990 + 0;
  • 250 000 002 752 499 999 999 999 999 990 ÷ 2 = 125 000 001 376 249 999 999 999 999 995 + 0;
  • 125 000 001 376 249 999 999 999 999 995 ÷ 2 = 62 500 000 688 124 999 999 999 999 997 + 1;
  • 62 500 000 688 124 999 999 999 999 997 ÷ 2 = 31 250 000 344 062 499 999 999 999 998 + 1;
  • 31 250 000 344 062 499 999 999 999 998 ÷ 2 = 15 625 000 172 031 249 999 999 999 999 + 0;
  • 15 625 000 172 031 249 999 999 999 999 ÷ 2 = 7 812 500 086 015 624 999 999 999 999 + 1;
  • 7 812 500 086 015 624 999 999 999 999 ÷ 2 = 3 906 250 043 007 812 499 999 999 999 + 1;
  • 3 906 250 043 007 812 499 999 999 999 ÷ 2 = 1 953 125 021 503 906 249 999 999 999 + 1;
  • 1 953 125 021 503 906 249 999 999 999 ÷ 2 = 976 562 510 751 953 124 999 999 999 + 1;
  • 976 562 510 751 953 124 999 999 999 ÷ 2 = 488 281 255 375 976 562 499 999 999 + 1;
  • 488 281 255 375 976 562 499 999 999 ÷ 2 = 244 140 627 687 988 281 249 999 999 + 1;
  • 244 140 627 687 988 281 249 999 999 ÷ 2 = 122 070 313 843 994 140 624 999 999 + 1;
  • 122 070 313 843 994 140 624 999 999 ÷ 2 = 61 035 156 921 997 070 312 499 999 + 1;
  • 61 035 156 921 997 070 312 499 999 ÷ 2 = 30 517 578 460 998 535 156 249 999 + 1;
  • 30 517 578 460 998 535 156 249 999 ÷ 2 = 15 258 789 230 499 267 578 124 999 + 1;
  • 15 258 789 230 499 267 578 124 999 ÷ 2 = 7 629 394 615 249 633 789 062 499 + 1;
  • 7 629 394 615 249 633 789 062 499 ÷ 2 = 3 814 697 307 624 816 894 531 249 + 1;
  • 3 814 697 307 624 816 894 531 249 ÷ 2 = 1 907 348 653 812 408 447 265 624 + 1;
  • 1 907 348 653 812 408 447 265 624 ÷ 2 = 953 674 326 906 204 223 632 812 + 0;
  • 953 674 326 906 204 223 632 812 ÷ 2 = 476 837 163 453 102 111 816 406 + 0;
  • 476 837 163 453 102 111 816 406 ÷ 2 = 238 418 581 726 551 055 908 203 + 0;
  • 238 418 581 726 551 055 908 203 ÷ 2 = 119 209 290 863 275 527 954 101 + 1;
  • 119 209 290 863 275 527 954 101 ÷ 2 = 59 604 645 431 637 763 977 050 + 1;
  • 59 604 645 431 637 763 977 050 ÷ 2 = 29 802 322 715 818 881 988 525 + 0;
  • 29 802 322 715 818 881 988 525 ÷ 2 = 14 901 161 357 909 440 994 262 + 1;
  • 14 901 161 357 909 440 994 262 ÷ 2 = 7 450 580 678 954 720 497 131 + 0;
  • 7 450 580 678 954 720 497 131 ÷ 2 = 3 725 290 339 477 360 248 565 + 1;
  • 3 725 290 339 477 360 248 565 ÷ 2 = 1 862 645 169 738 680 124 282 + 1;
  • 1 862 645 169 738 680 124 282 ÷ 2 = 931 322 584 869 340 062 141 + 0;
  • 931 322 584 869 340 062 141 ÷ 2 = 465 661 292 434 670 031 070 + 1;
  • 465 661 292 434 670 031 070 ÷ 2 = 232 830 646 217 335 015 535 + 0;
  • 232 830 646 217 335 015 535 ÷ 2 = 116 415 323 108 667 507 767 + 1;
  • 116 415 323 108 667 507 767 ÷ 2 = 58 207 661 554 333 753 883 + 1;
  • 58 207 661 554 333 753 883 ÷ 2 = 29 103 830 777 166 876 941 + 1;
  • 29 103 830 777 166 876 941 ÷ 2 = 14 551 915 388 583 438 470 + 1;
  • 14 551 915 388 583 438 470 ÷ 2 = 7 275 957 694 291 719 235 + 0;
  • 7 275 957 694 291 719 235 ÷ 2 = 3 637 978 847 145 859 617 + 1;
  • 3 637 978 847 145 859 617 ÷ 2 = 1 818 989 423 572 929 808 + 1;
  • 1 818 989 423 572 929 808 ÷ 2 = 909 494 711 786 464 904 + 0;
  • 909 494 711 786 464 904 ÷ 2 = 454 747 355 893 232 452 + 0;
  • 454 747 355 893 232 452 ÷ 2 = 227 373 677 946 616 226 + 0;
  • 227 373 677 946 616 226 ÷ 2 = 113 686 838 973 308 113 + 0;
  • 113 686 838 973 308 113 ÷ 2 = 56 843 419 486 654 056 + 1;
  • 56 843 419 486 654 056 ÷ 2 = 28 421 709 743 327 028 + 0;
  • 28 421 709 743 327 028 ÷ 2 = 14 210 854 871 663 514 + 0;
  • 14 210 854 871 663 514 ÷ 2 = 7 105 427 435 831 757 + 0;
  • 7 105 427 435 831 757 ÷ 2 = 3 552 713 717 915 878 + 1;
  • 3 552 713 717 915 878 ÷ 2 = 1 776 356 858 957 939 + 0;
  • 1 776 356 858 957 939 ÷ 2 = 888 178 429 478 969 + 1;
  • 888 178 429 478 969 ÷ 2 = 444 089 214 739 484 + 1;
  • 444 089 214 739 484 ÷ 2 = 222 044 607 369 742 + 0;
  • 222 044 607 369 742 ÷ 2 = 111 022 303 684 871 + 0;
  • 111 022 303 684 871 ÷ 2 = 55 511 151 842 435 + 1;
  • 55 511 151 842 435 ÷ 2 = 27 755 575 921 217 + 1;
  • 27 755 575 921 217 ÷ 2 = 13 877 787 960 608 + 1;
  • 13 877 787 960 608 ÷ 2 = 6 938 893 980 304 + 0;
  • 6 938 893 980 304 ÷ 2 = 3 469 446 990 152 + 0;
  • 3 469 446 990 152 ÷ 2 = 1 734 723 495 076 + 0;
  • 1 734 723 495 076 ÷ 2 = 867 361 747 538 + 0;
  • 867 361 747 538 ÷ 2 = 433 680 873 769 + 0;
  • 433 680 873 769 ÷ 2 = 216 840 436 884 + 1;
  • 216 840 436 884 ÷ 2 = 108 420 218 442 + 0;
  • 108 420 218 442 ÷ 2 = 54 210 109 221 + 0;
  • 54 210 109 221 ÷ 2 = 27 105 054 610 + 1;
  • 27 105 054 610 ÷ 2 = 13 552 527 305 + 0;
  • 13 552 527 305 ÷ 2 = 6 776 263 652 + 1;
  • 6 776 263 652 ÷ 2 = 3 388 131 826 + 0;
  • 3 388 131 826 ÷ 2 = 1 694 065 913 + 0;
  • 1 694 065 913 ÷ 2 = 847 032 956 + 1;
  • 847 032 956 ÷ 2 = 423 516 478 + 0;
  • 423 516 478 ÷ 2 = 211 758 239 + 0;
  • 211 758 239 ÷ 2 = 105 879 119 + 1;
  • 105 879 119 ÷ 2 = 52 939 559 + 1;
  • 52 939 559 ÷ 2 = 26 469 779 + 1;
  • 26 469 779 ÷ 2 = 13 234 889 + 1;
  • 13 234 889 ÷ 2 = 6 617 444 + 1;
  • 6 617 444 ÷ 2 = 3 308 722 + 0;
  • 3 308 722 ÷ 2 = 1 654 361 + 0;
  • 1 654 361 ÷ 2 = 827 180 + 1;
  • 827 180 ÷ 2 = 413 590 + 0;
  • 413 590 ÷ 2 = 206 795 + 0;
  • 206 795 ÷ 2 = 103 397 + 1;
  • 103 397 ÷ 2 = 51 698 + 1;
  • 51 698 ÷ 2 = 25 849 + 0;
  • 25 849 ÷ 2 = 12 924 + 1;
  • 12 924 ÷ 2 = 6 462 + 0;
  • 6 462 ÷ 2 = 3 231 + 0;
  • 3 231 ÷ 2 = 1 615 + 1;
  • 1 615 ÷ 2 = 807 + 1;
  • 807 ÷ 2 = 403 + 1;
  • 403 ÷ 2 = 201 + 1;
  • 201 ÷ 2 = 100 + 1;
  • 100 ÷ 2 = 50 + 0;
  • 50 ÷ 2 = 25 + 0;
  • 25 ÷ 2 = 12 + 1;
  • 12 ÷ 2 = 6 + 0;
  • 6 ÷ 2 = 3 + 0;
  • 3 ÷ 2 = 1 + 1;
  • 1 ÷ 2 = 0 + 1;

2. Construct the base 2 representation of the positive number.

Take all the remainders starting from the bottom of the list constructed above.


1 000 000 011 009 999 999 999 999 999 961(10) =


1100 1001 1111 0010 1100 1001 1111 0010 0101 0010 0000 1110 0110 1000 1000 0110 1111 0101 1010 1100 0111 1111 1111 1101 1001(2)


3. Normalize the binary representation of the number.

Shift the decimal mark 99 positions to the left, so that only one non zero digit remains to the left of it:


1 000 000 011 009 999 999 999 999 999 961(10) =


1100 1001 1111 0010 1100 1001 1111 0010 0101 0010 0000 1110 0110 1000 1000 0110 1111 0101 1010 1100 0111 1111 1111 1101 1001(2) =


1100 1001 1111 0010 1100 1001 1111 0010 0101 0010 0000 1110 0110 1000 1000 0110 1111 0101 1010 1100 0111 1111 1111 1101 1001(2) × 20 =


1.1001 0011 1110 0101 1001 0011 1110 0100 1010 0100 0001 1100 1101 0001 0000 1101 1110 1011 0101 1000 1111 1111 1111 1011 001(2) × 299


4. Up to this moment, there are the following elements that would feed into the 32 bit single precision IEEE 754 binary floating point representation:

Sign 0 (a positive number)


Exponent (unadjusted): 99


Mantissa (not normalized):
1.1001 0011 1110 0101 1001 0011 1110 0100 1010 0100 0001 1100 1101 0001 0000 1101 1110 1011 0101 1000 1111 1111 1111 1011 001


5. Adjust the exponent.

Use the 8 bit excess/bias notation:


Exponent (adjusted) =


Exponent (unadjusted) + 2(8-1) - 1 =


99 + 2(8-1) - 1 =


(99 + 127)(10) =


226(10)


6. Convert the adjusted exponent from the decimal (base 10) to 8 bit binary.

Use the same technique of repeatedly dividing by 2:


  • division = quotient + remainder;
  • 226 ÷ 2 = 113 + 0;
  • 113 ÷ 2 = 56 + 1;
  • 56 ÷ 2 = 28 + 0;
  • 28 ÷ 2 = 14 + 0;
  • 14 ÷ 2 = 7 + 0;
  • 7 ÷ 2 = 3 + 1;
  • 3 ÷ 2 = 1 + 1;
  • 1 ÷ 2 = 0 + 1;

7. Construct the base 2 representation of the adjusted exponent.

Take all the remainders starting from the bottom of the list constructed above.


Exponent (adjusted) =


226(10) =


1110 0010(2)


8. Normalize the mantissa.

a) Remove the leading (the leftmost) bit, since it's allways 1, and the decimal point, if the case.


b) Adjust its length to 23 bits, by removing the excess bits, from the right (if any of the excess bits is set on 1, we are losing precision...).


Mantissa (normalized) =


1. 100 1001 1111 0010 1100 1001 1111 0010 0101 0010 0000 1110 0110 1000 1000 0110 1111 0101 1010 1100 0111 1111 1111 1101 1001 =


100 1001 1111 0010 1100 1001


9. The three elements that make up the number's 32 bit single precision IEEE 754 binary floating point representation:

Sign (1 bit) =
0 (a positive number)


Exponent (8 bits) =
1110 0010


Mantissa (23 bits) =
100 1001 1111 0010 1100 1001


The base ten decimal number 1 000 000 011 009 999 999 999 999 999 961 converted and written in 32 bit single precision IEEE 754 binary floating point representation:
0 - 1110 0010 - 100 1001 1111 0010 1100 1001

The latest decimal numbers converted from base ten to 32 bit single precision IEEE 754 floating point binary standard representation

Number 34.46 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard May 01 11:17 UTC (GMT)
Number 960 007 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard May 01 11:17 UTC (GMT)
Number 3 331 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard May 01 11:17 UTC (GMT)
Number 2 985 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard May 01 11:17 UTC (GMT)
Number 233 787 149 516 795 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard May 01 11:17 UTC (GMT)
Number 2 147 330 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard May 01 11:17 UTC (GMT)
Number 1 797 390 497 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard May 01 11:17 UTC (GMT)
Number 16 777 223 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard May 01 11:17 UTC (GMT)
Number 13.116 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard May 01 11:17 UTC (GMT)
Number 116 086.376 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard May 01 11:17 UTC (GMT)
All base ten decimal numbers converted to 32 bit single precision IEEE 754 binary floating point

How to convert decimal numbers from base ten to 32 bit single precision IEEE 754 binary floating point standard

Follow the steps below to convert a base 10 decimal number to 32 bit single precision IEEE 754 binary floating point:

  • 1. If the number to be converted is negative, start with its the positive version.
  • 2. First convert the integer part. Divide repeatedly by 2 the base ten positive representation of the integer number that is to be converted to binary, until we get a quotient that is equal to zero, keeping track of each remainder.
  • 3. Construct the base 2 representation of the positive integer part of the number, by taking all the remainders of the previous dividing operations, starting from the bottom of the list constructed above. Thus, the last remainder of the divisions becomes the first symbol (the leftmost) of the base two number, while the first remainder becomes the last symbol (the rightmost).
  • 4. Then convert the fractional part. Multiply the number repeatedly by 2, until we get a fractional part that is equal to zero, keeping track of each integer part of the results.
  • 5. Construct the base 2 representation of the fractional part of the number by taking all the integer parts of the previous multiplying operations, starting from the top of the constructed list above (they should appear in the binary representation, from left to right, in the order they have been calculated).
  • 6. Normalize the binary representation of the number, by shifting the decimal point (or if you prefer, the decimal mark) "n" positions either to the left or to the right, so that only one non zero digit remains to the left of the decimal point.
  • 7. Adjust the exponent in 8 bit excess/bias notation and then convert it from decimal (base 10) to 8 bit binary, by using the same technique of repeatedly dividing by 2, as shown above:
    Exponent (adjusted) = Exponent (unadjusted) + 2(8-1) - 1
  • 8. Normalize mantissa, remove the leading (leftmost) bit, since it's allways '1' (and the decimal sign if the case) and adjust its length to 23 bits, either by removing the excess bits from the right (losing precision...) or by adding extra '0' bits to the right.
  • 9. Sign (it takes 1 bit) is either 1 for a negative or 0 for a positive number.

Example: convert the negative number -25.347 from decimal system (base ten) to 32 bit single precision IEEE 754 binary floating point:

  • 1. Start with the positive version of the number:

    |-25.347| = 25.347

  • 2. First convert the integer part, 25. Divide it repeatedly by 2, keeping track of each remainder, until we get a quotient that is equal to zero:
    • division = quotient + remainder;
    • 25 ÷ 2 = 12 + 1;
    • 12 ÷ 2 = 6 + 0;
    • 6 ÷ 2 = 3 + 0;
    • 3 ÷ 2 = 1 + 1;
    • 1 ÷ 2 = 0 + 1;
    • We have encountered a quotient that is ZERO => FULL STOP
  • 3. Construct the base 2 representation of the integer part of the number by taking all the remainders of the previous dividing operations, starting from the bottom of the list constructed above:

    25(10) = 1 1001(2)

  • 4. Then convert the fractional part, 0.347. Multiply repeatedly by 2, keeping track of each integer part of the results, until we get a fractional part that is equal to zero:
    • #) multiplying = integer + fractional part;
    • 1) 0.347 × 2 = 0 + 0.694;
    • 2) 0.694 × 2 = 1 + 0.388;
    • 3) 0.388 × 2 = 0 + 0.776;
    • 4) 0.776 × 2 = 1 + 0.552;
    • 5) 0.552 × 2 = 1 + 0.104;
    • 6) 0.104 × 2 = 0 + 0.208;
    • 7) 0.208 × 2 = 0 + 0.416;
    • 8) 0.416 × 2 = 0 + 0.832;
    • 9) 0.832 × 2 = 1 + 0.664;
    • 10) 0.664 × 2 = 1 + 0.328;
    • 11) 0.328 × 2 = 0 + 0.656;
    • 12) 0.656 × 2 = 1 + 0.312;
    • 13) 0.312 × 2 = 0 + 0.624;
    • 14) 0.624 × 2 = 1 + 0.248;
    • 15) 0.248 × 2 = 0 + 0.496;
    • 16) 0.496 × 2 = 0 + 0.992;
    • 17) 0.992 × 2 = 1 + 0.984;
    • 18) 0.984 × 2 = 1 + 0.968;
    • 19) 0.968 × 2 = 1 + 0.936;
    • 20) 0.936 × 2 = 1 + 0.872;
    • 21) 0.872 × 2 = 1 + 0.744;
    • 22) 0.744 × 2 = 1 + 0.488;
    • 23) 0.488 × 2 = 0 + 0.976;
    • 24) 0.976 × 2 = 1 + 0.952;
    • We didn't get any fractional part that was equal to zero. But we had enough iterations (over Mantissa limit = 23) and at least one integer part that was different from zero => FULL STOP (losing precision...).
  • 5. Construct the base 2 representation of the fractional part of the number, by taking all the integer parts of the previous multiplying operations, starting from the top of the constructed list above:

    0.347(10) = 0.0101 1000 1101 0100 1111 1101(2)

  • 6. Summarizing - the positive number before normalization:

    25.347(10) = 1 1001.0101 1000 1101 0100 1111 1101(2)

  • 7. Normalize the binary representation of the number, shifting the decimal point 4 positions to the left so that only one non-zero digit stays to the left of the decimal point:

    25.347(10) =
    1 1001.0101 1000 1101 0100 1111 1101(2) =
    1 1001.0101 1000 1101 0100 1111 1101(2) × 20 =
    1.1001 0101 1000 1101 0100 1111 1101(2) × 24

  • 8. Up to this moment, there are the following elements that would feed into the 32 bit single precision IEEE 754 binary floating point:

    Sign: 1 (a negative number)

    Exponent (unadjusted): 4

    Mantissa (not-normalized): 1.1001 0101 1000 1101 0100 1111 1101

  • 9. Adjust the exponent in 8 bit excess/bias notation and then convert it from decimal (base 10) to 8 bit binary (base 2), by using the same technique of repeatedly dividing it by 2, as already demonstrated above:

    Exponent (adjusted) = Exponent (unadjusted) + 2(8-1) - 1 = (4 + 127)(10) = 131(10) =
    1000 0011(2)

  • 10. Normalize the mantissa, remove the leading (leftmost) bit, since it's allways '1' (and the decimal point) and adjust its length to 23 bits, by removing the excess bits from the right (losing precision...):

    Mantissa (not-normalized): 1.1001 0101 1000 1101 0100 1111 1101

    Mantissa (normalized): 100 1010 1100 0110 1010 0111

  • Conclusion:

    Sign (1 bit) = 1 (a negative number)

    Exponent (8 bits) = 1000 0011

    Mantissa (23 bits) = 100 1010 1100 0110 1010 0111

  • Number -25.347, converted from the decimal system (base 10) to 32 bit single precision IEEE 754 binary floating point =
    1 - 1000 0011 - 100 1010 1100 0110 1010 0111