32bit IEEE 754: Decimal ↗ Single Precision Floating Point Binary: 100 000 001 100 101 000 000 030 Convert the Number to 32 Bit Single Precision IEEE 754 Binary Floating Point Representation Standard, From a Base 10 Decimal System Number

Number 100 000 001 100 101 000 000 030(10) converted and written in 32 bit single precision IEEE 754 binary floating point representation (1 bit for sign, 8 bits for exponent, 23 bits for mantissa)

1. Divide the number repeatedly by 2.

Keep track of each remainder.

We stop when we get a quotient that is equal to zero.


  • division = quotient + remainder;
  • 100 000 001 100 101 000 000 030 ÷ 2 = 50 000 000 550 050 500 000 015 + 0;
  • 50 000 000 550 050 500 000 015 ÷ 2 = 25 000 000 275 025 250 000 007 + 1;
  • 25 000 000 275 025 250 000 007 ÷ 2 = 12 500 000 137 512 625 000 003 + 1;
  • 12 500 000 137 512 625 000 003 ÷ 2 = 6 250 000 068 756 312 500 001 + 1;
  • 6 250 000 068 756 312 500 001 ÷ 2 = 3 125 000 034 378 156 250 000 + 1;
  • 3 125 000 034 378 156 250 000 ÷ 2 = 1 562 500 017 189 078 125 000 + 0;
  • 1 562 500 017 189 078 125 000 ÷ 2 = 781 250 008 594 539 062 500 + 0;
  • 781 250 008 594 539 062 500 ÷ 2 = 390 625 004 297 269 531 250 + 0;
  • 390 625 004 297 269 531 250 ÷ 2 = 195 312 502 148 634 765 625 + 0;
  • 195 312 502 148 634 765 625 ÷ 2 = 97 656 251 074 317 382 812 + 1;
  • 97 656 251 074 317 382 812 ÷ 2 = 48 828 125 537 158 691 406 + 0;
  • 48 828 125 537 158 691 406 ÷ 2 = 24 414 062 768 579 345 703 + 0;
  • 24 414 062 768 579 345 703 ÷ 2 = 12 207 031 384 289 672 851 + 1;
  • 12 207 031 384 289 672 851 ÷ 2 = 6 103 515 692 144 836 425 + 1;
  • 6 103 515 692 144 836 425 ÷ 2 = 3 051 757 846 072 418 212 + 1;
  • 3 051 757 846 072 418 212 ÷ 2 = 1 525 878 923 036 209 106 + 0;
  • 1 525 878 923 036 209 106 ÷ 2 = 762 939 461 518 104 553 + 0;
  • 762 939 461 518 104 553 ÷ 2 = 381 469 730 759 052 276 + 1;
  • 381 469 730 759 052 276 ÷ 2 = 190 734 865 379 526 138 + 0;
  • 190 734 865 379 526 138 ÷ 2 = 95 367 432 689 763 069 + 0;
  • 95 367 432 689 763 069 ÷ 2 = 47 683 716 344 881 534 + 1;
  • 47 683 716 344 881 534 ÷ 2 = 23 841 858 172 440 767 + 0;
  • 23 841 858 172 440 767 ÷ 2 = 11 920 929 086 220 383 + 1;
  • 11 920 929 086 220 383 ÷ 2 = 5 960 464 543 110 191 + 1;
  • 5 960 464 543 110 191 ÷ 2 = 2 980 232 271 555 095 + 1;
  • 2 980 232 271 555 095 ÷ 2 = 1 490 116 135 777 547 + 1;
  • 1 490 116 135 777 547 ÷ 2 = 745 058 067 888 773 + 1;
  • 745 058 067 888 773 ÷ 2 = 372 529 033 944 386 + 1;
  • 372 529 033 944 386 ÷ 2 = 186 264 516 972 193 + 0;
  • 186 264 516 972 193 ÷ 2 = 93 132 258 486 096 + 1;
  • 93 132 258 486 096 ÷ 2 = 46 566 129 243 048 + 0;
  • 46 566 129 243 048 ÷ 2 = 23 283 064 621 524 + 0;
  • 23 283 064 621 524 ÷ 2 = 11 641 532 310 762 + 0;
  • 11 641 532 310 762 ÷ 2 = 5 820 766 155 381 + 0;
  • 5 820 766 155 381 ÷ 2 = 2 910 383 077 690 + 1;
  • 2 910 383 077 690 ÷ 2 = 1 455 191 538 845 + 0;
  • 1 455 191 538 845 ÷ 2 = 727 595 769 422 + 1;
  • 727 595 769 422 ÷ 2 = 363 797 884 711 + 0;
  • 363 797 884 711 ÷ 2 = 181 898 942 355 + 1;
  • 181 898 942 355 ÷ 2 = 90 949 471 177 + 1;
  • 90 949 471 177 ÷ 2 = 45 474 735 588 + 1;
  • 45 474 735 588 ÷ 2 = 22 737 367 794 + 0;
  • 22 737 367 794 ÷ 2 = 11 368 683 897 + 0;
  • 11 368 683 897 ÷ 2 = 5 684 341 948 + 1;
  • 5 684 341 948 ÷ 2 = 2 842 170 974 + 0;
  • 2 842 170 974 ÷ 2 = 1 421 085 487 + 0;
  • 1 421 085 487 ÷ 2 = 710 542 743 + 1;
  • 710 542 743 ÷ 2 = 355 271 371 + 1;
  • 355 271 371 ÷ 2 = 177 635 685 + 1;
  • 177 635 685 ÷ 2 = 88 817 842 + 1;
  • 88 817 842 ÷ 2 = 44 408 921 + 0;
  • 44 408 921 ÷ 2 = 22 204 460 + 1;
  • 22 204 460 ÷ 2 = 11 102 230 + 0;
  • 11 102 230 ÷ 2 = 5 551 115 + 0;
  • 5 551 115 ÷ 2 = 2 775 557 + 1;
  • 2 775 557 ÷ 2 = 1 387 778 + 1;
  • 1 387 778 ÷ 2 = 693 889 + 0;
  • 693 889 ÷ 2 = 346 944 + 1;
  • 346 944 ÷ 2 = 173 472 + 0;
  • 173 472 ÷ 2 = 86 736 + 0;
  • 86 736 ÷ 2 = 43 368 + 0;
  • 43 368 ÷ 2 = 21 684 + 0;
  • 21 684 ÷ 2 = 10 842 + 0;
  • 10 842 ÷ 2 = 5 421 + 0;
  • 5 421 ÷ 2 = 2 710 + 1;
  • 2 710 ÷ 2 = 1 355 + 0;
  • 1 355 ÷ 2 = 677 + 1;
  • 677 ÷ 2 = 338 + 1;
  • 338 ÷ 2 = 169 + 0;
  • 169 ÷ 2 = 84 + 1;
  • 84 ÷ 2 = 42 + 0;
  • 42 ÷ 2 = 21 + 0;
  • 21 ÷ 2 = 10 + 1;
  • 10 ÷ 2 = 5 + 0;
  • 5 ÷ 2 = 2 + 1;
  • 2 ÷ 2 = 1 + 0;
  • 1 ÷ 2 = 0 + 1;

2. Construct the base 2 representation of the positive number.

Take all the remainders starting from the bottom of the list constructed above.


100 000 001 100 101 000 000 030(10) =


1 0101 0010 1101 0000 0010 1100 1011 1100 1001 1101 0100 0010 1111 1101 0010 0111 0010 0001 1110(2)


3. Normalize the binary representation of the number.

Shift the decimal mark 76 positions to the left, so that only one non zero digit remains to the left of it:


100 000 001 100 101 000 000 030(10) =


1 0101 0010 1101 0000 0010 1100 1011 1100 1001 1101 0100 0010 1111 1101 0010 0111 0010 0001 1110(2) =


1 0101 0010 1101 0000 0010 1100 1011 1100 1001 1101 0100 0010 1111 1101 0010 0111 0010 0001 1110(2) × 20 =


1.0101 0010 1101 0000 0010 1100 1011 1100 1001 1101 0100 0010 1111 1101 0010 0111 0010 0001 1110(2) × 276


4. Up to this moment, there are the following elements that would feed into the 32 bit single precision IEEE 754 binary floating point representation:

Sign 0 (a positive number)


Exponent (unadjusted): 76


Mantissa (not normalized):
1.0101 0010 1101 0000 0010 1100 1011 1100 1001 1101 0100 0010 1111 1101 0010 0111 0010 0001 1110


5. Adjust the exponent.

Use the 8 bit excess/bias notation:


Exponent (adjusted) =


Exponent (unadjusted) + 2(8-1) - 1 =


76 + 2(8-1) - 1 =


(76 + 127)(10) =


203(10)


6. Convert the adjusted exponent from the decimal (base 10) to 8 bit binary.

Use the same technique of repeatedly dividing by 2:


  • division = quotient + remainder;
  • 203 ÷ 2 = 101 + 1;
  • 101 ÷ 2 = 50 + 1;
  • 50 ÷ 2 = 25 + 0;
  • 25 ÷ 2 = 12 + 1;
  • 12 ÷ 2 = 6 + 0;
  • 6 ÷ 2 = 3 + 0;
  • 3 ÷ 2 = 1 + 1;
  • 1 ÷ 2 = 0 + 1;

7. Construct the base 2 representation of the adjusted exponent.

Take all the remainders starting from the bottom of the list constructed above.


Exponent (adjusted) =


203(10) =


1100 1011(2)


8. Normalize the mantissa.

a) Remove the leading (the leftmost) bit, since it's allways 1, and the decimal point, if the case.


b) Adjust its length to 23 bits, by removing the excess bits, from the right (if any of the excess bits is set on 1, we are losing precision...).


Mantissa (normalized) =


1. 010 1001 0110 1000 0001 0110 0 1011 1100 1001 1101 0100 0010 1111 1101 0010 0111 0010 0001 1110 =


010 1001 0110 1000 0001 0110


9. The three elements that make up the number's 32 bit single precision IEEE 754 binary floating point representation:

Sign (1 bit) =
0 (a positive number)


Exponent (8 bits) =
1100 1011


Mantissa (23 bits) =
010 1001 0110 1000 0001 0110


The base ten decimal number 100 000 001 100 101 000 000 030 converted and written in 32 bit single precision IEEE 754 binary floating point representation:
0 - 1100 1011 - 010 1001 0110 1000 0001 0110

The latest decimal numbers converted from base ten to 32 bit single precision IEEE 754 floating point binary standard representation

Number 33.75 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard May 17 17:54 UTC (GMT)
Number -126.48 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard May 17 17:54 UTC (GMT)
Number -64.641 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard May 17 17:54 UTC (GMT)
Number 1 123 680 360 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard May 17 17:54 UTC (GMT)
Number -212.22 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard May 17 17:54 UTC (GMT)
Number 49 166 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard May 17 17:54 UTC (GMT)
Number -97 421 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard May 17 17:54 UTC (GMT)
Number 0.000 000 018 292 8 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard May 17 17:54 UTC (GMT)
Number 108 118 111 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard May 17 17:54 UTC (GMT)
Number 11 000 100 100 001 110 011 110 000 000 027 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard May 17 17:54 UTC (GMT)
All base ten decimal numbers converted to 32 bit single precision IEEE 754 binary floating point

How to convert decimal numbers from base ten to 32 bit single precision IEEE 754 binary floating point standard

Follow the steps below to convert a base 10 decimal number to 32 bit single precision IEEE 754 binary floating point:

  • 1. If the number to be converted is negative, start with its the positive version.
  • 2. First convert the integer part. Divide repeatedly by 2 the base ten positive representation of the integer number that is to be converted to binary, until we get a quotient that is equal to zero, keeping track of each remainder.
  • 3. Construct the base 2 representation of the positive integer part of the number, by taking all the remainders of the previous dividing operations, starting from the bottom of the list constructed above. Thus, the last remainder of the divisions becomes the first symbol (the leftmost) of the base two number, while the first remainder becomes the last symbol (the rightmost).
  • 4. Then convert the fractional part. Multiply the number repeatedly by 2, until we get a fractional part that is equal to zero, keeping track of each integer part of the results.
  • 5. Construct the base 2 representation of the fractional part of the number by taking all the integer parts of the previous multiplying operations, starting from the top of the constructed list above (they should appear in the binary representation, from left to right, in the order they have been calculated).
  • 6. Normalize the binary representation of the number, by shifting the decimal point (or if you prefer, the decimal mark) "n" positions either to the left or to the right, so that only one non zero digit remains to the left of the decimal point.
  • 7. Adjust the exponent in 8 bit excess/bias notation and then convert it from decimal (base 10) to 8 bit binary, by using the same technique of repeatedly dividing by 2, as shown above:
    Exponent (adjusted) = Exponent (unadjusted) + 2(8-1) - 1
  • 8. Normalize mantissa, remove the leading (leftmost) bit, since it's allways '1' (and the decimal sign if the case) and adjust its length to 23 bits, either by removing the excess bits from the right (losing precision...) or by adding extra '0' bits to the right.
  • 9. Sign (it takes 1 bit) is either 1 for a negative or 0 for a positive number.

Example: convert the negative number -25.347 from decimal system (base ten) to 32 bit single precision IEEE 754 binary floating point:

  • 1. Start with the positive version of the number:

    |-25.347| = 25.347

  • 2. First convert the integer part, 25. Divide it repeatedly by 2, keeping track of each remainder, until we get a quotient that is equal to zero:
    • division = quotient + remainder;
    • 25 ÷ 2 = 12 + 1;
    • 12 ÷ 2 = 6 + 0;
    • 6 ÷ 2 = 3 + 0;
    • 3 ÷ 2 = 1 + 1;
    • 1 ÷ 2 = 0 + 1;
    • We have encountered a quotient that is ZERO => FULL STOP
  • 3. Construct the base 2 representation of the integer part of the number by taking all the remainders of the previous dividing operations, starting from the bottom of the list constructed above:

    25(10) = 1 1001(2)

  • 4. Then convert the fractional part, 0.347. Multiply repeatedly by 2, keeping track of each integer part of the results, until we get a fractional part that is equal to zero:
    • #) multiplying = integer + fractional part;
    • 1) 0.347 × 2 = 0 + 0.694;
    • 2) 0.694 × 2 = 1 + 0.388;
    • 3) 0.388 × 2 = 0 + 0.776;
    • 4) 0.776 × 2 = 1 + 0.552;
    • 5) 0.552 × 2 = 1 + 0.104;
    • 6) 0.104 × 2 = 0 + 0.208;
    • 7) 0.208 × 2 = 0 + 0.416;
    • 8) 0.416 × 2 = 0 + 0.832;
    • 9) 0.832 × 2 = 1 + 0.664;
    • 10) 0.664 × 2 = 1 + 0.328;
    • 11) 0.328 × 2 = 0 + 0.656;
    • 12) 0.656 × 2 = 1 + 0.312;
    • 13) 0.312 × 2 = 0 + 0.624;
    • 14) 0.624 × 2 = 1 + 0.248;
    • 15) 0.248 × 2 = 0 + 0.496;
    • 16) 0.496 × 2 = 0 + 0.992;
    • 17) 0.992 × 2 = 1 + 0.984;
    • 18) 0.984 × 2 = 1 + 0.968;
    • 19) 0.968 × 2 = 1 + 0.936;
    • 20) 0.936 × 2 = 1 + 0.872;
    • 21) 0.872 × 2 = 1 + 0.744;
    • 22) 0.744 × 2 = 1 + 0.488;
    • 23) 0.488 × 2 = 0 + 0.976;
    • 24) 0.976 × 2 = 1 + 0.952;
    • We didn't get any fractional part that was equal to zero. But we had enough iterations (over Mantissa limit = 23) and at least one integer part that was different from zero => FULL STOP (losing precision...).
  • 5. Construct the base 2 representation of the fractional part of the number, by taking all the integer parts of the previous multiplying operations, starting from the top of the constructed list above:

    0.347(10) = 0.0101 1000 1101 0100 1111 1101(2)

  • 6. Summarizing - the positive number before normalization:

    25.347(10) = 1 1001.0101 1000 1101 0100 1111 1101(2)

  • 7. Normalize the binary representation of the number, shifting the decimal point 4 positions to the left so that only one non-zero digit stays to the left of the decimal point:

    25.347(10) =
    1 1001.0101 1000 1101 0100 1111 1101(2) =
    1 1001.0101 1000 1101 0100 1111 1101(2) × 20 =
    1.1001 0101 1000 1101 0100 1111 1101(2) × 24

  • 8. Up to this moment, there are the following elements that would feed into the 32 bit single precision IEEE 754 binary floating point:

    Sign: 1 (a negative number)

    Exponent (unadjusted): 4

    Mantissa (not-normalized): 1.1001 0101 1000 1101 0100 1111 1101

  • 9. Adjust the exponent in 8 bit excess/bias notation and then convert it from decimal (base 10) to 8 bit binary (base 2), by using the same technique of repeatedly dividing it by 2, as already demonstrated above:

    Exponent (adjusted) = Exponent (unadjusted) + 2(8-1) - 1 = (4 + 127)(10) = 131(10) =
    1000 0011(2)

  • 10. Normalize the mantissa, remove the leading (leftmost) bit, since it's allways '1' (and the decimal point) and adjust its length to 23 bits, by removing the excess bits from the right (losing precision...):

    Mantissa (not-normalized): 1.1001 0101 1000 1101 0100 1111 1101

    Mantissa (normalized): 100 1010 1100 0110 1010 0111

  • Conclusion:

    Sign (1 bit) = 1 (a negative number)

    Exponent (8 bits) = 1000 0011

    Mantissa (23 bits) = 100 1010 1100 0110 1010 0111

  • Number -25.347, converted from the decimal system (base 10) to 32 bit single precision IEEE 754 binary floating point =
    1 - 1000 0011 - 100 1010 1100 0110 1010 0111