1 000 000 010 110 000 000 000 000 000 393 Converted to 32 Bit Single Precision IEEE 754 Binary Floating Point Representation Standard

Convert decimal 1 000 000 010 110 000 000 000 000 000 393(10) to 32 bit single precision IEEE 754 binary floating point representation standard (1 bit for sign, 8 bits for exponent, 23 bits for mantissa)

What are the steps to convert decimal number
1 000 000 010 110 000 000 000 000 000 393(10) to 32 bit single precision IEEE 754 binary floating point representation (1 bit for sign, 8 bits for exponent, 23 bits for mantissa)

1. Divide the number repeatedly by 2.

Keep track of each remainder.

We stop when we get a quotient that is equal to zero.


  • division = quotient + remainder;
  • 1 000 000 010 110 000 000 000 000 000 393 ÷ 2 = 500 000 005 055 000 000 000 000 000 196 + 1;
  • 500 000 005 055 000 000 000 000 000 196 ÷ 2 = 250 000 002 527 500 000 000 000 000 098 + 0;
  • 250 000 002 527 500 000 000 000 000 098 ÷ 2 = 125 000 001 263 750 000 000 000 000 049 + 0;
  • 125 000 001 263 750 000 000 000 000 049 ÷ 2 = 62 500 000 631 875 000 000 000 000 024 + 1;
  • 62 500 000 631 875 000 000 000 000 024 ÷ 2 = 31 250 000 315 937 500 000 000 000 012 + 0;
  • 31 250 000 315 937 500 000 000 000 012 ÷ 2 = 15 625 000 157 968 750 000 000 000 006 + 0;
  • 15 625 000 157 968 750 000 000 000 006 ÷ 2 = 7 812 500 078 984 375 000 000 000 003 + 0;
  • 7 812 500 078 984 375 000 000 000 003 ÷ 2 = 3 906 250 039 492 187 500 000 000 001 + 1;
  • 3 906 250 039 492 187 500 000 000 001 ÷ 2 = 1 953 125 019 746 093 750 000 000 000 + 1;
  • 1 953 125 019 746 093 750 000 000 000 ÷ 2 = 976 562 509 873 046 875 000 000 000 + 0;
  • 976 562 509 873 046 875 000 000 000 ÷ 2 = 488 281 254 936 523 437 500 000 000 + 0;
  • 488 281 254 936 523 437 500 000 000 ÷ 2 = 244 140 627 468 261 718 750 000 000 + 0;
  • 244 140 627 468 261 718 750 000 000 ÷ 2 = 122 070 313 734 130 859 375 000 000 + 0;
  • 122 070 313 734 130 859 375 000 000 ÷ 2 = 61 035 156 867 065 429 687 500 000 + 0;
  • 61 035 156 867 065 429 687 500 000 ÷ 2 = 30 517 578 433 532 714 843 750 000 + 0;
  • 30 517 578 433 532 714 843 750 000 ÷ 2 = 15 258 789 216 766 357 421 875 000 + 0;
  • 15 258 789 216 766 357 421 875 000 ÷ 2 = 7 629 394 608 383 178 710 937 500 + 0;
  • 7 629 394 608 383 178 710 937 500 ÷ 2 = 3 814 697 304 191 589 355 468 750 + 0;
  • 3 814 697 304 191 589 355 468 750 ÷ 2 = 1 907 348 652 095 794 677 734 375 + 0;
  • 1 907 348 652 095 794 677 734 375 ÷ 2 = 953 674 326 047 897 338 867 187 + 1;
  • 953 674 326 047 897 338 867 187 ÷ 2 = 476 837 163 023 948 669 433 593 + 1;
  • 476 837 163 023 948 669 433 593 ÷ 2 = 238 418 581 511 974 334 716 796 + 1;
  • 238 418 581 511 974 334 716 796 ÷ 2 = 119 209 290 755 987 167 358 398 + 0;
  • 119 209 290 755 987 167 358 398 ÷ 2 = 59 604 645 377 993 583 679 199 + 0;
  • 59 604 645 377 993 583 679 199 ÷ 2 = 29 802 322 688 996 791 839 599 + 1;
  • 29 802 322 688 996 791 839 599 ÷ 2 = 14 901 161 344 498 395 919 799 + 1;
  • 14 901 161 344 498 395 919 799 ÷ 2 = 7 450 580 672 249 197 959 899 + 1;
  • 7 450 580 672 249 197 959 899 ÷ 2 = 3 725 290 336 124 598 979 949 + 1;
  • 3 725 290 336 124 598 979 949 ÷ 2 = 1 862 645 168 062 299 489 974 + 1;
  • 1 862 645 168 062 299 489 974 ÷ 2 = 931 322 584 031 149 744 987 + 0;
  • 931 322 584 031 149 744 987 ÷ 2 = 465 661 292 015 574 872 493 + 1;
  • 465 661 292 015 574 872 493 ÷ 2 = 232 830 646 007 787 436 246 + 1;
  • 232 830 646 007 787 436 246 ÷ 2 = 116 415 323 003 893 718 123 + 0;
  • 116 415 323 003 893 718 123 ÷ 2 = 58 207 661 501 946 859 061 + 1;
  • 58 207 661 501 946 859 061 ÷ 2 = 29 103 830 750 973 429 530 + 1;
  • 29 103 830 750 973 429 530 ÷ 2 = 14 551 915 375 486 714 765 + 0;
  • 14 551 915 375 486 714 765 ÷ 2 = 7 275 957 687 743 357 382 + 1;
  • 7 275 957 687 743 357 382 ÷ 2 = 3 637 978 843 871 678 691 + 0;
  • 3 637 978 843 871 678 691 ÷ 2 = 1 818 989 421 935 839 345 + 1;
  • 1 818 989 421 935 839 345 ÷ 2 = 909 494 710 967 919 672 + 1;
  • 909 494 710 967 919 672 ÷ 2 = 454 747 355 483 959 836 + 0;
  • 454 747 355 483 959 836 ÷ 2 = 227 373 677 741 979 918 + 0;
  • 227 373 677 741 979 918 ÷ 2 = 113 686 838 870 989 959 + 0;
  • 113 686 838 870 989 959 ÷ 2 = 56 843 419 435 494 979 + 1;
  • 56 843 419 435 494 979 ÷ 2 = 28 421 709 717 747 489 + 1;
  • 28 421 709 717 747 489 ÷ 2 = 14 210 854 858 873 744 + 1;
  • 14 210 854 858 873 744 ÷ 2 = 7 105 427 429 436 872 + 0;
  • 7 105 427 429 436 872 ÷ 2 = 3 552 713 714 718 436 + 0;
  • 3 552 713 714 718 436 ÷ 2 = 1 776 356 857 359 218 + 0;
  • 1 776 356 857 359 218 ÷ 2 = 888 178 428 679 609 + 0;
  • 888 178 428 679 609 ÷ 2 = 444 089 214 339 804 + 1;
  • 444 089 214 339 804 ÷ 2 = 222 044 607 169 902 + 0;
  • 222 044 607 169 902 ÷ 2 = 111 022 303 584 951 + 0;
  • 111 022 303 584 951 ÷ 2 = 55 511 151 792 475 + 1;
  • 55 511 151 792 475 ÷ 2 = 27 755 575 896 237 + 1;
  • 27 755 575 896 237 ÷ 2 = 13 877 787 948 118 + 1;
  • 13 877 787 948 118 ÷ 2 = 6 938 893 974 059 + 0;
  • 6 938 893 974 059 ÷ 2 = 3 469 446 987 029 + 1;
  • 3 469 446 987 029 ÷ 2 = 1 734 723 493 514 + 1;
  • 1 734 723 493 514 ÷ 2 = 867 361 746 757 + 0;
  • 867 361 746 757 ÷ 2 = 433 680 873 378 + 1;
  • 433 680 873 378 ÷ 2 = 216 840 436 689 + 0;
  • 216 840 436 689 ÷ 2 = 108 420 218 344 + 1;
  • 108 420 218 344 ÷ 2 = 54 210 109 172 + 0;
  • 54 210 109 172 ÷ 2 = 27 105 054 586 + 0;
  • 27 105 054 586 ÷ 2 = 13 552 527 293 + 0;
  • 13 552 527 293 ÷ 2 = 6 776 263 646 + 1;
  • 6 776 263 646 ÷ 2 = 3 388 131 823 + 0;
  • 3 388 131 823 ÷ 2 = 1 694 065 911 + 1;
  • 1 694 065 911 ÷ 2 = 847 032 955 + 1;
  • 847 032 955 ÷ 2 = 423 516 477 + 1;
  • 423 516 477 ÷ 2 = 211 758 238 + 1;
  • 211 758 238 ÷ 2 = 105 879 119 + 0;
  • 105 879 119 ÷ 2 = 52 939 559 + 1;
  • 52 939 559 ÷ 2 = 26 469 779 + 1;
  • 26 469 779 ÷ 2 = 13 234 889 + 1;
  • 13 234 889 ÷ 2 = 6 617 444 + 1;
  • 6 617 444 ÷ 2 = 3 308 722 + 0;
  • 3 308 722 ÷ 2 = 1 654 361 + 0;
  • 1 654 361 ÷ 2 = 827 180 + 1;
  • 827 180 ÷ 2 = 413 590 + 0;
  • 413 590 ÷ 2 = 206 795 + 0;
  • 206 795 ÷ 2 = 103 397 + 1;
  • 103 397 ÷ 2 = 51 698 + 1;
  • 51 698 ÷ 2 = 25 849 + 0;
  • 25 849 ÷ 2 = 12 924 + 1;
  • 12 924 ÷ 2 = 6 462 + 0;
  • 6 462 ÷ 2 = 3 231 + 0;
  • 3 231 ÷ 2 = 1 615 + 1;
  • 1 615 ÷ 2 = 807 + 1;
  • 807 ÷ 2 = 403 + 1;
  • 403 ÷ 2 = 201 + 1;
  • 201 ÷ 2 = 100 + 1;
  • 100 ÷ 2 = 50 + 0;
  • 50 ÷ 2 = 25 + 0;
  • 25 ÷ 2 = 12 + 1;
  • 12 ÷ 2 = 6 + 0;
  • 6 ÷ 2 = 3 + 0;
  • 3 ÷ 2 = 1 + 1;
  • 1 ÷ 2 = 0 + 1;

2. Construct the base 2 representation of the positive number.

Take all the remainders starting from the bottom of the list constructed above.

1 000 000 010 110 000 000 000 000 000 393(10) =


1100 1001 1111 0010 1100 1001 1110 1111 0100 0101 0110 1110 0100 0011 1000 1101 0110 1101 1111 0011 1000 0000 0001 1000 1001(2)


3. Normalize the binary representation of the number.

Shift the decimal mark 99 positions to the left, so that only one non zero digit remains to the left of it:


1 000 000 010 110 000 000 000 000 000 393(10) =


1100 1001 1111 0010 1100 1001 1110 1111 0100 0101 0110 1110 0100 0011 1000 1101 0110 1101 1111 0011 1000 0000 0001 1000 1001(2) =


1100 1001 1111 0010 1100 1001 1110 1111 0100 0101 0110 1110 0100 0011 1000 1101 0110 1101 1111 0011 1000 0000 0001 1000 1001(2) × 20 =


1.1001 0011 1110 0101 1001 0011 1101 1110 1000 1010 1101 1100 1000 0111 0001 1010 1101 1011 1110 0111 0000 0000 0011 0001 001(2) × 299


4. Up to this moment, there are the following elements that would feed into the 32 bit single precision IEEE 754 binary floating point representation:

Sign 0 (a positive number)


Exponent (unadjusted): 99


Mantissa (not normalized):
1.1001 0011 1110 0101 1001 0011 1101 1110 1000 1010 1101 1100 1000 0111 0001 1010 1101 1011 1110 0111 0000 0000 0011 0001 001


5. Adjust the exponent.

Use the 8 bit excess/bias notation:


Exponent (adjusted) =


Exponent (unadjusted) + 2(8-1) - 1 =


99 + 2(8-1) - 1 =


(99 + 127)(10) =


226(10)


6. Convert the adjusted exponent from the decimal (base 10) to 8 bit binary.

Use the same technique of repeatedly dividing by 2:


  • division = quotient + remainder;
  • 226 ÷ 2 = 113 + 0;
  • 113 ÷ 2 = 56 + 1;
  • 56 ÷ 2 = 28 + 0;
  • 28 ÷ 2 = 14 + 0;
  • 14 ÷ 2 = 7 + 0;
  • 7 ÷ 2 = 3 + 1;
  • 3 ÷ 2 = 1 + 1;
  • 1 ÷ 2 = 0 + 1;

7. Construct the base 2 representation of the adjusted exponent.

Take all the remainders starting from the bottom of the list constructed above.


Exponent (adjusted) =


226(10) =


1110 0010(2)


8. Normalize the mantissa.

a) Remove the leading (the leftmost) bit, since it's allways 1, and the decimal point, if the case.


b) Adjust its length to 23 bits, by removing the excess bits, from the right (if any of the excess bits is set on 1, we are losing precision...).


Mantissa (normalized) =


1. 100 1001 1111 0010 1100 1001 1110 1111 0100 0101 0110 1110 0100 0011 1000 1101 0110 1101 1111 0011 1000 0000 0001 1000 1001 =


100 1001 1111 0010 1100 1001


9. The three elements that make up the number's 32 bit single precision IEEE 754 binary floating point representation:

Sign (1 bit) =
0 (a positive number)


Exponent (8 bits) =
1110 0010


Mantissa (23 bits) =
100 1001 1111 0010 1100 1001


Decimal number 1 000 000 010 110 000 000 000 000 000 393 converted to 32 bit single precision IEEE 754 binary floating point representation:

0 - 1110 0010 - 100 1001 1111 0010 1100 1001


How to convert decimal numbers from base ten to 32 bit single precision IEEE 754 binary floating point standard

Follow the steps below to convert a base 10 decimal number to 32 bit single precision IEEE 754 binary floating point:

  • 1. If the number to be converted is negative, start with its the positive version.
  • 2. First convert the integer part. Divide repeatedly by 2 the base ten positive representation of the integer number that is to be converted to binary, until we get a quotient that is equal to zero, keeping track of each remainder.
  • 3. Construct the base 2 representation of the positive integer part of the number, by taking all the remainders of the previous dividing operations, starting from the bottom of the list constructed above. Thus, the last remainder of the divisions becomes the first symbol (the leftmost) of the base two number, while the first remainder becomes the last symbol (the rightmost).
  • 4. Then convert the fractional part. Multiply the number repeatedly by 2, until we get a fractional part that is equal to zero, keeping track of each integer part of the results.
  • 5. Construct the base 2 representation of the fractional part of the number by taking all the integer parts of the previous multiplying operations, starting from the top of the constructed list above (they should appear in the binary representation, from left to right, in the order they have been calculated).
  • 6. Normalize the binary representation of the number, by shifting the decimal point (or if you prefer, the decimal mark) "n" positions either to the left or to the right, so that only one non zero digit remains to the left of the decimal point.
  • 7. Adjust the exponent in 8 bit excess/bias notation and then convert it from decimal (base 10) to 8 bit binary, by using the same technique of repeatedly dividing by 2, as shown above:
    Exponent (adjusted) = Exponent (unadjusted) + 2(8-1) - 1
  • 8. Normalize mantissa, remove the leading (leftmost) bit, since it's allways '1' (and the decimal sign if the case) and adjust its length to 23 bits, either by removing the excess bits from the right (losing precision...) or by adding extra '0' bits to the right.
  • 9. Sign (it takes 1 bit) is either 1 for a negative or 0 for a positive number.

Example: convert the negative number -25.347 from decimal system (base ten) to 32 bit single precision IEEE 754 binary floating point:

  • 1. Start with the positive version of the number:

    |-25.347| = 25.347

  • 2. First convert the integer part, 25. Divide it repeatedly by 2, keeping track of each remainder, until we get a quotient that is equal to zero:
    • division = quotient + remainder;
    • 25 ÷ 2 = 12 + 1;
    • 12 ÷ 2 = 6 + 0;
    • 6 ÷ 2 = 3 + 0;
    • 3 ÷ 2 = 1 + 1;
    • 1 ÷ 2 = 0 + 1;
    • We have encountered a quotient that is ZERO => FULL STOP
  • 3. Construct the base 2 representation of the integer part of the number by taking all the remainders of the previous dividing operations, starting from the bottom of the list constructed above:

    25(10) = 1 1001(2)

  • 4. Then convert the fractional part, 0.347. Multiply repeatedly by 2, keeping track of each integer part of the results, until we get a fractional part that is equal to zero:
    • #) multiplying = integer + fractional part;
    • 1) 0.347 × 2 = 0 + 0.694;
    • 2) 0.694 × 2 = 1 + 0.388;
    • 3) 0.388 × 2 = 0 + 0.776;
    • 4) 0.776 × 2 = 1 + 0.552;
    • 5) 0.552 × 2 = 1 + 0.104;
    • 6) 0.104 × 2 = 0 + 0.208;
    • 7) 0.208 × 2 = 0 + 0.416;
    • 8) 0.416 × 2 = 0 + 0.832;
    • 9) 0.832 × 2 = 1 + 0.664;
    • 10) 0.664 × 2 = 1 + 0.328;
    • 11) 0.328 × 2 = 0 + 0.656;
    • 12) 0.656 × 2 = 1 + 0.312;
    • 13) 0.312 × 2 = 0 + 0.624;
    • 14) 0.624 × 2 = 1 + 0.248;
    • 15) 0.248 × 2 = 0 + 0.496;
    • 16) 0.496 × 2 = 0 + 0.992;
    • 17) 0.992 × 2 = 1 + 0.984;
    • 18) 0.984 × 2 = 1 + 0.968;
    • 19) 0.968 × 2 = 1 + 0.936;
    • 20) 0.936 × 2 = 1 + 0.872;
    • 21) 0.872 × 2 = 1 + 0.744;
    • 22) 0.744 × 2 = 1 + 0.488;
    • 23) 0.488 × 2 = 0 + 0.976;
    • 24) 0.976 × 2 = 1 + 0.952;
    • We didn't get any fractional part that was equal to zero. But we had enough iterations (over Mantissa limit = 23) and at least one integer part that was different from zero => FULL STOP (losing precision...).
  • 5. Construct the base 2 representation of the fractional part of the number, by taking all the integer parts of the previous multiplying operations, starting from the top of the constructed list above:

    0.347(10) = 0.0101 1000 1101 0100 1111 1101(2)

  • 6. Summarizing - the positive number before normalization:

    25.347(10) = 1 1001.0101 1000 1101 0100 1111 1101(2)

  • 7. Normalize the binary representation of the number, shifting the decimal point 4 positions to the left so that only one non-zero digit stays to the left of the decimal point:

    25.347(10) =
    1 1001.0101 1000 1101 0100 1111 1101(2) =
    1 1001.0101 1000 1101 0100 1111 1101(2) × 20 =
    1.1001 0101 1000 1101 0100 1111 1101(2) × 24

  • 8. Up to this moment, there are the following elements that would feed into the 32 bit single precision IEEE 754 binary floating point:

    Sign: 1 (a negative number)

    Exponent (unadjusted): 4

    Mantissa (not-normalized): 1.1001 0101 1000 1101 0100 1111 1101

  • 9. Adjust the exponent in 8 bit excess/bias notation and then convert it from decimal (base 10) to 8 bit binary (base 2), by using the same technique of repeatedly dividing it by 2, as already demonstrated above:

    Exponent (adjusted) = Exponent (unadjusted) + 2(8-1) - 1 = (4 + 127)(10) = 131(10) =
    1000 0011(2)

  • 10. Normalize the mantissa, remove the leading (leftmost) bit, since it's allways '1' (and the decimal point) and adjust its length to 23 bits, by removing the excess bits from the right (losing precision...):

    Mantissa (not-normalized): 1.1001 0101 1000 1101 0100 1111 1101

    Mantissa (normalized): 100 1010 1100 0110 1010 0111

  • Conclusion:

    Sign (1 bit) = 1 (a negative number)

    Exponent (8 bits) = 1000 0011

    Mantissa (23 bits) = 100 1010 1100 0110 1010 0111

  • Number -25.347, converted from the decimal system (base 10) to 32 bit single precision IEEE 754 binary floating point =
    1 - 1000 0011 - 100 1010 1100 0110 1010 0111