32bit IEEE 754: Decimal ↗ Single Precision Floating Point Binary: 10 000 000 010 000 000 000 000 000 000 012 Convert the Number to 32 Bit Single Precision IEEE 754 Binary Floating Point Representation Standard, From a Base 10 Decimal System Number

Number 10 000 000 010 000 000 000 000 000 000 012(10) converted and written in 32 bit single precision IEEE 754 binary floating point representation (1 bit for sign, 8 bits for exponent, 23 bits for mantissa)

1. Divide the number repeatedly by 2.

Keep track of each remainder.

We stop when we get a quotient that is equal to zero.


  • division = quotient + remainder;
  • 10 000 000 010 000 000 000 000 000 000 012 ÷ 2 = 5 000 000 005 000 000 000 000 000 000 006 + 0;
  • 5 000 000 005 000 000 000 000 000 000 006 ÷ 2 = 2 500 000 002 500 000 000 000 000 000 003 + 0;
  • 2 500 000 002 500 000 000 000 000 000 003 ÷ 2 = 1 250 000 001 250 000 000 000 000 000 001 + 1;
  • 1 250 000 001 250 000 000 000 000 000 001 ÷ 2 = 625 000 000 625 000 000 000 000 000 000 + 1;
  • 625 000 000 625 000 000 000 000 000 000 ÷ 2 = 312 500 000 312 500 000 000 000 000 000 + 0;
  • 312 500 000 312 500 000 000 000 000 000 ÷ 2 = 156 250 000 156 250 000 000 000 000 000 + 0;
  • 156 250 000 156 250 000 000 000 000 000 ÷ 2 = 78 125 000 078 125 000 000 000 000 000 + 0;
  • 78 125 000 078 125 000 000 000 000 000 ÷ 2 = 39 062 500 039 062 500 000 000 000 000 + 0;
  • 39 062 500 039 062 500 000 000 000 000 ÷ 2 = 19 531 250 019 531 250 000 000 000 000 + 0;
  • 19 531 250 019 531 250 000 000 000 000 ÷ 2 = 9 765 625 009 765 625 000 000 000 000 + 0;
  • 9 765 625 009 765 625 000 000 000 000 ÷ 2 = 4 882 812 504 882 812 500 000 000 000 + 0;
  • 4 882 812 504 882 812 500 000 000 000 ÷ 2 = 2 441 406 252 441 406 250 000 000 000 + 0;
  • 2 441 406 252 441 406 250 000 000 000 ÷ 2 = 1 220 703 126 220 703 125 000 000 000 + 0;
  • 1 220 703 126 220 703 125 000 000 000 ÷ 2 = 610 351 563 110 351 562 500 000 000 + 0;
  • 610 351 563 110 351 562 500 000 000 ÷ 2 = 305 175 781 555 175 781 250 000 000 + 0;
  • 305 175 781 555 175 781 250 000 000 ÷ 2 = 152 587 890 777 587 890 625 000 000 + 0;
  • 152 587 890 777 587 890 625 000 000 ÷ 2 = 76 293 945 388 793 945 312 500 000 + 0;
  • 76 293 945 388 793 945 312 500 000 ÷ 2 = 38 146 972 694 396 972 656 250 000 + 0;
  • 38 146 972 694 396 972 656 250 000 ÷ 2 = 19 073 486 347 198 486 328 125 000 + 0;
  • 19 073 486 347 198 486 328 125 000 ÷ 2 = 9 536 743 173 599 243 164 062 500 + 0;
  • 9 536 743 173 599 243 164 062 500 ÷ 2 = 4 768 371 586 799 621 582 031 250 + 0;
  • 4 768 371 586 799 621 582 031 250 ÷ 2 = 2 384 185 793 399 810 791 015 625 + 0;
  • 2 384 185 793 399 810 791 015 625 ÷ 2 = 1 192 092 896 699 905 395 507 812 + 1;
  • 1 192 092 896 699 905 395 507 812 ÷ 2 = 596 046 448 349 952 697 753 906 + 0;
  • 596 046 448 349 952 697 753 906 ÷ 2 = 298 023 224 174 976 348 876 953 + 0;
  • 298 023 224 174 976 348 876 953 ÷ 2 = 149 011 612 087 488 174 438 476 + 1;
  • 149 011 612 087 488 174 438 476 ÷ 2 = 74 505 806 043 744 087 219 238 + 0;
  • 74 505 806 043 744 087 219 238 ÷ 2 = 37 252 903 021 872 043 609 619 + 0;
  • 37 252 903 021 872 043 609 619 ÷ 2 = 18 626 451 510 936 021 804 809 + 1;
  • 18 626 451 510 936 021 804 809 ÷ 2 = 9 313 225 755 468 010 902 404 + 1;
  • 9 313 225 755 468 010 902 404 ÷ 2 = 4 656 612 877 734 005 451 202 + 0;
  • 4 656 612 877 734 005 451 202 ÷ 2 = 2 328 306 438 867 002 725 601 + 0;
  • 2 328 306 438 867 002 725 601 ÷ 2 = 1 164 153 219 433 501 362 800 + 1;
  • 1 164 153 219 433 501 362 800 ÷ 2 = 582 076 609 716 750 681 400 + 0;
  • 582 076 609 716 750 681 400 ÷ 2 = 291 038 304 858 375 340 700 + 0;
  • 291 038 304 858 375 340 700 ÷ 2 = 145 519 152 429 187 670 350 + 0;
  • 145 519 152 429 187 670 350 ÷ 2 = 72 759 576 214 593 835 175 + 0;
  • 72 759 576 214 593 835 175 ÷ 2 = 36 379 788 107 296 917 587 + 1;
  • 36 379 788 107 296 917 587 ÷ 2 = 18 189 894 053 648 458 793 + 1;
  • 18 189 894 053 648 458 793 ÷ 2 = 9 094 947 026 824 229 396 + 1;
  • 9 094 947 026 824 229 396 ÷ 2 = 4 547 473 513 412 114 698 + 0;
  • 4 547 473 513 412 114 698 ÷ 2 = 2 273 736 756 706 057 349 + 0;
  • 2 273 736 756 706 057 349 ÷ 2 = 1 136 868 378 353 028 674 + 1;
  • 1 136 868 378 353 028 674 ÷ 2 = 568 434 189 176 514 337 + 0;
  • 568 434 189 176 514 337 ÷ 2 = 284 217 094 588 257 168 + 1;
  • 284 217 094 588 257 168 ÷ 2 = 142 108 547 294 128 584 + 0;
  • 142 108 547 294 128 584 ÷ 2 = 71 054 273 647 064 292 + 0;
  • 71 054 273 647 064 292 ÷ 2 = 35 527 136 823 532 146 + 0;
  • 35 527 136 823 532 146 ÷ 2 = 17 763 568 411 766 073 + 0;
  • 17 763 568 411 766 073 ÷ 2 = 8 881 784 205 883 036 + 1;
  • 8 881 784 205 883 036 ÷ 2 = 4 440 892 102 941 518 + 0;
  • 4 440 892 102 941 518 ÷ 2 = 2 220 446 051 470 759 + 0;
  • 2 220 446 051 470 759 ÷ 2 = 1 110 223 025 735 379 + 1;
  • 1 110 223 025 735 379 ÷ 2 = 555 111 512 867 689 + 1;
  • 555 111 512 867 689 ÷ 2 = 277 555 756 433 844 + 1;
  • 277 555 756 433 844 ÷ 2 = 138 777 878 216 922 + 0;
  • 138 777 878 216 922 ÷ 2 = 69 388 939 108 461 + 0;
  • 69 388 939 108 461 ÷ 2 = 34 694 469 554 230 + 1;
  • 34 694 469 554 230 ÷ 2 = 17 347 234 777 115 + 0;
  • 17 347 234 777 115 ÷ 2 = 8 673 617 388 557 + 1;
  • 8 673 617 388 557 ÷ 2 = 4 336 808 694 278 + 1;
  • 4 336 808 694 278 ÷ 2 = 2 168 404 347 139 + 0;
  • 2 168 404 347 139 ÷ 2 = 1 084 202 173 569 + 1;
  • 1 084 202 173 569 ÷ 2 = 542 101 086 784 + 1;
  • 542 101 086 784 ÷ 2 = 271 050 543 392 + 0;
  • 271 050 543 392 ÷ 2 = 135 525 271 696 + 0;
  • 135 525 271 696 ÷ 2 = 67 762 635 848 + 0;
  • 67 762 635 848 ÷ 2 = 33 881 317 924 + 0;
  • 33 881 317 924 ÷ 2 = 16 940 658 962 + 0;
  • 16 940 658 962 ÷ 2 = 8 470 329 481 + 0;
  • 8 470 329 481 ÷ 2 = 4 235 164 740 + 1;
  • 4 235 164 740 ÷ 2 = 2 117 582 370 + 0;
  • 2 117 582 370 ÷ 2 = 1 058 791 185 + 0;
  • 1 058 791 185 ÷ 2 = 529 395 592 + 1;
  • 529 395 592 ÷ 2 = 264 697 796 + 0;
  • 264 697 796 ÷ 2 = 132 348 898 + 0;
  • 132 348 898 ÷ 2 = 66 174 449 + 0;
  • 66 174 449 ÷ 2 = 33 087 224 + 1;
  • 33 087 224 ÷ 2 = 16 543 612 + 0;
  • 16 543 612 ÷ 2 = 8 271 806 + 0;
  • 8 271 806 ÷ 2 = 4 135 903 + 0;
  • 4 135 903 ÷ 2 = 2 067 951 + 1;
  • 2 067 951 ÷ 2 = 1 033 975 + 1;
  • 1 033 975 ÷ 2 = 516 987 + 1;
  • 516 987 ÷ 2 = 258 493 + 1;
  • 258 493 ÷ 2 = 129 246 + 1;
  • 129 246 ÷ 2 = 64 623 + 0;
  • 64 623 ÷ 2 = 32 311 + 1;
  • 32 311 ÷ 2 = 16 155 + 1;
  • 16 155 ÷ 2 = 8 077 + 1;
  • 8 077 ÷ 2 = 4 038 + 1;
  • 4 038 ÷ 2 = 2 019 + 0;
  • 2 019 ÷ 2 = 1 009 + 1;
  • 1 009 ÷ 2 = 504 + 1;
  • 504 ÷ 2 = 252 + 0;
  • 252 ÷ 2 = 126 + 0;
  • 126 ÷ 2 = 63 + 0;
  • 63 ÷ 2 = 31 + 1;
  • 31 ÷ 2 = 15 + 1;
  • 15 ÷ 2 = 7 + 1;
  • 7 ÷ 2 = 3 + 1;
  • 3 ÷ 2 = 1 + 1;
  • 1 ÷ 2 = 0 + 1;

2. Construct the base 2 representation of the positive number.

Take all the remainders starting from the bottom of the list constructed above.


10 000 000 010 000 000 000 000 000 000 012(10) =


111 1110 0011 0111 1011 1110 0010 0010 0100 0000 1101 1010 0111 0010 0001 0100 1110 0001 0011 0010 0100 0000 0000 0000 0000 1100(2)


3. Normalize the binary representation of the number.

Shift the decimal mark 102 positions to the left, so that only one non zero digit remains to the left of it:


10 000 000 010 000 000 000 000 000 000 012(10) =


111 1110 0011 0111 1011 1110 0010 0010 0100 0000 1101 1010 0111 0010 0001 0100 1110 0001 0011 0010 0100 0000 0000 0000 0000 1100(2) =


111 1110 0011 0111 1011 1110 0010 0010 0100 0000 1101 1010 0111 0010 0001 0100 1110 0001 0011 0010 0100 0000 0000 0000 0000 1100(2) × 20 =


1.1111 1000 1101 1110 1111 1000 1000 1001 0000 0011 0110 1001 1100 1000 0101 0011 1000 0100 1100 1001 0000 0000 0000 0000 0011 00(2) × 2102


4. Up to this moment, there are the following elements that would feed into the 32 bit single precision IEEE 754 binary floating point representation:

Sign 0 (a positive number)


Exponent (unadjusted): 102


Mantissa (not normalized):
1.1111 1000 1101 1110 1111 1000 1000 1001 0000 0011 0110 1001 1100 1000 0101 0011 1000 0100 1100 1001 0000 0000 0000 0000 0011 00


5. Adjust the exponent.

Use the 8 bit excess/bias notation:


Exponent (adjusted) =


Exponent (unadjusted) + 2(8-1) - 1 =


102 + 2(8-1) - 1 =


(102 + 127)(10) =


229(10)


6. Convert the adjusted exponent from the decimal (base 10) to 8 bit binary.

Use the same technique of repeatedly dividing by 2:


  • division = quotient + remainder;
  • 229 ÷ 2 = 114 + 1;
  • 114 ÷ 2 = 57 + 0;
  • 57 ÷ 2 = 28 + 1;
  • 28 ÷ 2 = 14 + 0;
  • 14 ÷ 2 = 7 + 0;
  • 7 ÷ 2 = 3 + 1;
  • 3 ÷ 2 = 1 + 1;
  • 1 ÷ 2 = 0 + 1;

7. Construct the base 2 representation of the adjusted exponent.

Take all the remainders starting from the bottom of the list constructed above.


Exponent (adjusted) =


229(10) =


1110 0101(2)


8. Normalize the mantissa.

a) Remove the leading (the leftmost) bit, since it's allways 1, and the decimal point, if the case.


b) Adjust its length to 23 bits, by removing the excess bits, from the right (if any of the excess bits is set on 1, we are losing precision...).


Mantissa (normalized) =


1. 111 1100 0110 1111 0111 1100 010 0010 0100 0000 1101 1010 0111 0010 0001 0100 1110 0001 0011 0010 0100 0000 0000 0000 0000 1100 =


111 1100 0110 1111 0111 1100


9. The three elements that make up the number's 32 bit single precision IEEE 754 binary floating point representation:

Sign (1 bit) =
0 (a positive number)


Exponent (8 bits) =
1110 0101


Mantissa (23 bits) =
111 1100 0110 1111 0111 1100


The base ten decimal number 10 000 000 010 000 000 000 000 000 000 012 converted and written in 32 bit single precision IEEE 754 binary floating point representation:
0 - 1110 0101 - 111 1100 0110 1111 0111 1100

The latest decimal numbers converted from base ten to 32 bit single precision IEEE 754 floating point binary standard representation

Number 0.063 193 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard May 02 17:14 UTC (GMT)
Number -11 308 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard May 02 17:14 UTC (GMT)
Number 2 352 921 043 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard May 02 17:14 UTC (GMT)
Number 71 118 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard May 02 17:14 UTC (GMT)
Number 98.7 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard May 02 17:14 UTC (GMT)
Number 2.333 38 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard May 02 17:14 UTC (GMT)
Number 3.576 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard May 02 17:14 UTC (GMT)
Number 105.15 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard May 02 17:14 UTC (GMT)
Number 24.756 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard May 02 17:14 UTC (GMT)
Number 0.89 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard May 02 17:14 UTC (GMT)
All base ten decimal numbers converted to 32 bit single precision IEEE 754 binary floating point

How to convert decimal numbers from base ten to 32 bit single precision IEEE 754 binary floating point standard

Follow the steps below to convert a base 10 decimal number to 32 bit single precision IEEE 754 binary floating point:

  • 1. If the number to be converted is negative, start with its the positive version.
  • 2. First convert the integer part. Divide repeatedly by 2 the base ten positive representation of the integer number that is to be converted to binary, until we get a quotient that is equal to zero, keeping track of each remainder.
  • 3. Construct the base 2 representation of the positive integer part of the number, by taking all the remainders of the previous dividing operations, starting from the bottom of the list constructed above. Thus, the last remainder of the divisions becomes the first symbol (the leftmost) of the base two number, while the first remainder becomes the last symbol (the rightmost).
  • 4. Then convert the fractional part. Multiply the number repeatedly by 2, until we get a fractional part that is equal to zero, keeping track of each integer part of the results.
  • 5. Construct the base 2 representation of the fractional part of the number by taking all the integer parts of the previous multiplying operations, starting from the top of the constructed list above (they should appear in the binary representation, from left to right, in the order they have been calculated).
  • 6. Normalize the binary representation of the number, by shifting the decimal point (or if you prefer, the decimal mark) "n" positions either to the left or to the right, so that only one non zero digit remains to the left of the decimal point.
  • 7. Adjust the exponent in 8 bit excess/bias notation and then convert it from decimal (base 10) to 8 bit binary, by using the same technique of repeatedly dividing by 2, as shown above:
    Exponent (adjusted) = Exponent (unadjusted) + 2(8-1) - 1
  • 8. Normalize mantissa, remove the leading (leftmost) bit, since it's allways '1' (and the decimal sign if the case) and adjust its length to 23 bits, either by removing the excess bits from the right (losing precision...) or by adding extra '0' bits to the right.
  • 9. Sign (it takes 1 bit) is either 1 for a negative or 0 for a positive number.

Example: convert the negative number -25.347 from decimal system (base ten) to 32 bit single precision IEEE 754 binary floating point:

  • 1. Start with the positive version of the number:

    |-25.347| = 25.347

  • 2. First convert the integer part, 25. Divide it repeatedly by 2, keeping track of each remainder, until we get a quotient that is equal to zero:
    • division = quotient + remainder;
    • 25 ÷ 2 = 12 + 1;
    • 12 ÷ 2 = 6 + 0;
    • 6 ÷ 2 = 3 + 0;
    • 3 ÷ 2 = 1 + 1;
    • 1 ÷ 2 = 0 + 1;
    • We have encountered a quotient that is ZERO => FULL STOP
  • 3. Construct the base 2 representation of the integer part of the number by taking all the remainders of the previous dividing operations, starting from the bottom of the list constructed above:

    25(10) = 1 1001(2)

  • 4. Then convert the fractional part, 0.347. Multiply repeatedly by 2, keeping track of each integer part of the results, until we get a fractional part that is equal to zero:
    • #) multiplying = integer + fractional part;
    • 1) 0.347 × 2 = 0 + 0.694;
    • 2) 0.694 × 2 = 1 + 0.388;
    • 3) 0.388 × 2 = 0 + 0.776;
    • 4) 0.776 × 2 = 1 + 0.552;
    • 5) 0.552 × 2 = 1 + 0.104;
    • 6) 0.104 × 2 = 0 + 0.208;
    • 7) 0.208 × 2 = 0 + 0.416;
    • 8) 0.416 × 2 = 0 + 0.832;
    • 9) 0.832 × 2 = 1 + 0.664;
    • 10) 0.664 × 2 = 1 + 0.328;
    • 11) 0.328 × 2 = 0 + 0.656;
    • 12) 0.656 × 2 = 1 + 0.312;
    • 13) 0.312 × 2 = 0 + 0.624;
    • 14) 0.624 × 2 = 1 + 0.248;
    • 15) 0.248 × 2 = 0 + 0.496;
    • 16) 0.496 × 2 = 0 + 0.992;
    • 17) 0.992 × 2 = 1 + 0.984;
    • 18) 0.984 × 2 = 1 + 0.968;
    • 19) 0.968 × 2 = 1 + 0.936;
    • 20) 0.936 × 2 = 1 + 0.872;
    • 21) 0.872 × 2 = 1 + 0.744;
    • 22) 0.744 × 2 = 1 + 0.488;
    • 23) 0.488 × 2 = 0 + 0.976;
    • 24) 0.976 × 2 = 1 + 0.952;
    • We didn't get any fractional part that was equal to zero. But we had enough iterations (over Mantissa limit = 23) and at least one integer part that was different from zero => FULL STOP (losing precision...).
  • 5. Construct the base 2 representation of the fractional part of the number, by taking all the integer parts of the previous multiplying operations, starting from the top of the constructed list above:

    0.347(10) = 0.0101 1000 1101 0100 1111 1101(2)

  • 6. Summarizing - the positive number before normalization:

    25.347(10) = 1 1001.0101 1000 1101 0100 1111 1101(2)

  • 7. Normalize the binary representation of the number, shifting the decimal point 4 positions to the left so that only one non-zero digit stays to the left of the decimal point:

    25.347(10) =
    1 1001.0101 1000 1101 0100 1111 1101(2) =
    1 1001.0101 1000 1101 0100 1111 1101(2) × 20 =
    1.1001 0101 1000 1101 0100 1111 1101(2) × 24

  • 8. Up to this moment, there are the following elements that would feed into the 32 bit single precision IEEE 754 binary floating point:

    Sign: 1 (a negative number)

    Exponent (unadjusted): 4

    Mantissa (not-normalized): 1.1001 0101 1000 1101 0100 1111 1101

  • 9. Adjust the exponent in 8 bit excess/bias notation and then convert it from decimal (base 10) to 8 bit binary (base 2), by using the same technique of repeatedly dividing it by 2, as already demonstrated above:

    Exponent (adjusted) = Exponent (unadjusted) + 2(8-1) - 1 = (4 + 127)(10) = 131(10) =
    1000 0011(2)

  • 10. Normalize the mantissa, remove the leading (leftmost) bit, since it's allways '1' (and the decimal point) and adjust its length to 23 bits, by removing the excess bits from the right (losing precision...):

    Mantissa (not-normalized): 1.1001 0101 1000 1101 0100 1111 1101

    Mantissa (normalized): 100 1010 1100 0110 1010 0111

  • Conclusion:

    Sign (1 bit) = 1 (a negative number)

    Exponent (8 bits) = 1000 0011

    Mantissa (23 bits) = 100 1010 1100 0110 1010 0111

  • Number -25.347, converted from the decimal system (base 10) to 32 bit single precision IEEE 754 binary floating point =
    1 - 1000 0011 - 100 1010 1100 0110 1010 0111