32bit IEEE 754: Decimal ↗ Single Precision Floating Point Binary: 10 000 000 001 000 000 000 101 000 000 020 Convert the Number to 32 Bit Single Precision IEEE 754 Binary Floating Point Representation Standard, From a Base 10 Decimal System Number

Number 10 000 000 001 000 000 000 101 000 000 020(10) converted and written in 32 bit single precision IEEE 754 binary floating point representation (1 bit for sign, 8 bits for exponent, 23 bits for mantissa)

1. Divide the number repeatedly by 2.

Keep track of each remainder.

We stop when we get a quotient that is equal to zero.


  • division = quotient + remainder;
  • 10 000 000 001 000 000 000 101 000 000 020 ÷ 2 = 5 000 000 000 500 000 000 050 500 000 010 + 0;
  • 5 000 000 000 500 000 000 050 500 000 010 ÷ 2 = 2 500 000 000 250 000 000 025 250 000 005 + 0;
  • 2 500 000 000 250 000 000 025 250 000 005 ÷ 2 = 1 250 000 000 125 000 000 012 625 000 002 + 1;
  • 1 250 000 000 125 000 000 012 625 000 002 ÷ 2 = 625 000 000 062 500 000 006 312 500 001 + 0;
  • 625 000 000 062 500 000 006 312 500 001 ÷ 2 = 312 500 000 031 250 000 003 156 250 000 + 1;
  • 312 500 000 031 250 000 003 156 250 000 ÷ 2 = 156 250 000 015 625 000 001 578 125 000 + 0;
  • 156 250 000 015 625 000 001 578 125 000 ÷ 2 = 78 125 000 007 812 500 000 789 062 500 + 0;
  • 78 125 000 007 812 500 000 789 062 500 ÷ 2 = 39 062 500 003 906 250 000 394 531 250 + 0;
  • 39 062 500 003 906 250 000 394 531 250 ÷ 2 = 19 531 250 001 953 125 000 197 265 625 + 0;
  • 19 531 250 001 953 125 000 197 265 625 ÷ 2 = 9 765 625 000 976 562 500 098 632 812 + 1;
  • 9 765 625 000 976 562 500 098 632 812 ÷ 2 = 4 882 812 500 488 281 250 049 316 406 + 0;
  • 4 882 812 500 488 281 250 049 316 406 ÷ 2 = 2 441 406 250 244 140 625 024 658 203 + 0;
  • 2 441 406 250 244 140 625 024 658 203 ÷ 2 = 1 220 703 125 122 070 312 512 329 101 + 1;
  • 1 220 703 125 122 070 312 512 329 101 ÷ 2 = 610 351 562 561 035 156 256 164 550 + 1;
  • 610 351 562 561 035 156 256 164 550 ÷ 2 = 305 175 781 280 517 578 128 082 275 + 0;
  • 305 175 781 280 517 578 128 082 275 ÷ 2 = 152 587 890 640 258 789 064 041 137 + 1;
  • 152 587 890 640 258 789 064 041 137 ÷ 2 = 76 293 945 320 129 394 532 020 568 + 1;
  • 76 293 945 320 129 394 532 020 568 ÷ 2 = 38 146 972 660 064 697 266 010 284 + 0;
  • 38 146 972 660 064 697 266 010 284 ÷ 2 = 19 073 486 330 032 348 633 005 142 + 0;
  • 19 073 486 330 032 348 633 005 142 ÷ 2 = 9 536 743 165 016 174 316 502 571 + 0;
  • 9 536 743 165 016 174 316 502 571 ÷ 2 = 4 768 371 582 508 087 158 251 285 + 1;
  • 4 768 371 582 508 087 158 251 285 ÷ 2 = 2 384 185 791 254 043 579 125 642 + 1;
  • 2 384 185 791 254 043 579 125 642 ÷ 2 = 1 192 092 895 627 021 789 562 821 + 0;
  • 1 192 092 895 627 021 789 562 821 ÷ 2 = 596 046 447 813 510 894 781 410 + 1;
  • 596 046 447 813 510 894 781 410 ÷ 2 = 298 023 223 906 755 447 390 705 + 0;
  • 298 023 223 906 755 447 390 705 ÷ 2 = 149 011 611 953 377 723 695 352 + 1;
  • 149 011 611 953 377 723 695 352 ÷ 2 = 74 505 805 976 688 861 847 676 + 0;
  • 74 505 805 976 688 861 847 676 ÷ 2 = 37 252 902 988 344 430 923 838 + 0;
  • 37 252 902 988 344 430 923 838 ÷ 2 = 18 626 451 494 172 215 461 919 + 0;
  • 18 626 451 494 172 215 461 919 ÷ 2 = 9 313 225 747 086 107 730 959 + 1;
  • 9 313 225 747 086 107 730 959 ÷ 2 = 4 656 612 873 543 053 865 479 + 1;
  • 4 656 612 873 543 053 865 479 ÷ 2 = 2 328 306 436 771 526 932 739 + 1;
  • 2 328 306 436 771 526 932 739 ÷ 2 = 1 164 153 218 385 763 466 369 + 1;
  • 1 164 153 218 385 763 466 369 ÷ 2 = 582 076 609 192 881 733 184 + 1;
  • 582 076 609 192 881 733 184 ÷ 2 = 291 038 304 596 440 866 592 + 0;
  • 291 038 304 596 440 866 592 ÷ 2 = 145 519 152 298 220 433 296 + 0;
  • 145 519 152 298 220 433 296 ÷ 2 = 72 759 576 149 110 216 648 + 0;
  • 72 759 576 149 110 216 648 ÷ 2 = 36 379 788 074 555 108 324 + 0;
  • 36 379 788 074 555 108 324 ÷ 2 = 18 189 894 037 277 554 162 + 0;
  • 18 189 894 037 277 554 162 ÷ 2 = 9 094 947 018 638 777 081 + 0;
  • 9 094 947 018 638 777 081 ÷ 2 = 4 547 473 509 319 388 540 + 1;
  • 4 547 473 509 319 388 540 ÷ 2 = 2 273 736 754 659 694 270 + 0;
  • 2 273 736 754 659 694 270 ÷ 2 = 1 136 868 377 329 847 135 + 0;
  • 1 136 868 377 329 847 135 ÷ 2 = 568 434 188 664 923 567 + 1;
  • 568 434 188 664 923 567 ÷ 2 = 284 217 094 332 461 783 + 1;
  • 284 217 094 332 461 783 ÷ 2 = 142 108 547 166 230 891 + 1;
  • 142 108 547 166 230 891 ÷ 2 = 71 054 273 583 115 445 + 1;
  • 71 054 273 583 115 445 ÷ 2 = 35 527 136 791 557 722 + 1;
  • 35 527 136 791 557 722 ÷ 2 = 17 763 568 395 778 861 + 0;
  • 17 763 568 395 778 861 ÷ 2 = 8 881 784 197 889 430 + 1;
  • 8 881 784 197 889 430 ÷ 2 = 4 440 892 098 944 715 + 0;
  • 4 440 892 098 944 715 ÷ 2 = 2 220 446 049 472 357 + 1;
  • 2 220 446 049 472 357 ÷ 2 = 1 110 223 024 736 178 + 1;
  • 1 110 223 024 736 178 ÷ 2 = 555 111 512 368 089 + 0;
  • 555 111 512 368 089 ÷ 2 = 277 555 756 184 044 + 1;
  • 277 555 756 184 044 ÷ 2 = 138 777 878 092 022 + 0;
  • 138 777 878 092 022 ÷ 2 = 69 388 939 046 011 + 0;
  • 69 388 939 046 011 ÷ 2 = 34 694 469 523 005 + 1;
  • 34 694 469 523 005 ÷ 2 = 17 347 234 761 502 + 1;
  • 17 347 234 761 502 ÷ 2 = 8 673 617 380 751 + 0;
  • 8 673 617 380 751 ÷ 2 = 4 336 808 690 375 + 1;
  • 4 336 808 690 375 ÷ 2 = 2 168 404 345 187 + 1;
  • 2 168 404 345 187 ÷ 2 = 1 084 202 172 593 + 1;
  • 1 084 202 172 593 ÷ 2 = 542 101 086 296 + 1;
  • 542 101 086 296 ÷ 2 = 271 050 543 148 + 0;
  • 271 050 543 148 ÷ 2 = 135 525 271 574 + 0;
  • 135 525 271 574 ÷ 2 = 67 762 635 787 + 0;
  • 67 762 635 787 ÷ 2 = 33 881 317 893 + 1;
  • 33 881 317 893 ÷ 2 = 16 940 658 946 + 1;
  • 16 940 658 946 ÷ 2 = 8 470 329 473 + 0;
  • 8 470 329 473 ÷ 2 = 4 235 164 736 + 1;
  • 4 235 164 736 ÷ 2 = 2 117 582 368 + 0;
  • 2 117 582 368 ÷ 2 = 1 058 791 184 + 0;
  • 1 058 791 184 ÷ 2 = 529 395 592 + 0;
  • 529 395 592 ÷ 2 = 264 697 796 + 0;
  • 264 697 796 ÷ 2 = 132 348 898 + 0;
  • 132 348 898 ÷ 2 = 66 174 449 + 0;
  • 66 174 449 ÷ 2 = 33 087 224 + 1;
  • 33 087 224 ÷ 2 = 16 543 612 + 0;
  • 16 543 612 ÷ 2 = 8 271 806 + 0;
  • 8 271 806 ÷ 2 = 4 135 903 + 0;
  • 4 135 903 ÷ 2 = 2 067 951 + 1;
  • 2 067 951 ÷ 2 = 1 033 975 + 1;
  • 1 033 975 ÷ 2 = 516 987 + 1;
  • 516 987 ÷ 2 = 258 493 + 1;
  • 258 493 ÷ 2 = 129 246 + 1;
  • 129 246 ÷ 2 = 64 623 + 0;
  • 64 623 ÷ 2 = 32 311 + 1;
  • 32 311 ÷ 2 = 16 155 + 1;
  • 16 155 ÷ 2 = 8 077 + 1;
  • 8 077 ÷ 2 = 4 038 + 1;
  • 4 038 ÷ 2 = 2 019 + 0;
  • 2 019 ÷ 2 = 1 009 + 1;
  • 1 009 ÷ 2 = 504 + 1;
  • 504 ÷ 2 = 252 + 0;
  • 252 ÷ 2 = 126 + 0;
  • 126 ÷ 2 = 63 + 0;
  • 63 ÷ 2 = 31 + 1;
  • 31 ÷ 2 = 15 + 1;
  • 15 ÷ 2 = 7 + 1;
  • 7 ÷ 2 = 3 + 1;
  • 3 ÷ 2 = 1 + 1;
  • 1 ÷ 2 = 0 + 1;

2. Construct the base 2 representation of the positive number.

Take all the remainders starting from the bottom of the list constructed above.


10 000 000 001 000 000 000 101 000 000 020(10) =


111 1110 0011 0111 1011 1110 0010 0000 0101 1000 1111 0110 0101 1010 1111 1001 0000 0011 1110 0010 1011 0001 1011 0010 0001 0100(2)


3. Normalize the binary representation of the number.

Shift the decimal mark 102 positions to the left, so that only one non zero digit remains to the left of it:


10 000 000 001 000 000 000 101 000 000 020(10) =


111 1110 0011 0111 1011 1110 0010 0000 0101 1000 1111 0110 0101 1010 1111 1001 0000 0011 1110 0010 1011 0001 1011 0010 0001 0100(2) =


111 1110 0011 0111 1011 1110 0010 0000 0101 1000 1111 0110 0101 1010 1111 1001 0000 0011 1110 0010 1011 0001 1011 0010 0001 0100(2) × 20 =


1.1111 1000 1101 1110 1111 1000 1000 0001 0110 0011 1101 1001 0110 1011 1110 0100 0000 1111 1000 1010 1100 0110 1100 1000 0101 00(2) × 2102


4. Up to this moment, there are the following elements that would feed into the 32 bit single precision IEEE 754 binary floating point representation:

Sign 0 (a positive number)


Exponent (unadjusted): 102


Mantissa (not normalized):
1.1111 1000 1101 1110 1111 1000 1000 0001 0110 0011 1101 1001 0110 1011 1110 0100 0000 1111 1000 1010 1100 0110 1100 1000 0101 00


5. Adjust the exponent.

Use the 8 bit excess/bias notation:


Exponent (adjusted) =


Exponent (unadjusted) + 2(8-1) - 1 =


102 + 2(8-1) - 1 =


(102 + 127)(10) =


229(10)


6. Convert the adjusted exponent from the decimal (base 10) to 8 bit binary.

Use the same technique of repeatedly dividing by 2:


  • division = quotient + remainder;
  • 229 ÷ 2 = 114 + 1;
  • 114 ÷ 2 = 57 + 0;
  • 57 ÷ 2 = 28 + 1;
  • 28 ÷ 2 = 14 + 0;
  • 14 ÷ 2 = 7 + 0;
  • 7 ÷ 2 = 3 + 1;
  • 3 ÷ 2 = 1 + 1;
  • 1 ÷ 2 = 0 + 1;

7. Construct the base 2 representation of the adjusted exponent.

Take all the remainders starting from the bottom of the list constructed above.


Exponent (adjusted) =


229(10) =


1110 0101(2)


8. Normalize the mantissa.

a) Remove the leading (the leftmost) bit, since it's allways 1, and the decimal point, if the case.


b) Adjust its length to 23 bits, by removing the excess bits, from the right (if any of the excess bits is set on 1, we are losing precision...).


Mantissa (normalized) =


1. 111 1100 0110 1111 0111 1100 010 0000 0101 1000 1111 0110 0101 1010 1111 1001 0000 0011 1110 0010 1011 0001 1011 0010 0001 0100 =


111 1100 0110 1111 0111 1100


9. The three elements that make up the number's 32 bit single precision IEEE 754 binary floating point representation:

Sign (1 bit) =
0 (a positive number)


Exponent (8 bits) =
1110 0101


Mantissa (23 bits) =
111 1100 0110 1111 0111 1100


The base ten decimal number 10 000 000 001 000 000 000 101 000 000 020 converted and written in 32 bit single precision IEEE 754 binary floating point representation:
0 - 1110 0101 - 111 1100 0110 1111 0111 1100

The latest decimal numbers converted from base ten to 32 bit single precision IEEE 754 floating point binary standard representation

Number -71.35 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard May 01 20:28 UTC (GMT)
Number -1 094 713 401 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard May 01 20:28 UTC (GMT)
Number 0.000 000 000 000 392 574 84 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard May 01 20:28 UTC (GMT)
Number 25 992 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard May 01 20:28 UTC (GMT)
Number 8.531 25 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard May 01 20:28 UTC (GMT)
Number 220.163 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard May 01 20:28 UTC (GMT)
Number 108.128 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard May 01 20:28 UTC (GMT)
Number 6 191 990.836 96 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard May 01 20:28 UTC (GMT)
Number 60.552 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard May 01 20:28 UTC (GMT)
Number 57.873 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard May 01 20:28 UTC (GMT)
All base ten decimal numbers converted to 32 bit single precision IEEE 754 binary floating point

How to convert decimal numbers from base ten to 32 bit single precision IEEE 754 binary floating point standard

Follow the steps below to convert a base 10 decimal number to 32 bit single precision IEEE 754 binary floating point:

  • 1. If the number to be converted is negative, start with its the positive version.
  • 2. First convert the integer part. Divide repeatedly by 2 the base ten positive representation of the integer number that is to be converted to binary, until we get a quotient that is equal to zero, keeping track of each remainder.
  • 3. Construct the base 2 representation of the positive integer part of the number, by taking all the remainders of the previous dividing operations, starting from the bottom of the list constructed above. Thus, the last remainder of the divisions becomes the first symbol (the leftmost) of the base two number, while the first remainder becomes the last symbol (the rightmost).
  • 4. Then convert the fractional part. Multiply the number repeatedly by 2, until we get a fractional part that is equal to zero, keeping track of each integer part of the results.
  • 5. Construct the base 2 representation of the fractional part of the number by taking all the integer parts of the previous multiplying operations, starting from the top of the constructed list above (they should appear in the binary representation, from left to right, in the order they have been calculated).
  • 6. Normalize the binary representation of the number, by shifting the decimal point (or if you prefer, the decimal mark) "n" positions either to the left or to the right, so that only one non zero digit remains to the left of the decimal point.
  • 7. Adjust the exponent in 8 bit excess/bias notation and then convert it from decimal (base 10) to 8 bit binary, by using the same technique of repeatedly dividing by 2, as shown above:
    Exponent (adjusted) = Exponent (unadjusted) + 2(8-1) - 1
  • 8. Normalize mantissa, remove the leading (leftmost) bit, since it's allways '1' (and the decimal sign if the case) and adjust its length to 23 bits, either by removing the excess bits from the right (losing precision...) or by adding extra '0' bits to the right.
  • 9. Sign (it takes 1 bit) is either 1 for a negative or 0 for a positive number.

Example: convert the negative number -25.347 from decimal system (base ten) to 32 bit single precision IEEE 754 binary floating point:

  • 1. Start with the positive version of the number:

    |-25.347| = 25.347

  • 2. First convert the integer part, 25. Divide it repeatedly by 2, keeping track of each remainder, until we get a quotient that is equal to zero:
    • division = quotient + remainder;
    • 25 ÷ 2 = 12 + 1;
    • 12 ÷ 2 = 6 + 0;
    • 6 ÷ 2 = 3 + 0;
    • 3 ÷ 2 = 1 + 1;
    • 1 ÷ 2 = 0 + 1;
    • We have encountered a quotient that is ZERO => FULL STOP
  • 3. Construct the base 2 representation of the integer part of the number by taking all the remainders of the previous dividing operations, starting from the bottom of the list constructed above:

    25(10) = 1 1001(2)

  • 4. Then convert the fractional part, 0.347. Multiply repeatedly by 2, keeping track of each integer part of the results, until we get a fractional part that is equal to zero:
    • #) multiplying = integer + fractional part;
    • 1) 0.347 × 2 = 0 + 0.694;
    • 2) 0.694 × 2 = 1 + 0.388;
    • 3) 0.388 × 2 = 0 + 0.776;
    • 4) 0.776 × 2 = 1 + 0.552;
    • 5) 0.552 × 2 = 1 + 0.104;
    • 6) 0.104 × 2 = 0 + 0.208;
    • 7) 0.208 × 2 = 0 + 0.416;
    • 8) 0.416 × 2 = 0 + 0.832;
    • 9) 0.832 × 2 = 1 + 0.664;
    • 10) 0.664 × 2 = 1 + 0.328;
    • 11) 0.328 × 2 = 0 + 0.656;
    • 12) 0.656 × 2 = 1 + 0.312;
    • 13) 0.312 × 2 = 0 + 0.624;
    • 14) 0.624 × 2 = 1 + 0.248;
    • 15) 0.248 × 2 = 0 + 0.496;
    • 16) 0.496 × 2 = 0 + 0.992;
    • 17) 0.992 × 2 = 1 + 0.984;
    • 18) 0.984 × 2 = 1 + 0.968;
    • 19) 0.968 × 2 = 1 + 0.936;
    • 20) 0.936 × 2 = 1 + 0.872;
    • 21) 0.872 × 2 = 1 + 0.744;
    • 22) 0.744 × 2 = 1 + 0.488;
    • 23) 0.488 × 2 = 0 + 0.976;
    • 24) 0.976 × 2 = 1 + 0.952;
    • We didn't get any fractional part that was equal to zero. But we had enough iterations (over Mantissa limit = 23) and at least one integer part that was different from zero => FULL STOP (losing precision...).
  • 5. Construct the base 2 representation of the fractional part of the number, by taking all the integer parts of the previous multiplying operations, starting from the top of the constructed list above:

    0.347(10) = 0.0101 1000 1101 0100 1111 1101(2)

  • 6. Summarizing - the positive number before normalization:

    25.347(10) = 1 1001.0101 1000 1101 0100 1111 1101(2)

  • 7. Normalize the binary representation of the number, shifting the decimal point 4 positions to the left so that only one non-zero digit stays to the left of the decimal point:

    25.347(10) =
    1 1001.0101 1000 1101 0100 1111 1101(2) =
    1 1001.0101 1000 1101 0100 1111 1101(2) × 20 =
    1.1001 0101 1000 1101 0100 1111 1101(2) × 24

  • 8. Up to this moment, there are the following elements that would feed into the 32 bit single precision IEEE 754 binary floating point:

    Sign: 1 (a negative number)

    Exponent (unadjusted): 4

    Mantissa (not-normalized): 1.1001 0101 1000 1101 0100 1111 1101

  • 9. Adjust the exponent in 8 bit excess/bias notation and then convert it from decimal (base 10) to 8 bit binary (base 2), by using the same technique of repeatedly dividing it by 2, as already demonstrated above:

    Exponent (adjusted) = Exponent (unadjusted) + 2(8-1) - 1 = (4 + 127)(10) = 131(10) =
    1000 0011(2)

  • 10. Normalize the mantissa, remove the leading (leftmost) bit, since it's allways '1' (and the decimal point) and adjust its length to 23 bits, by removing the excess bits from the right (losing precision...):

    Mantissa (not-normalized): 1.1001 0101 1000 1101 0100 1111 1101

    Mantissa (normalized): 100 1010 1100 0110 1010 0111

  • Conclusion:

    Sign (1 bit) = 1 (a negative number)

    Exponent (8 bits) = 1000 0011

    Mantissa (23 bits) = 100 1010 1100 0110 1010 0111

  • Number -25.347, converted from the decimal system (base 10) to 32 bit single precision IEEE 754 binary floating point =
    1 - 1000 0011 - 100 1010 1100 0110 1010 0111