32bit IEEE 754: Decimal ↗ Single Precision Floating Point Binary: 10 000 000 000 000 010 000 000 000 000 024 Convert the Number to 32 Bit Single Precision IEEE 754 Binary Floating Point Representation Standard, From a Base 10 Decimal System Number

Number 10 000 000 000 000 010 000 000 000 000 024(10) converted and written in 32 bit single precision IEEE 754 binary floating point representation (1 bit for sign, 8 bits for exponent, 23 bits for mantissa)

1. Divide the number repeatedly by 2.

Keep track of each remainder.

We stop when we get a quotient that is equal to zero.


  • division = quotient + remainder;
  • 10 000 000 000 000 010 000 000 000 000 024 ÷ 2 = 5 000 000 000 000 005 000 000 000 000 012 + 0;
  • 5 000 000 000 000 005 000 000 000 000 012 ÷ 2 = 2 500 000 000 000 002 500 000 000 000 006 + 0;
  • 2 500 000 000 000 002 500 000 000 000 006 ÷ 2 = 1 250 000 000 000 001 250 000 000 000 003 + 0;
  • 1 250 000 000 000 001 250 000 000 000 003 ÷ 2 = 625 000 000 000 000 625 000 000 000 001 + 1;
  • 625 000 000 000 000 625 000 000 000 001 ÷ 2 = 312 500 000 000 000 312 500 000 000 000 + 1;
  • 312 500 000 000 000 312 500 000 000 000 ÷ 2 = 156 250 000 000 000 156 250 000 000 000 + 0;
  • 156 250 000 000 000 156 250 000 000 000 ÷ 2 = 78 125 000 000 000 078 125 000 000 000 + 0;
  • 78 125 000 000 000 078 125 000 000 000 ÷ 2 = 39 062 500 000 000 039 062 500 000 000 + 0;
  • 39 062 500 000 000 039 062 500 000 000 ÷ 2 = 19 531 250 000 000 019 531 250 000 000 + 0;
  • 19 531 250 000 000 019 531 250 000 000 ÷ 2 = 9 765 625 000 000 009 765 625 000 000 + 0;
  • 9 765 625 000 000 009 765 625 000 000 ÷ 2 = 4 882 812 500 000 004 882 812 500 000 + 0;
  • 4 882 812 500 000 004 882 812 500 000 ÷ 2 = 2 441 406 250 000 002 441 406 250 000 + 0;
  • 2 441 406 250 000 002 441 406 250 000 ÷ 2 = 1 220 703 125 000 001 220 703 125 000 + 0;
  • 1 220 703 125 000 001 220 703 125 000 ÷ 2 = 610 351 562 500 000 610 351 562 500 + 0;
  • 610 351 562 500 000 610 351 562 500 ÷ 2 = 305 175 781 250 000 305 175 781 250 + 0;
  • 305 175 781 250 000 305 175 781 250 ÷ 2 = 152 587 890 625 000 152 587 890 625 + 0;
  • 152 587 890 625 000 152 587 890 625 ÷ 2 = 76 293 945 312 500 076 293 945 312 + 1;
  • 76 293 945 312 500 076 293 945 312 ÷ 2 = 38 146 972 656 250 038 146 972 656 + 0;
  • 38 146 972 656 250 038 146 972 656 ÷ 2 = 19 073 486 328 125 019 073 486 328 + 0;
  • 19 073 486 328 125 019 073 486 328 ÷ 2 = 9 536 743 164 062 509 536 743 164 + 0;
  • 9 536 743 164 062 509 536 743 164 ÷ 2 = 4 768 371 582 031 254 768 371 582 + 0;
  • 4 768 371 582 031 254 768 371 582 ÷ 2 = 2 384 185 791 015 627 384 185 791 + 0;
  • 2 384 185 791 015 627 384 185 791 ÷ 2 = 1 192 092 895 507 813 692 092 895 + 1;
  • 1 192 092 895 507 813 692 092 895 ÷ 2 = 596 046 447 753 906 846 046 447 + 1;
  • 596 046 447 753 906 846 046 447 ÷ 2 = 298 023 223 876 953 423 023 223 + 1;
  • 298 023 223 876 953 423 023 223 ÷ 2 = 149 011 611 938 476 711 511 611 + 1;
  • 149 011 611 938 476 711 511 611 ÷ 2 = 74 505 805 969 238 355 755 805 + 1;
  • 74 505 805 969 238 355 755 805 ÷ 2 = 37 252 902 984 619 177 877 902 + 1;
  • 37 252 902 984 619 177 877 902 ÷ 2 = 18 626 451 492 309 588 938 951 + 0;
  • 18 626 451 492 309 588 938 951 ÷ 2 = 9 313 225 746 154 794 469 475 + 1;
  • 9 313 225 746 154 794 469 475 ÷ 2 = 4 656 612 873 077 397 234 737 + 1;
  • 4 656 612 873 077 397 234 737 ÷ 2 = 2 328 306 436 538 698 617 368 + 1;
  • 2 328 306 436 538 698 617 368 ÷ 2 = 1 164 153 218 269 349 308 684 + 0;
  • 1 164 153 218 269 349 308 684 ÷ 2 = 582 076 609 134 674 654 342 + 0;
  • 582 076 609 134 674 654 342 ÷ 2 = 291 038 304 567 337 327 171 + 0;
  • 291 038 304 567 337 327 171 ÷ 2 = 145 519 152 283 668 663 585 + 1;
  • 145 519 152 283 668 663 585 ÷ 2 = 72 759 576 141 834 331 792 + 1;
  • 72 759 576 141 834 331 792 ÷ 2 = 36 379 788 070 917 165 896 + 0;
  • 36 379 788 070 917 165 896 ÷ 2 = 18 189 894 035 458 582 948 + 0;
  • 18 189 894 035 458 582 948 ÷ 2 = 9 094 947 017 729 291 474 + 0;
  • 9 094 947 017 729 291 474 ÷ 2 = 4 547 473 508 864 645 737 + 0;
  • 4 547 473 508 864 645 737 ÷ 2 = 2 273 736 754 432 322 868 + 1;
  • 2 273 736 754 432 322 868 ÷ 2 = 1 136 868 377 216 161 434 + 0;
  • 1 136 868 377 216 161 434 ÷ 2 = 568 434 188 608 080 717 + 0;
  • 568 434 188 608 080 717 ÷ 2 = 284 217 094 304 040 358 + 1;
  • 284 217 094 304 040 358 ÷ 2 = 142 108 547 152 020 179 + 0;
  • 142 108 547 152 020 179 ÷ 2 = 71 054 273 576 010 089 + 1;
  • 71 054 273 576 010 089 ÷ 2 = 35 527 136 788 005 044 + 1;
  • 35 527 136 788 005 044 ÷ 2 = 17 763 568 394 002 522 + 0;
  • 17 763 568 394 002 522 ÷ 2 = 8 881 784 197 001 261 + 0;
  • 8 881 784 197 001 261 ÷ 2 = 4 440 892 098 500 630 + 1;
  • 4 440 892 098 500 630 ÷ 2 = 2 220 446 049 250 315 + 0;
  • 2 220 446 049 250 315 ÷ 2 = 1 110 223 024 625 157 + 1;
  • 1 110 223 024 625 157 ÷ 2 = 555 111 512 312 578 + 1;
  • 555 111 512 312 578 ÷ 2 = 277 555 756 156 289 + 0;
  • 277 555 756 156 289 ÷ 2 = 138 777 878 078 144 + 1;
  • 138 777 878 078 144 ÷ 2 = 69 388 939 039 072 + 0;
  • 69 388 939 039 072 ÷ 2 = 34 694 469 519 536 + 0;
  • 34 694 469 519 536 ÷ 2 = 17 347 234 759 768 + 0;
  • 17 347 234 759 768 ÷ 2 = 8 673 617 379 884 + 0;
  • 8 673 617 379 884 ÷ 2 = 4 336 808 689 942 + 0;
  • 4 336 808 689 942 ÷ 2 = 2 168 404 344 971 + 0;
  • 2 168 404 344 971 ÷ 2 = 1 084 202 172 485 + 1;
  • 1 084 202 172 485 ÷ 2 = 542 101 086 242 + 1;
  • 542 101 086 242 ÷ 2 = 271 050 543 121 + 0;
  • 271 050 543 121 ÷ 2 = 135 525 271 560 + 1;
  • 135 525 271 560 ÷ 2 = 67 762 635 780 + 0;
  • 67 762 635 780 ÷ 2 = 33 881 317 890 + 0;
  • 33 881 317 890 ÷ 2 = 16 940 658 945 + 0;
  • 16 940 658 945 ÷ 2 = 8 470 329 472 + 1;
  • 8 470 329 472 ÷ 2 = 4 235 164 736 + 0;
  • 4 235 164 736 ÷ 2 = 2 117 582 368 + 0;
  • 2 117 582 368 ÷ 2 = 1 058 791 184 + 0;
  • 1 058 791 184 ÷ 2 = 529 395 592 + 0;
  • 529 395 592 ÷ 2 = 264 697 796 + 0;
  • 264 697 796 ÷ 2 = 132 348 898 + 0;
  • 132 348 898 ÷ 2 = 66 174 449 + 0;
  • 66 174 449 ÷ 2 = 33 087 224 + 1;
  • 33 087 224 ÷ 2 = 16 543 612 + 0;
  • 16 543 612 ÷ 2 = 8 271 806 + 0;
  • 8 271 806 ÷ 2 = 4 135 903 + 0;
  • 4 135 903 ÷ 2 = 2 067 951 + 1;
  • 2 067 951 ÷ 2 = 1 033 975 + 1;
  • 1 033 975 ÷ 2 = 516 987 + 1;
  • 516 987 ÷ 2 = 258 493 + 1;
  • 258 493 ÷ 2 = 129 246 + 1;
  • 129 246 ÷ 2 = 64 623 + 0;
  • 64 623 ÷ 2 = 32 311 + 1;
  • 32 311 ÷ 2 = 16 155 + 1;
  • 16 155 ÷ 2 = 8 077 + 1;
  • 8 077 ÷ 2 = 4 038 + 1;
  • 4 038 ÷ 2 = 2 019 + 0;
  • 2 019 ÷ 2 = 1 009 + 1;
  • 1 009 ÷ 2 = 504 + 1;
  • 504 ÷ 2 = 252 + 0;
  • 252 ÷ 2 = 126 + 0;
  • 126 ÷ 2 = 63 + 0;
  • 63 ÷ 2 = 31 + 1;
  • 31 ÷ 2 = 15 + 1;
  • 15 ÷ 2 = 7 + 1;
  • 7 ÷ 2 = 3 + 1;
  • 3 ÷ 2 = 1 + 1;
  • 1 ÷ 2 = 0 + 1;

2. Construct the base 2 representation of the positive number.

Take all the remainders starting from the bottom of the list constructed above.


10 000 000 000 000 010 000 000 000 000 024(10) =


111 1110 0011 0111 1011 1110 0010 0000 0010 0010 1100 0000 1011 0100 1101 0010 0001 1000 1110 1111 1100 0001 0000 0000 0001 1000(2)


3. Normalize the binary representation of the number.

Shift the decimal mark 102 positions to the left, so that only one non zero digit remains to the left of it:


10 000 000 000 000 010 000 000 000 000 024(10) =


111 1110 0011 0111 1011 1110 0010 0000 0010 0010 1100 0000 1011 0100 1101 0010 0001 1000 1110 1111 1100 0001 0000 0000 0001 1000(2) =


111 1110 0011 0111 1011 1110 0010 0000 0010 0010 1100 0000 1011 0100 1101 0010 0001 1000 1110 1111 1100 0001 0000 0000 0001 1000(2) × 20 =


1.1111 1000 1101 1110 1111 1000 1000 0000 1000 1011 0000 0010 1101 0011 0100 1000 0110 0011 1011 1111 0000 0100 0000 0000 0110 00(2) × 2102


4. Up to this moment, there are the following elements that would feed into the 32 bit single precision IEEE 754 binary floating point representation:

Sign 0 (a positive number)


Exponent (unadjusted): 102


Mantissa (not normalized):
1.1111 1000 1101 1110 1111 1000 1000 0000 1000 1011 0000 0010 1101 0011 0100 1000 0110 0011 1011 1111 0000 0100 0000 0000 0110 00


5. Adjust the exponent.

Use the 8 bit excess/bias notation:


Exponent (adjusted) =


Exponent (unadjusted) + 2(8-1) - 1 =


102 + 2(8-1) - 1 =


(102 + 127)(10) =


229(10)


6. Convert the adjusted exponent from the decimal (base 10) to 8 bit binary.

Use the same technique of repeatedly dividing by 2:


  • division = quotient + remainder;
  • 229 ÷ 2 = 114 + 1;
  • 114 ÷ 2 = 57 + 0;
  • 57 ÷ 2 = 28 + 1;
  • 28 ÷ 2 = 14 + 0;
  • 14 ÷ 2 = 7 + 0;
  • 7 ÷ 2 = 3 + 1;
  • 3 ÷ 2 = 1 + 1;
  • 1 ÷ 2 = 0 + 1;

7. Construct the base 2 representation of the adjusted exponent.

Take all the remainders starting from the bottom of the list constructed above.


Exponent (adjusted) =


229(10) =


1110 0101(2)


8. Normalize the mantissa.

a) Remove the leading (the leftmost) bit, since it's allways 1, and the decimal point, if the case.


b) Adjust its length to 23 bits, by removing the excess bits, from the right (if any of the excess bits is set on 1, we are losing precision...).


Mantissa (normalized) =


1. 111 1100 0110 1111 0111 1100 010 0000 0010 0010 1100 0000 1011 0100 1101 0010 0001 1000 1110 1111 1100 0001 0000 0000 0001 1000 =


111 1100 0110 1111 0111 1100


9. The three elements that make up the number's 32 bit single precision IEEE 754 binary floating point representation:

Sign (1 bit) =
0 (a positive number)


Exponent (8 bits) =
1110 0101


Mantissa (23 bits) =
111 1100 0110 1111 0111 1100


The base ten decimal number 10 000 000 000 000 010 000 000 000 000 024 converted and written in 32 bit single precision IEEE 754 binary floating point representation:
0 - 1110 0101 - 111 1100 0110 1111 0111 1100

The latest decimal numbers converted from base ten to 32 bit single precision IEEE 754 floating point binary standard representation

Number 98 171.2 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard May 05 17:18 UTC (GMT)
Number 1 804 289 398 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard May 05 17:18 UTC (GMT)
Number 30 008 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard May 05 17:18 UTC (GMT)
Number 1 234.359 374 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard May 05 17:18 UTC (GMT)
Number 1 130 241 443 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard May 05 17:18 UTC (GMT)
Number 1 036 831 900 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard May 05 17:18 UTC (GMT)
Number 1 114 243 167 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard May 05 17:18 UTC (GMT)
Number 16.815 6 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard May 05 17:18 UTC (GMT)
Number 1.333 333 333 333 333 333 333 333 333 333 333 333 333 333 38 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard May 05 17:18 UTC (GMT)
Number 2 105 438 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard May 05 17:18 UTC (GMT)
All base ten decimal numbers converted to 32 bit single precision IEEE 754 binary floating point

How to convert decimal numbers from base ten to 32 bit single precision IEEE 754 binary floating point standard

Follow the steps below to convert a base 10 decimal number to 32 bit single precision IEEE 754 binary floating point:

  • 1. If the number to be converted is negative, start with its the positive version.
  • 2. First convert the integer part. Divide repeatedly by 2 the base ten positive representation of the integer number that is to be converted to binary, until we get a quotient that is equal to zero, keeping track of each remainder.
  • 3. Construct the base 2 representation of the positive integer part of the number, by taking all the remainders of the previous dividing operations, starting from the bottom of the list constructed above. Thus, the last remainder of the divisions becomes the first symbol (the leftmost) of the base two number, while the first remainder becomes the last symbol (the rightmost).
  • 4. Then convert the fractional part. Multiply the number repeatedly by 2, until we get a fractional part that is equal to zero, keeping track of each integer part of the results.
  • 5. Construct the base 2 representation of the fractional part of the number by taking all the integer parts of the previous multiplying operations, starting from the top of the constructed list above (they should appear in the binary representation, from left to right, in the order they have been calculated).
  • 6. Normalize the binary representation of the number, by shifting the decimal point (or if you prefer, the decimal mark) "n" positions either to the left or to the right, so that only one non zero digit remains to the left of the decimal point.
  • 7. Adjust the exponent in 8 bit excess/bias notation and then convert it from decimal (base 10) to 8 bit binary, by using the same technique of repeatedly dividing by 2, as shown above:
    Exponent (adjusted) = Exponent (unadjusted) + 2(8-1) - 1
  • 8. Normalize mantissa, remove the leading (leftmost) bit, since it's allways '1' (and the decimal sign if the case) and adjust its length to 23 bits, either by removing the excess bits from the right (losing precision...) or by adding extra '0' bits to the right.
  • 9. Sign (it takes 1 bit) is either 1 for a negative or 0 for a positive number.

Example: convert the negative number -25.347 from decimal system (base ten) to 32 bit single precision IEEE 754 binary floating point:

  • 1. Start with the positive version of the number:

    |-25.347| = 25.347

  • 2. First convert the integer part, 25. Divide it repeatedly by 2, keeping track of each remainder, until we get a quotient that is equal to zero:
    • division = quotient + remainder;
    • 25 ÷ 2 = 12 + 1;
    • 12 ÷ 2 = 6 + 0;
    • 6 ÷ 2 = 3 + 0;
    • 3 ÷ 2 = 1 + 1;
    • 1 ÷ 2 = 0 + 1;
    • We have encountered a quotient that is ZERO => FULL STOP
  • 3. Construct the base 2 representation of the integer part of the number by taking all the remainders of the previous dividing operations, starting from the bottom of the list constructed above:

    25(10) = 1 1001(2)

  • 4. Then convert the fractional part, 0.347. Multiply repeatedly by 2, keeping track of each integer part of the results, until we get a fractional part that is equal to zero:
    • #) multiplying = integer + fractional part;
    • 1) 0.347 × 2 = 0 + 0.694;
    • 2) 0.694 × 2 = 1 + 0.388;
    • 3) 0.388 × 2 = 0 + 0.776;
    • 4) 0.776 × 2 = 1 + 0.552;
    • 5) 0.552 × 2 = 1 + 0.104;
    • 6) 0.104 × 2 = 0 + 0.208;
    • 7) 0.208 × 2 = 0 + 0.416;
    • 8) 0.416 × 2 = 0 + 0.832;
    • 9) 0.832 × 2 = 1 + 0.664;
    • 10) 0.664 × 2 = 1 + 0.328;
    • 11) 0.328 × 2 = 0 + 0.656;
    • 12) 0.656 × 2 = 1 + 0.312;
    • 13) 0.312 × 2 = 0 + 0.624;
    • 14) 0.624 × 2 = 1 + 0.248;
    • 15) 0.248 × 2 = 0 + 0.496;
    • 16) 0.496 × 2 = 0 + 0.992;
    • 17) 0.992 × 2 = 1 + 0.984;
    • 18) 0.984 × 2 = 1 + 0.968;
    • 19) 0.968 × 2 = 1 + 0.936;
    • 20) 0.936 × 2 = 1 + 0.872;
    • 21) 0.872 × 2 = 1 + 0.744;
    • 22) 0.744 × 2 = 1 + 0.488;
    • 23) 0.488 × 2 = 0 + 0.976;
    • 24) 0.976 × 2 = 1 + 0.952;
    • We didn't get any fractional part that was equal to zero. But we had enough iterations (over Mantissa limit = 23) and at least one integer part that was different from zero => FULL STOP (losing precision...).
  • 5. Construct the base 2 representation of the fractional part of the number, by taking all the integer parts of the previous multiplying operations, starting from the top of the constructed list above:

    0.347(10) = 0.0101 1000 1101 0100 1111 1101(2)

  • 6. Summarizing - the positive number before normalization:

    25.347(10) = 1 1001.0101 1000 1101 0100 1111 1101(2)

  • 7. Normalize the binary representation of the number, shifting the decimal point 4 positions to the left so that only one non-zero digit stays to the left of the decimal point:

    25.347(10) =
    1 1001.0101 1000 1101 0100 1111 1101(2) =
    1 1001.0101 1000 1101 0100 1111 1101(2) × 20 =
    1.1001 0101 1000 1101 0100 1111 1101(2) × 24

  • 8. Up to this moment, there are the following elements that would feed into the 32 bit single precision IEEE 754 binary floating point:

    Sign: 1 (a negative number)

    Exponent (unadjusted): 4

    Mantissa (not-normalized): 1.1001 0101 1000 1101 0100 1111 1101

  • 9. Adjust the exponent in 8 bit excess/bias notation and then convert it from decimal (base 10) to 8 bit binary (base 2), by using the same technique of repeatedly dividing it by 2, as already demonstrated above:

    Exponent (adjusted) = Exponent (unadjusted) + 2(8-1) - 1 = (4 + 127)(10) = 131(10) =
    1000 0011(2)

  • 10. Normalize the mantissa, remove the leading (leftmost) bit, since it's allways '1' (and the decimal point) and adjust its length to 23 bits, by removing the excess bits from the right (losing precision...):

    Mantissa (not-normalized): 1.1001 0101 1000 1101 0100 1111 1101

    Mantissa (normalized): 100 1010 1100 0110 1010 0111

  • Conclusion:

    Sign (1 bit) = 1 (a negative number)

    Exponent (8 bits) = 1000 0011

    Mantissa (23 bits) = 100 1010 1100 0110 1010 0111

  • Number -25.347, converted from the decimal system (base 10) to 32 bit single precision IEEE 754 binary floating point =
    1 - 1000 0011 - 100 1010 1100 0110 1010 0111