1.020 244 821 092 278 719 397 044 Converted to 32 Bit Single Precision IEEE 754 Binary Floating Point Representation Standard

Convert decimal 1.020 244 821 092 278 719 397 044(10) to 32 bit single precision IEEE 754 binary floating point representation standard (1 bit for sign, 8 bits for exponent, 23 bits for mantissa)

What are the steps to convert decimal number
1.020 244 821 092 278 719 397 044(10) to 32 bit single precision IEEE 754 binary floating point representation (1 bit for sign, 8 bits for exponent, 23 bits for mantissa)

1. First, convert to binary (in base 2) the integer part: 1.
Divide the number repeatedly by 2.

Keep track of each remainder.

We stop when we get a quotient that is equal to zero.


  • division = quotient + remainder;
  • 1 ÷ 2 = 0 + 1;

2. Construct the base 2 representation of the integer part of the number.

Take all the remainders starting from the bottom of the list constructed above.

1(10) =


1(2)


3. Convert to binary (base 2) the fractional part: 0.020 244 821 092 278 719 397 044.

Multiply it repeatedly by 2.


Keep track of each integer part of the results.


Stop when we get a fractional part that is equal to zero.


  • #) multiplying = integer + fractional part;
  • 1) 0.020 244 821 092 278 719 397 044 × 2 = 0 + 0.040 489 642 184 557 438 794 088;
  • 2) 0.040 489 642 184 557 438 794 088 × 2 = 0 + 0.080 979 284 369 114 877 588 176;
  • 3) 0.080 979 284 369 114 877 588 176 × 2 = 0 + 0.161 958 568 738 229 755 176 352;
  • 4) 0.161 958 568 738 229 755 176 352 × 2 = 0 + 0.323 917 137 476 459 510 352 704;
  • 5) 0.323 917 137 476 459 510 352 704 × 2 = 0 + 0.647 834 274 952 919 020 705 408;
  • 6) 0.647 834 274 952 919 020 705 408 × 2 = 1 + 0.295 668 549 905 838 041 410 816;
  • 7) 0.295 668 549 905 838 041 410 816 × 2 = 0 + 0.591 337 099 811 676 082 821 632;
  • 8) 0.591 337 099 811 676 082 821 632 × 2 = 1 + 0.182 674 199 623 352 165 643 264;
  • 9) 0.182 674 199 623 352 165 643 264 × 2 = 0 + 0.365 348 399 246 704 331 286 528;
  • 10) 0.365 348 399 246 704 331 286 528 × 2 = 0 + 0.730 696 798 493 408 662 573 056;
  • 11) 0.730 696 798 493 408 662 573 056 × 2 = 1 + 0.461 393 596 986 817 325 146 112;
  • 12) 0.461 393 596 986 817 325 146 112 × 2 = 0 + 0.922 787 193 973 634 650 292 224;
  • 13) 0.922 787 193 973 634 650 292 224 × 2 = 1 + 0.845 574 387 947 269 300 584 448;
  • 14) 0.845 574 387 947 269 300 584 448 × 2 = 1 + 0.691 148 775 894 538 601 168 896;
  • 15) 0.691 148 775 894 538 601 168 896 × 2 = 1 + 0.382 297 551 789 077 202 337 792;
  • 16) 0.382 297 551 789 077 202 337 792 × 2 = 0 + 0.764 595 103 578 154 404 675 584;
  • 17) 0.764 595 103 578 154 404 675 584 × 2 = 1 + 0.529 190 207 156 308 809 351 168;
  • 18) 0.529 190 207 156 308 809 351 168 × 2 = 1 + 0.058 380 414 312 617 618 702 336;
  • 19) 0.058 380 414 312 617 618 702 336 × 2 = 0 + 0.116 760 828 625 235 237 404 672;
  • 20) 0.116 760 828 625 235 237 404 672 × 2 = 0 + 0.233 521 657 250 470 474 809 344;
  • 21) 0.233 521 657 250 470 474 809 344 × 2 = 0 + 0.467 043 314 500 940 949 618 688;
  • 22) 0.467 043 314 500 940 949 618 688 × 2 = 0 + 0.934 086 629 001 881 899 237 376;
  • 23) 0.934 086 629 001 881 899 237 376 × 2 = 1 + 0.868 173 258 003 763 798 474 752;
  • 24) 0.868 173 258 003 763 798 474 752 × 2 = 1 + 0.736 346 516 007 527 596 949 504;

We didn't get any fractional part that was equal to zero. But we had enough iterations (over Mantissa limit) and at least one integer that was different from zero => FULL STOP (Losing precision - the converted number we get in the end will be just a very good approximation of the initial one).


4. Construct the base 2 representation of the fractional part of the number.

Take all the integer parts of the multiplying operations, starting from the top of the constructed list above:


0.020 244 821 092 278 719 397 044(10) =


0.0000 0101 0010 1110 1100 0011(2)

5. Positive number before normalization:

1.020 244 821 092 278 719 397 044(10) =


1.0000 0101 0010 1110 1100 0011(2)

6. Normalize the binary representation of the number.

Shift the decimal mark 0 positions to the left, so that only one non zero digit remains to the left of it:


1.020 244 821 092 278 719 397 044(10) =


1.0000 0101 0010 1110 1100 0011(2) =


1.0000 0101 0010 1110 1100 0011(2) × 20


7. Up to this moment, there are the following elements that would feed into the 32 bit single precision IEEE 754 binary floating point representation:

Sign 0 (a positive number)


Exponent (unadjusted): 0


Mantissa (not normalized):
1.0000 0101 0010 1110 1100 0011


8. Adjust the exponent.

Use the 8 bit excess/bias notation:


Exponent (adjusted) =


Exponent (unadjusted) + 2(8-1) - 1 =


0 + 2(8-1) - 1 =


(0 + 127)(10) =


127(10)


9. Convert the adjusted exponent from the decimal (base 10) to 8 bit binary.

Use the same technique of repeatedly dividing by 2:


  • division = quotient + remainder;
  • 127 ÷ 2 = 63 + 1;
  • 63 ÷ 2 = 31 + 1;
  • 31 ÷ 2 = 15 + 1;
  • 15 ÷ 2 = 7 + 1;
  • 7 ÷ 2 = 3 + 1;
  • 3 ÷ 2 = 1 + 1;
  • 1 ÷ 2 = 0 + 1;

10. Construct the base 2 representation of the adjusted exponent.

Take all the remainders starting from the bottom of the list constructed above.


Exponent (adjusted) =


127(10) =


0111 1111(2)


11. Normalize the mantissa.

a) Remove the leading (the leftmost) bit, since it's allways 1, and the decimal point, if the case.


b) Adjust its length to 23 bits, by removing the excess bits, from the right (if any of the excess bits is set on 1, we are losing precision...).


Mantissa (normalized) =


1. 000 0010 1001 0111 0110 0001 1 =


000 0010 1001 0111 0110 0001


12. The three elements that make up the number's 32 bit single precision IEEE 754 binary floating point representation:

Sign (1 bit) =
0 (a positive number)


Exponent (8 bits) =
0111 1111


Mantissa (23 bits) =
000 0010 1001 0111 0110 0001


Decimal number 1.020 244 821 092 278 719 397 044 converted to 32 bit single precision IEEE 754 binary floating point representation:

0 - 0111 1111 - 000 0010 1001 0111 0110 0001


How to convert decimal numbers from base ten to 32 bit single precision IEEE 754 binary floating point standard

Follow the steps below to convert a base 10 decimal number to 32 bit single precision IEEE 754 binary floating point:

  • 1. If the number to be converted is negative, start with its the positive version.
  • 2. First convert the integer part. Divide repeatedly by 2 the base ten positive representation of the integer number that is to be converted to binary, until we get a quotient that is equal to zero, keeping track of each remainder.
  • 3. Construct the base 2 representation of the positive integer part of the number, by taking all the remainders of the previous dividing operations, starting from the bottom of the list constructed above. Thus, the last remainder of the divisions becomes the first symbol (the leftmost) of the base two number, while the first remainder becomes the last symbol (the rightmost).
  • 4. Then convert the fractional part. Multiply the number repeatedly by 2, until we get a fractional part that is equal to zero, keeping track of each integer part of the results.
  • 5. Construct the base 2 representation of the fractional part of the number by taking all the integer parts of the previous multiplying operations, starting from the top of the constructed list above (they should appear in the binary representation, from left to right, in the order they have been calculated).
  • 6. Normalize the binary representation of the number, by shifting the decimal point (or if you prefer, the decimal mark) "n" positions either to the left or to the right, so that only one non zero digit remains to the left of the decimal point.
  • 7. Adjust the exponent in 8 bit excess/bias notation and then convert it from decimal (base 10) to 8 bit binary, by using the same technique of repeatedly dividing by 2, as shown above:
    Exponent (adjusted) = Exponent (unadjusted) + 2(8-1) - 1
  • 8. Normalize mantissa, remove the leading (leftmost) bit, since it's allways '1' (and the decimal sign if the case) and adjust its length to 23 bits, either by removing the excess bits from the right (losing precision...) or by adding extra '0' bits to the right.
  • 9. Sign (it takes 1 bit) is either 1 for a negative or 0 for a positive number.

Example: convert the negative number -25.347 from decimal system (base ten) to 32 bit single precision IEEE 754 binary floating point:

  • 1. Start with the positive version of the number:

    |-25.347| = 25.347

  • 2. First convert the integer part, 25. Divide it repeatedly by 2, keeping track of each remainder, until we get a quotient that is equal to zero:
    • division = quotient + remainder;
    • 25 ÷ 2 = 12 + 1;
    • 12 ÷ 2 = 6 + 0;
    • 6 ÷ 2 = 3 + 0;
    • 3 ÷ 2 = 1 + 1;
    • 1 ÷ 2 = 0 + 1;
    • We have encountered a quotient that is ZERO => FULL STOP
  • 3. Construct the base 2 representation of the integer part of the number by taking all the remainders of the previous dividing operations, starting from the bottom of the list constructed above:

    25(10) = 1 1001(2)

  • 4. Then convert the fractional part, 0.347. Multiply repeatedly by 2, keeping track of each integer part of the results, until we get a fractional part that is equal to zero:
    • #) multiplying = integer + fractional part;
    • 1) 0.347 × 2 = 0 + 0.694;
    • 2) 0.694 × 2 = 1 + 0.388;
    • 3) 0.388 × 2 = 0 + 0.776;
    • 4) 0.776 × 2 = 1 + 0.552;
    • 5) 0.552 × 2 = 1 + 0.104;
    • 6) 0.104 × 2 = 0 + 0.208;
    • 7) 0.208 × 2 = 0 + 0.416;
    • 8) 0.416 × 2 = 0 + 0.832;
    • 9) 0.832 × 2 = 1 + 0.664;
    • 10) 0.664 × 2 = 1 + 0.328;
    • 11) 0.328 × 2 = 0 + 0.656;
    • 12) 0.656 × 2 = 1 + 0.312;
    • 13) 0.312 × 2 = 0 + 0.624;
    • 14) 0.624 × 2 = 1 + 0.248;
    • 15) 0.248 × 2 = 0 + 0.496;
    • 16) 0.496 × 2 = 0 + 0.992;
    • 17) 0.992 × 2 = 1 + 0.984;
    • 18) 0.984 × 2 = 1 + 0.968;
    • 19) 0.968 × 2 = 1 + 0.936;
    • 20) 0.936 × 2 = 1 + 0.872;
    • 21) 0.872 × 2 = 1 + 0.744;
    • 22) 0.744 × 2 = 1 + 0.488;
    • 23) 0.488 × 2 = 0 + 0.976;
    • 24) 0.976 × 2 = 1 + 0.952;
    • We didn't get any fractional part that was equal to zero. But we had enough iterations (over Mantissa limit = 23) and at least one integer part that was different from zero => FULL STOP (losing precision...).
  • 5. Construct the base 2 representation of the fractional part of the number, by taking all the integer parts of the previous multiplying operations, starting from the top of the constructed list above:

    0.347(10) = 0.0101 1000 1101 0100 1111 1101(2)

  • 6. Summarizing - the positive number before normalization:

    25.347(10) = 1 1001.0101 1000 1101 0100 1111 1101(2)

  • 7. Normalize the binary representation of the number, shifting the decimal point 4 positions to the left so that only one non-zero digit stays to the left of the decimal point:

    25.347(10) =
    1 1001.0101 1000 1101 0100 1111 1101(2) =
    1 1001.0101 1000 1101 0100 1111 1101(2) × 20 =
    1.1001 0101 1000 1101 0100 1111 1101(2) × 24

  • 8. Up to this moment, there are the following elements that would feed into the 32 bit single precision IEEE 754 binary floating point:

    Sign: 1 (a negative number)

    Exponent (unadjusted): 4

    Mantissa (not-normalized): 1.1001 0101 1000 1101 0100 1111 1101

  • 9. Adjust the exponent in 8 bit excess/bias notation and then convert it from decimal (base 10) to 8 bit binary (base 2), by using the same technique of repeatedly dividing it by 2, as already demonstrated above:

    Exponent (adjusted) = Exponent (unadjusted) + 2(8-1) - 1 = (4 + 127)(10) = 131(10) =
    1000 0011(2)

  • 10. Normalize the mantissa, remove the leading (leftmost) bit, since it's allways '1' (and the decimal point) and adjust its length to 23 bits, by removing the excess bits from the right (losing precision...):

    Mantissa (not-normalized): 1.1001 0101 1000 1101 0100 1111 1101

    Mantissa (normalized): 100 1010 1100 0110 1010 0111

  • Conclusion:

    Sign (1 bit) = 1 (a negative number)

    Exponent (8 bits) = 1000 0011

    Mantissa (23 bits) = 100 1010 1100 0110 1010 0111

  • Number -25.347, converted from the decimal system (base 10) to 32 bit single precision IEEE 754 binary floating point =
    1 - 1000 0011 - 100 1010 1100 0110 1010 0111