32bit IEEE 754: Decimal ↗ Single Precision Floating Point Binary: 0.000 000 000 000 000 000 000 000 000 000 000 000 000 734 682 Convert the Number to 32 Bit Single Precision IEEE 754 Binary Floating Point Representation Standard, From a Base 10 Decimal System Number

Number 0.000 000 000 000 000 000 000 000 000 000 000 000 000 734 682(10) converted and written in 32 bit single precision IEEE 754 binary floating point representation (1 bit for sign, 8 bits for exponent, 23 bits for mantissa)

1. First, convert to binary (in base 2) the integer part: 0.
Divide the number repeatedly by 2.

Keep track of each remainder.

We stop when we get a quotient that is equal to zero.


  • division = quotient + remainder;
  • 0 ÷ 2 = 0 + 0;

2. Construct the base 2 representation of the integer part of the number.

Take all the remainders starting from the bottom of the list constructed above.


0(10) =


0(2)


3. Convert to binary (base 2) the fractional part: 0.000 000 000 000 000 000 000 000 000 000 000 000 000 734 682.

Multiply it repeatedly by 2.


Keep track of each integer part of the results.


Stop when we get a fractional part that is equal to zero.


  • #) multiplying = integer + fractional part;
  • 1) 0.000 000 000 000 000 000 000 000 000 000 000 000 000 734 682 × 2 = 0 + 0.000 000 000 000 000 000 000 000 000 000 000 000 001 469 364;
  • 2) 0.000 000 000 000 000 000 000 000 000 000 000 000 001 469 364 × 2 = 0 + 0.000 000 000 000 000 000 000 000 000 000 000 000 002 938 728;
  • 3) 0.000 000 000 000 000 000 000 000 000 000 000 000 002 938 728 × 2 = 0 + 0.000 000 000 000 000 000 000 000 000 000 000 000 005 877 456;
  • 4) 0.000 000 000 000 000 000 000 000 000 000 000 000 005 877 456 × 2 = 0 + 0.000 000 000 000 000 000 000 000 000 000 000 000 011 754 912;
  • 5) 0.000 000 000 000 000 000 000 000 000 000 000 000 011 754 912 × 2 = 0 + 0.000 000 000 000 000 000 000 000 000 000 000 000 023 509 824;
  • 6) 0.000 000 000 000 000 000 000 000 000 000 000 000 023 509 824 × 2 = 0 + 0.000 000 000 000 000 000 000 000 000 000 000 000 047 019 648;
  • 7) 0.000 000 000 000 000 000 000 000 000 000 000 000 047 019 648 × 2 = 0 + 0.000 000 000 000 000 000 000 000 000 000 000 000 094 039 296;
  • 8) 0.000 000 000 000 000 000 000 000 000 000 000 000 094 039 296 × 2 = 0 + 0.000 000 000 000 000 000 000 000 000 000 000 000 188 078 592;
  • 9) 0.000 000 000 000 000 000 000 000 000 000 000 000 188 078 592 × 2 = 0 + 0.000 000 000 000 000 000 000 000 000 000 000 000 376 157 184;
  • 10) 0.000 000 000 000 000 000 000 000 000 000 000 000 376 157 184 × 2 = 0 + 0.000 000 000 000 000 000 000 000 000 000 000 000 752 314 368;
  • 11) 0.000 000 000 000 000 000 000 000 000 000 000 000 752 314 368 × 2 = 0 + 0.000 000 000 000 000 000 000 000 000 000 000 001 504 628 736;
  • 12) 0.000 000 000 000 000 000 000 000 000 000 000 001 504 628 736 × 2 = 0 + 0.000 000 000 000 000 000 000 000 000 000 000 003 009 257 472;
  • 13) 0.000 000 000 000 000 000 000 000 000 000 000 003 009 257 472 × 2 = 0 + 0.000 000 000 000 000 000 000 000 000 000 000 006 018 514 944;
  • 14) 0.000 000 000 000 000 000 000 000 000 000 000 006 018 514 944 × 2 = 0 + 0.000 000 000 000 000 000 000 000 000 000 000 012 037 029 888;
  • 15) 0.000 000 000 000 000 000 000 000 000 000 000 012 037 029 888 × 2 = 0 + 0.000 000 000 000 000 000 000 000 000 000 000 024 074 059 776;
  • 16) 0.000 000 000 000 000 000 000 000 000 000 000 024 074 059 776 × 2 = 0 + 0.000 000 000 000 000 000 000 000 000 000 000 048 148 119 552;
  • 17) 0.000 000 000 000 000 000 000 000 000 000 000 048 148 119 552 × 2 = 0 + 0.000 000 000 000 000 000 000 000 000 000 000 096 296 239 104;
  • 18) 0.000 000 000 000 000 000 000 000 000 000 000 096 296 239 104 × 2 = 0 + 0.000 000 000 000 000 000 000 000 000 000 000 192 592 478 208;
  • 19) 0.000 000 000 000 000 000 000 000 000 000 000 192 592 478 208 × 2 = 0 + 0.000 000 000 000 000 000 000 000 000 000 000 385 184 956 416;
  • 20) 0.000 000 000 000 000 000 000 000 000 000 000 385 184 956 416 × 2 = 0 + 0.000 000 000 000 000 000 000 000 000 000 000 770 369 912 832;
  • 21) 0.000 000 000 000 000 000 000 000 000 000 000 770 369 912 832 × 2 = 0 + 0.000 000 000 000 000 000 000 000 000 000 001 540 739 825 664;
  • 22) 0.000 000 000 000 000 000 000 000 000 000 001 540 739 825 664 × 2 = 0 + 0.000 000 000 000 000 000 000 000 000 000 003 081 479 651 328;
  • 23) 0.000 000 000 000 000 000 000 000 000 000 003 081 479 651 328 × 2 = 0 + 0.000 000 000 000 000 000 000 000 000 000 006 162 959 302 656;
  • 24) 0.000 000 000 000 000 000 000 000 000 000 006 162 959 302 656 × 2 = 0 + 0.000 000 000 000 000 000 000 000 000 000 012 325 918 605 312;
  • 25) 0.000 000 000 000 000 000 000 000 000 000 012 325 918 605 312 × 2 = 0 + 0.000 000 000 000 000 000 000 000 000 000 024 651 837 210 624;
  • 26) 0.000 000 000 000 000 000 000 000 000 000 024 651 837 210 624 × 2 = 0 + 0.000 000 000 000 000 000 000 000 000 000 049 303 674 421 248;
  • 27) 0.000 000 000 000 000 000 000 000 000 000 049 303 674 421 248 × 2 = 0 + 0.000 000 000 000 000 000 000 000 000 000 098 607 348 842 496;
  • 28) 0.000 000 000 000 000 000 000 000 000 000 098 607 348 842 496 × 2 = 0 + 0.000 000 000 000 000 000 000 000 000 000 197 214 697 684 992;
  • 29) 0.000 000 000 000 000 000 000 000 000 000 197 214 697 684 992 × 2 = 0 + 0.000 000 000 000 000 000 000 000 000 000 394 429 395 369 984;
  • 30) 0.000 000 000 000 000 000 000 000 000 000 394 429 395 369 984 × 2 = 0 + 0.000 000 000 000 000 000 000 000 000 000 788 858 790 739 968;
  • 31) 0.000 000 000 000 000 000 000 000 000 000 788 858 790 739 968 × 2 = 0 + 0.000 000 000 000 000 000 000 000 000 001 577 717 581 479 936;
  • 32) 0.000 000 000 000 000 000 000 000 000 001 577 717 581 479 936 × 2 = 0 + 0.000 000 000 000 000 000 000 000 000 003 155 435 162 959 872;
  • 33) 0.000 000 000 000 000 000 000 000 000 003 155 435 162 959 872 × 2 = 0 + 0.000 000 000 000 000 000 000 000 000 006 310 870 325 919 744;
  • 34) 0.000 000 000 000 000 000 000 000 000 006 310 870 325 919 744 × 2 = 0 + 0.000 000 000 000 000 000 000 000 000 012 621 740 651 839 488;
  • 35) 0.000 000 000 000 000 000 000 000 000 012 621 740 651 839 488 × 2 = 0 + 0.000 000 000 000 000 000 000 000 000 025 243 481 303 678 976;
  • 36) 0.000 000 000 000 000 000 000 000 000 025 243 481 303 678 976 × 2 = 0 + 0.000 000 000 000 000 000 000 000 000 050 486 962 607 357 952;
  • 37) 0.000 000 000 000 000 000 000 000 000 050 486 962 607 357 952 × 2 = 0 + 0.000 000 000 000 000 000 000 000 000 100 973 925 214 715 904;
  • 38) 0.000 000 000 000 000 000 000 000 000 100 973 925 214 715 904 × 2 = 0 + 0.000 000 000 000 000 000 000 000 000 201 947 850 429 431 808;
  • 39) 0.000 000 000 000 000 000 000 000 000 201 947 850 429 431 808 × 2 = 0 + 0.000 000 000 000 000 000 000 000 000 403 895 700 858 863 616;
  • 40) 0.000 000 000 000 000 000 000 000 000 403 895 700 858 863 616 × 2 = 0 + 0.000 000 000 000 000 000 000 000 000 807 791 401 717 727 232;
  • 41) 0.000 000 000 000 000 000 000 000 000 807 791 401 717 727 232 × 2 = 0 + 0.000 000 000 000 000 000 000 000 001 615 582 803 435 454 464;
  • 42) 0.000 000 000 000 000 000 000 000 001 615 582 803 435 454 464 × 2 = 0 + 0.000 000 000 000 000 000 000 000 003 231 165 606 870 908 928;
  • 43) 0.000 000 000 000 000 000 000 000 003 231 165 606 870 908 928 × 2 = 0 + 0.000 000 000 000 000 000 000 000 006 462 331 213 741 817 856;
  • 44) 0.000 000 000 000 000 000 000 000 006 462 331 213 741 817 856 × 2 = 0 + 0.000 000 000 000 000 000 000 000 012 924 662 427 483 635 712;
  • 45) 0.000 000 000 000 000 000 000 000 012 924 662 427 483 635 712 × 2 = 0 + 0.000 000 000 000 000 000 000 000 025 849 324 854 967 271 424;
  • 46) 0.000 000 000 000 000 000 000 000 025 849 324 854 967 271 424 × 2 = 0 + 0.000 000 000 000 000 000 000 000 051 698 649 709 934 542 848;
  • 47) 0.000 000 000 000 000 000 000 000 051 698 649 709 934 542 848 × 2 = 0 + 0.000 000 000 000 000 000 000 000 103 397 299 419 869 085 696;
  • 48) 0.000 000 000 000 000 000 000 000 103 397 299 419 869 085 696 × 2 = 0 + 0.000 000 000 000 000 000 000 000 206 794 598 839 738 171 392;
  • 49) 0.000 000 000 000 000 000 000 000 206 794 598 839 738 171 392 × 2 = 0 + 0.000 000 000 000 000 000 000 000 413 589 197 679 476 342 784;
  • 50) 0.000 000 000 000 000 000 000 000 413 589 197 679 476 342 784 × 2 = 0 + 0.000 000 000 000 000 000 000 000 827 178 395 358 952 685 568;
  • 51) 0.000 000 000 000 000 000 000 000 827 178 395 358 952 685 568 × 2 = 0 + 0.000 000 000 000 000 000 000 001 654 356 790 717 905 371 136;
  • 52) 0.000 000 000 000 000 000 000 001 654 356 790 717 905 371 136 × 2 = 0 + 0.000 000 000 000 000 000 000 003 308 713 581 435 810 742 272;
  • 53) 0.000 000 000 000 000 000 000 003 308 713 581 435 810 742 272 × 2 = 0 + 0.000 000 000 000 000 000 000 006 617 427 162 871 621 484 544;
  • 54) 0.000 000 000 000 000 000 000 006 617 427 162 871 621 484 544 × 2 = 0 + 0.000 000 000 000 000 000 000 013 234 854 325 743 242 969 088;
  • 55) 0.000 000 000 000 000 000 000 013 234 854 325 743 242 969 088 × 2 = 0 + 0.000 000 000 000 000 000 000 026 469 708 651 486 485 938 176;
  • 56) 0.000 000 000 000 000 000 000 026 469 708 651 486 485 938 176 × 2 = 0 + 0.000 000 000 000 000 000 000 052 939 417 302 972 971 876 352;
  • 57) 0.000 000 000 000 000 000 000 052 939 417 302 972 971 876 352 × 2 = 0 + 0.000 000 000 000 000 000 000 105 878 834 605 945 943 752 704;
  • 58) 0.000 000 000 000 000 000 000 105 878 834 605 945 943 752 704 × 2 = 0 + 0.000 000 000 000 000 000 000 211 757 669 211 891 887 505 408;
  • 59) 0.000 000 000 000 000 000 000 211 757 669 211 891 887 505 408 × 2 = 0 + 0.000 000 000 000 000 000 000 423 515 338 423 783 775 010 816;
  • 60) 0.000 000 000 000 000 000 000 423 515 338 423 783 775 010 816 × 2 = 0 + 0.000 000 000 000 000 000 000 847 030 676 847 567 550 021 632;
  • 61) 0.000 000 000 000 000 000 000 847 030 676 847 567 550 021 632 × 2 = 0 + 0.000 000 000 000 000 000 001 694 061 353 695 135 100 043 264;
  • 62) 0.000 000 000 000 000 000 001 694 061 353 695 135 100 043 264 × 2 = 0 + 0.000 000 000 000 000 000 003 388 122 707 390 270 200 086 528;
  • 63) 0.000 000 000 000 000 000 003 388 122 707 390 270 200 086 528 × 2 = 0 + 0.000 000 000 000 000 000 006 776 245 414 780 540 400 173 056;
  • 64) 0.000 000 000 000 000 000 006 776 245 414 780 540 400 173 056 × 2 = 0 + 0.000 000 000 000 000 000 013 552 490 829 561 080 800 346 112;
  • 65) 0.000 000 000 000 000 000 013 552 490 829 561 080 800 346 112 × 2 = 0 + 0.000 000 000 000 000 000 027 104 981 659 122 161 600 692 224;
  • 66) 0.000 000 000 000 000 000 027 104 981 659 122 161 600 692 224 × 2 = 0 + 0.000 000 000 000 000 000 054 209 963 318 244 323 201 384 448;
  • 67) 0.000 000 000 000 000 000 054 209 963 318 244 323 201 384 448 × 2 = 0 + 0.000 000 000 000 000 000 108 419 926 636 488 646 402 768 896;
  • 68) 0.000 000 000 000 000 000 108 419 926 636 488 646 402 768 896 × 2 = 0 + 0.000 000 000 000 000 000 216 839 853 272 977 292 805 537 792;
  • 69) 0.000 000 000 000 000 000 216 839 853 272 977 292 805 537 792 × 2 = 0 + 0.000 000 000 000 000 000 433 679 706 545 954 585 611 075 584;
  • 70) 0.000 000 000 000 000 000 433 679 706 545 954 585 611 075 584 × 2 = 0 + 0.000 000 000 000 000 000 867 359 413 091 909 171 222 151 168;
  • 71) 0.000 000 000 000 000 000 867 359 413 091 909 171 222 151 168 × 2 = 0 + 0.000 000 000 000 000 001 734 718 826 183 818 342 444 302 336;
  • 72) 0.000 000 000 000 000 001 734 718 826 183 818 342 444 302 336 × 2 = 0 + 0.000 000 000 000 000 003 469 437 652 367 636 684 888 604 672;
  • 73) 0.000 000 000 000 000 003 469 437 652 367 636 684 888 604 672 × 2 = 0 + 0.000 000 000 000 000 006 938 875 304 735 273 369 777 209 344;
  • 74) 0.000 000 000 000 000 006 938 875 304 735 273 369 777 209 344 × 2 = 0 + 0.000 000 000 000 000 013 877 750 609 470 546 739 554 418 688;
  • 75) 0.000 000 000 000 000 013 877 750 609 470 546 739 554 418 688 × 2 = 0 + 0.000 000 000 000 000 027 755 501 218 941 093 479 108 837 376;
  • 76) 0.000 000 000 000 000 027 755 501 218 941 093 479 108 837 376 × 2 = 0 + 0.000 000 000 000 000 055 511 002 437 882 186 958 217 674 752;
  • 77) 0.000 000 000 000 000 055 511 002 437 882 186 958 217 674 752 × 2 = 0 + 0.000 000 000 000 000 111 022 004 875 764 373 916 435 349 504;
  • 78) 0.000 000 000 000 000 111 022 004 875 764 373 916 435 349 504 × 2 = 0 + 0.000 000 000 000 000 222 044 009 751 528 747 832 870 699 008;
  • 79) 0.000 000 000 000 000 222 044 009 751 528 747 832 870 699 008 × 2 = 0 + 0.000 000 000 000 000 444 088 019 503 057 495 665 741 398 016;
  • 80) 0.000 000 000 000 000 444 088 019 503 057 495 665 741 398 016 × 2 = 0 + 0.000 000 000 000 000 888 176 039 006 114 991 331 482 796 032;
  • 81) 0.000 000 000 000 000 888 176 039 006 114 991 331 482 796 032 × 2 = 0 + 0.000 000 000 000 001 776 352 078 012 229 982 662 965 592 064;
  • 82) 0.000 000 000 000 001 776 352 078 012 229 982 662 965 592 064 × 2 = 0 + 0.000 000 000 000 003 552 704 156 024 459 965 325 931 184 128;
  • 83) 0.000 000 000 000 003 552 704 156 024 459 965 325 931 184 128 × 2 = 0 + 0.000 000 000 000 007 105 408 312 048 919 930 651 862 368 256;
  • 84) 0.000 000 000 000 007 105 408 312 048 919 930 651 862 368 256 × 2 = 0 + 0.000 000 000 000 014 210 816 624 097 839 861 303 724 736 512;
  • 85) 0.000 000 000 000 014 210 816 624 097 839 861 303 724 736 512 × 2 = 0 + 0.000 000 000 000 028 421 633 248 195 679 722 607 449 473 024;
  • 86) 0.000 000 000 000 028 421 633 248 195 679 722 607 449 473 024 × 2 = 0 + 0.000 000 000 000 056 843 266 496 391 359 445 214 898 946 048;
  • 87) 0.000 000 000 000 056 843 266 496 391 359 445 214 898 946 048 × 2 = 0 + 0.000 000 000 000 113 686 532 992 782 718 890 429 797 892 096;
  • 88) 0.000 000 000 000 113 686 532 992 782 718 890 429 797 892 096 × 2 = 0 + 0.000 000 000 000 227 373 065 985 565 437 780 859 595 784 192;
  • 89) 0.000 000 000 000 227 373 065 985 565 437 780 859 595 784 192 × 2 = 0 + 0.000 000 000 000 454 746 131 971 130 875 561 719 191 568 384;
  • 90) 0.000 000 000 000 454 746 131 971 130 875 561 719 191 568 384 × 2 = 0 + 0.000 000 000 000 909 492 263 942 261 751 123 438 383 136 768;
  • 91) 0.000 000 000 000 909 492 263 942 261 751 123 438 383 136 768 × 2 = 0 + 0.000 000 000 001 818 984 527 884 523 502 246 876 766 273 536;
  • 92) 0.000 000 000 001 818 984 527 884 523 502 246 876 766 273 536 × 2 = 0 + 0.000 000 000 003 637 969 055 769 047 004 493 753 532 547 072;
  • 93) 0.000 000 000 003 637 969 055 769 047 004 493 753 532 547 072 × 2 = 0 + 0.000 000 000 007 275 938 111 538 094 008 987 507 065 094 144;
  • 94) 0.000 000 000 007 275 938 111 538 094 008 987 507 065 094 144 × 2 = 0 + 0.000 000 000 014 551 876 223 076 188 017 975 014 130 188 288;
  • 95) 0.000 000 000 014 551 876 223 076 188 017 975 014 130 188 288 × 2 = 0 + 0.000 000 000 029 103 752 446 152 376 035 950 028 260 376 576;
  • 96) 0.000 000 000 029 103 752 446 152 376 035 950 028 260 376 576 × 2 = 0 + 0.000 000 000 058 207 504 892 304 752 071 900 056 520 753 152;
  • 97) 0.000 000 000 058 207 504 892 304 752 071 900 056 520 753 152 × 2 = 0 + 0.000 000 000 116 415 009 784 609 504 143 800 113 041 506 304;
  • 98) 0.000 000 000 116 415 009 784 609 504 143 800 113 041 506 304 × 2 = 0 + 0.000 000 000 232 830 019 569 219 008 287 600 226 083 012 608;
  • 99) 0.000 000 000 232 830 019 569 219 008 287 600 226 083 012 608 × 2 = 0 + 0.000 000 000 465 660 039 138 438 016 575 200 452 166 025 216;
  • 100) 0.000 000 000 465 660 039 138 438 016 575 200 452 166 025 216 × 2 = 0 + 0.000 000 000 931 320 078 276 876 033 150 400 904 332 050 432;
  • 101) 0.000 000 000 931 320 078 276 876 033 150 400 904 332 050 432 × 2 = 0 + 0.000 000 001 862 640 156 553 752 066 300 801 808 664 100 864;
  • 102) 0.000 000 001 862 640 156 553 752 066 300 801 808 664 100 864 × 2 = 0 + 0.000 000 003 725 280 313 107 504 132 601 603 617 328 201 728;
  • 103) 0.000 000 003 725 280 313 107 504 132 601 603 617 328 201 728 × 2 = 0 + 0.000 000 007 450 560 626 215 008 265 203 207 234 656 403 456;
  • 104) 0.000 000 007 450 560 626 215 008 265 203 207 234 656 403 456 × 2 = 0 + 0.000 000 014 901 121 252 430 016 530 406 414 469 312 806 912;
  • 105) 0.000 000 014 901 121 252 430 016 530 406 414 469 312 806 912 × 2 = 0 + 0.000 000 029 802 242 504 860 033 060 812 828 938 625 613 824;
  • 106) 0.000 000 029 802 242 504 860 033 060 812 828 938 625 613 824 × 2 = 0 + 0.000 000 059 604 485 009 720 066 121 625 657 877 251 227 648;
  • 107) 0.000 000 059 604 485 009 720 066 121 625 657 877 251 227 648 × 2 = 0 + 0.000 000 119 208 970 019 440 132 243 251 315 754 502 455 296;
  • 108) 0.000 000 119 208 970 019 440 132 243 251 315 754 502 455 296 × 2 = 0 + 0.000 000 238 417 940 038 880 264 486 502 631 509 004 910 592;
  • 109) 0.000 000 238 417 940 038 880 264 486 502 631 509 004 910 592 × 2 = 0 + 0.000 000 476 835 880 077 760 528 973 005 263 018 009 821 184;
  • 110) 0.000 000 476 835 880 077 760 528 973 005 263 018 009 821 184 × 2 = 0 + 0.000 000 953 671 760 155 521 057 946 010 526 036 019 642 368;
  • 111) 0.000 000 953 671 760 155 521 057 946 010 526 036 019 642 368 × 2 = 0 + 0.000 001 907 343 520 311 042 115 892 021 052 072 039 284 736;
  • 112) 0.000 001 907 343 520 311 042 115 892 021 052 072 039 284 736 × 2 = 0 + 0.000 003 814 687 040 622 084 231 784 042 104 144 078 569 472;
  • 113) 0.000 003 814 687 040 622 084 231 784 042 104 144 078 569 472 × 2 = 0 + 0.000 007 629 374 081 244 168 463 568 084 208 288 157 138 944;
  • 114) 0.000 007 629 374 081 244 168 463 568 084 208 288 157 138 944 × 2 = 0 + 0.000 015 258 748 162 488 336 927 136 168 416 576 314 277 888;
  • 115) 0.000 015 258 748 162 488 336 927 136 168 416 576 314 277 888 × 2 = 0 + 0.000 030 517 496 324 976 673 854 272 336 833 152 628 555 776;
  • 116) 0.000 030 517 496 324 976 673 854 272 336 833 152 628 555 776 × 2 = 0 + 0.000 061 034 992 649 953 347 708 544 673 666 305 257 111 552;
  • 117) 0.000 061 034 992 649 953 347 708 544 673 666 305 257 111 552 × 2 = 0 + 0.000 122 069 985 299 906 695 417 089 347 332 610 514 223 104;
  • 118) 0.000 122 069 985 299 906 695 417 089 347 332 610 514 223 104 × 2 = 0 + 0.000 244 139 970 599 813 390 834 178 694 665 221 028 446 208;
  • 119) 0.000 244 139 970 599 813 390 834 178 694 665 221 028 446 208 × 2 = 0 + 0.000 488 279 941 199 626 781 668 357 389 330 442 056 892 416;
  • 120) 0.000 488 279 941 199 626 781 668 357 389 330 442 056 892 416 × 2 = 0 + 0.000 976 559 882 399 253 563 336 714 778 660 884 113 784 832;
  • 121) 0.000 976 559 882 399 253 563 336 714 778 660 884 113 784 832 × 2 = 0 + 0.001 953 119 764 798 507 126 673 429 557 321 768 227 569 664;
  • 122) 0.001 953 119 764 798 507 126 673 429 557 321 768 227 569 664 × 2 = 0 + 0.003 906 239 529 597 014 253 346 859 114 643 536 455 139 328;
  • 123) 0.003 906 239 529 597 014 253 346 859 114 643 536 455 139 328 × 2 = 0 + 0.007 812 479 059 194 028 506 693 718 229 287 072 910 278 656;
  • 124) 0.007 812 479 059 194 028 506 693 718 229 287 072 910 278 656 × 2 = 0 + 0.015 624 958 118 388 057 013 387 436 458 574 145 820 557 312;
  • 125) 0.015 624 958 118 388 057 013 387 436 458 574 145 820 557 312 × 2 = 0 + 0.031 249 916 236 776 114 026 774 872 917 148 291 641 114 624;
  • 126) 0.031 249 916 236 776 114 026 774 872 917 148 291 641 114 624 × 2 = 0 + 0.062 499 832 473 552 228 053 549 745 834 296 583 282 229 248;
  • 127) 0.062 499 832 473 552 228 053 549 745 834 296 583 282 229 248 × 2 = 0 + 0.124 999 664 947 104 456 107 099 491 668 593 166 564 458 496;
  • 128) 0.124 999 664 947 104 456 107 099 491 668 593 166 564 458 496 × 2 = 0 + 0.249 999 329 894 208 912 214 198 983 337 186 333 128 916 992;
  • 129) 0.249 999 329 894 208 912 214 198 983 337 186 333 128 916 992 × 2 = 0 + 0.499 998 659 788 417 824 428 397 966 674 372 666 257 833 984;
  • 130) 0.499 998 659 788 417 824 428 397 966 674 372 666 257 833 984 × 2 = 0 + 0.999 997 319 576 835 648 856 795 933 348 745 332 515 667 968;
  • 131) 0.999 997 319 576 835 648 856 795 933 348 745 332 515 667 968 × 2 = 1 + 0.999 994 639 153 671 297 713 591 866 697 490 665 031 335 936;
  • 132) 0.999 994 639 153 671 297 713 591 866 697 490 665 031 335 936 × 2 = 1 + 0.999 989 278 307 342 595 427 183 733 394 981 330 062 671 872;
  • 133) 0.999 989 278 307 342 595 427 183 733 394 981 330 062 671 872 × 2 = 1 + 0.999 978 556 614 685 190 854 367 466 789 962 660 125 343 744;
  • 134) 0.999 978 556 614 685 190 854 367 466 789 962 660 125 343 744 × 2 = 1 + 0.999 957 113 229 370 381 708 734 933 579 925 320 250 687 488;
  • 135) 0.999 957 113 229 370 381 708 734 933 579 925 320 250 687 488 × 2 = 1 + 0.999 914 226 458 740 763 417 469 867 159 850 640 501 374 976;
  • 136) 0.999 914 226 458 740 763 417 469 867 159 850 640 501 374 976 × 2 = 1 + 0.999 828 452 917 481 526 834 939 734 319 701 281 002 749 952;
  • 137) 0.999 828 452 917 481 526 834 939 734 319 701 281 002 749 952 × 2 = 1 + 0.999 656 905 834 963 053 669 879 468 639 402 562 005 499 904;
  • 138) 0.999 656 905 834 963 053 669 879 468 639 402 562 005 499 904 × 2 = 1 + 0.999 313 811 669 926 107 339 758 937 278 805 124 010 999 808;
  • 139) 0.999 313 811 669 926 107 339 758 937 278 805 124 010 999 808 × 2 = 1 + 0.998 627 623 339 852 214 679 517 874 557 610 248 021 999 616;
  • 140) 0.998 627 623 339 852 214 679 517 874 557 610 248 021 999 616 × 2 = 1 + 0.997 255 246 679 704 429 359 035 749 115 220 496 043 999 232;
  • 141) 0.997 255 246 679 704 429 359 035 749 115 220 496 043 999 232 × 2 = 1 + 0.994 510 493 359 408 858 718 071 498 230 440 992 087 998 464;
  • 142) 0.994 510 493 359 408 858 718 071 498 230 440 992 087 998 464 × 2 = 1 + 0.989 020 986 718 817 717 436 142 996 460 881 984 175 996 928;
  • 143) 0.989 020 986 718 817 717 436 142 996 460 881 984 175 996 928 × 2 = 1 + 0.978 041 973 437 635 434 872 285 992 921 763 968 351 993 856;
  • 144) 0.978 041 973 437 635 434 872 285 992 921 763 968 351 993 856 × 2 = 1 + 0.956 083 946 875 270 869 744 571 985 843 527 936 703 987 712;
  • 145) 0.956 083 946 875 270 869 744 571 985 843 527 936 703 987 712 × 2 = 1 + 0.912 167 893 750 541 739 489 143 971 687 055 873 407 975 424;
  • 146) 0.912 167 893 750 541 739 489 143 971 687 055 873 407 975 424 × 2 = 1 + 0.824 335 787 501 083 478 978 287 943 374 111 746 815 950 848;
  • 147) 0.824 335 787 501 083 478 978 287 943 374 111 746 815 950 848 × 2 = 1 + 0.648 671 575 002 166 957 956 575 886 748 223 493 631 901 696;
  • 148) 0.648 671 575 002 166 957 956 575 886 748 223 493 631 901 696 × 2 = 1 + 0.297 343 150 004 333 915 913 151 773 496 446 987 263 803 392;
  • 149) 0.297 343 150 004 333 915 913 151 773 496 446 987 263 803 392 × 2 = 0 + 0.594 686 300 008 667 831 826 303 546 992 893 974 527 606 784;
  • 150) 0.594 686 300 008 667 831 826 303 546 992 893 974 527 606 784 × 2 = 1 + 0.189 372 600 017 335 663 652 607 093 985 787 949 055 213 568;
  • 151) 0.189 372 600 017 335 663 652 607 093 985 787 949 055 213 568 × 2 = 0 + 0.378 745 200 034 671 327 305 214 187 971 575 898 110 427 136;
  • 152) 0.378 745 200 034 671 327 305 214 187 971 575 898 110 427 136 × 2 = 0 + 0.757 490 400 069 342 654 610 428 375 943 151 796 220 854 272;
  • 153) 0.757 490 400 069 342 654 610 428 375 943 151 796 220 854 272 × 2 = 1 + 0.514 980 800 138 685 309 220 856 751 886 303 592 441 708 544;
  • 154) 0.514 980 800 138 685 309 220 856 751 886 303 592 441 708 544 × 2 = 1 + 0.029 961 600 277 370 618 441 713 503 772 607 184 883 417 088;

We didn't get any fractional part that was equal to zero. But we had enough iterations (over Mantissa limit) and at least one integer that was different from zero => FULL STOP (losing precision...)


4. Construct the base 2 representation of the fractional part of the number.

Take all the integer parts of the multiplying operations, starting from the top of the constructed list above:


0.000 000 000 000 000 000 000 000 000 000 000 000 000 734 682(10) =


0.0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0011 1111 1111 1111 1111 0100 11(2)


5. Positive number before normalization:

0.000 000 000 000 000 000 000 000 000 000 000 000 000 734 682(10) =


0.0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0011 1111 1111 1111 1111 0100 11(2)

6. Normalize the binary representation of the number.

Shift the decimal mark 131 positions to the right, so that only one non zero digit remains to the left of it:


0.000 000 000 000 000 000 000 000 000 000 000 000 000 734 682(10) =


0.0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0011 1111 1111 1111 1111 0100 11(2) =


0.0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0011 1111 1111 1111 1111 0100 11(2) × 20 =


1.1111 1111 1111 1111 1010 011(2) × 2-131


7. Up to this moment, there are the following elements that would feed into the 32 bit single precision IEEE 754 binary floating point representation:

Sign 0 (a positive number)


Exponent (unadjusted): -131


Mantissa (not normalized):
1.1111 1111 1111 1111 1010 011


8. Adjust the exponent.

Use the 8 bit excess/bias notation:


Exponent (adjusted) =


Exponent (unadjusted) + 2(8-1) - 1 =


-131 + 2(8-1) - 1 =


(-131 + 127)(10) =


-4(10)


9. Negative exponent!

Your base ten decimal number is too close to ZERO to convert it otherwise to 32 bit single precision IEEE 754 binary floating point representation.

So it will be approximated and treated as ZERO.


10. IEEE 754, Special Case: ZERO

ZERO: Under the IEEE 754 standard, the reserved bitpattern of all the bits of the exponent and the mantissa set on 0 is being used.


-0 and +0 are distinct values, though they are equal.


11. The three elements that make up the number's 32 bit single precision IEEE 754 binary floating point representation:

Sign (1 bit) =
0 (a positive number)


Exponent (8 bits) =
0000 0000


Mantissa (23 bits) =
000 0000 0000 0000 0000 0000


The base ten decimal number 0.000 000 000 000 000 000 000 000 000 000 000 000 000 734 682 converted and written in 32 bit single precision IEEE 754 binary floating point representation:
0 - 0000 0000 - 000 0000 0000 0000 0000 0000

The latest decimal numbers converted from base ten to 32 bit single precision IEEE 754 floating point binary standard representation

Number 0.000 000 000 000 019 317 4 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard May 19 17:26 UTC (GMT)
Number 145.623 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard May 19 17:26 UTC (GMT)
Number 77.69 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard May 19 17:26 UTC (GMT)
Number -2 345.2 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard May 19 17:26 UTC (GMT)
Number 2 131 755 016 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard May 19 17:26 UTC (GMT)
Number 143 726 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard May 19 17:26 UTC (GMT)
Number 99.965 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard May 19 17:26 UTC (GMT)
Number 85 338 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard May 19 17:26 UTC (GMT)
Number 1 683.9 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard May 19 17:26 UTC (GMT)
Number 1 000 001 100 011 100 111 100 000 110 116 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard May 19 17:26 UTC (GMT)
All base ten decimal numbers converted to 32 bit single precision IEEE 754 binary floating point

How to convert decimal numbers from base ten to 32 bit single precision IEEE 754 binary floating point standard

Follow the steps below to convert a base 10 decimal number to 32 bit single precision IEEE 754 binary floating point:

  • 1. If the number to be converted is negative, start with its the positive version.
  • 2. First convert the integer part. Divide repeatedly by 2 the base ten positive representation of the integer number that is to be converted to binary, until we get a quotient that is equal to zero, keeping track of each remainder.
  • 3. Construct the base 2 representation of the positive integer part of the number, by taking all the remainders of the previous dividing operations, starting from the bottom of the list constructed above. Thus, the last remainder of the divisions becomes the first symbol (the leftmost) of the base two number, while the first remainder becomes the last symbol (the rightmost).
  • 4. Then convert the fractional part. Multiply the number repeatedly by 2, until we get a fractional part that is equal to zero, keeping track of each integer part of the results.
  • 5. Construct the base 2 representation of the fractional part of the number by taking all the integer parts of the previous multiplying operations, starting from the top of the constructed list above (they should appear in the binary representation, from left to right, in the order they have been calculated).
  • 6. Normalize the binary representation of the number, by shifting the decimal point (or if you prefer, the decimal mark) "n" positions either to the left or to the right, so that only one non zero digit remains to the left of the decimal point.
  • 7. Adjust the exponent in 8 bit excess/bias notation and then convert it from decimal (base 10) to 8 bit binary, by using the same technique of repeatedly dividing by 2, as shown above:
    Exponent (adjusted) = Exponent (unadjusted) + 2(8-1) - 1
  • 8. Normalize mantissa, remove the leading (leftmost) bit, since it's allways '1' (and the decimal sign if the case) and adjust its length to 23 bits, either by removing the excess bits from the right (losing precision...) or by adding extra '0' bits to the right.
  • 9. Sign (it takes 1 bit) is either 1 for a negative or 0 for a positive number.

Example: convert the negative number -25.347 from decimal system (base ten) to 32 bit single precision IEEE 754 binary floating point:

  • 1. Start with the positive version of the number:

    |-25.347| = 25.347

  • 2. First convert the integer part, 25. Divide it repeatedly by 2, keeping track of each remainder, until we get a quotient that is equal to zero:
    • division = quotient + remainder;
    • 25 ÷ 2 = 12 + 1;
    • 12 ÷ 2 = 6 + 0;
    • 6 ÷ 2 = 3 + 0;
    • 3 ÷ 2 = 1 + 1;
    • 1 ÷ 2 = 0 + 1;
    • We have encountered a quotient that is ZERO => FULL STOP
  • 3. Construct the base 2 representation of the integer part of the number by taking all the remainders of the previous dividing operations, starting from the bottom of the list constructed above:

    25(10) = 1 1001(2)

  • 4. Then convert the fractional part, 0.347. Multiply repeatedly by 2, keeping track of each integer part of the results, until we get a fractional part that is equal to zero:
    • #) multiplying = integer + fractional part;
    • 1) 0.347 × 2 = 0 + 0.694;
    • 2) 0.694 × 2 = 1 + 0.388;
    • 3) 0.388 × 2 = 0 + 0.776;
    • 4) 0.776 × 2 = 1 + 0.552;
    • 5) 0.552 × 2 = 1 + 0.104;
    • 6) 0.104 × 2 = 0 + 0.208;
    • 7) 0.208 × 2 = 0 + 0.416;
    • 8) 0.416 × 2 = 0 + 0.832;
    • 9) 0.832 × 2 = 1 + 0.664;
    • 10) 0.664 × 2 = 1 + 0.328;
    • 11) 0.328 × 2 = 0 + 0.656;
    • 12) 0.656 × 2 = 1 + 0.312;
    • 13) 0.312 × 2 = 0 + 0.624;
    • 14) 0.624 × 2 = 1 + 0.248;
    • 15) 0.248 × 2 = 0 + 0.496;
    • 16) 0.496 × 2 = 0 + 0.992;
    • 17) 0.992 × 2 = 1 + 0.984;
    • 18) 0.984 × 2 = 1 + 0.968;
    • 19) 0.968 × 2 = 1 + 0.936;
    • 20) 0.936 × 2 = 1 + 0.872;
    • 21) 0.872 × 2 = 1 + 0.744;
    • 22) 0.744 × 2 = 1 + 0.488;
    • 23) 0.488 × 2 = 0 + 0.976;
    • 24) 0.976 × 2 = 1 + 0.952;
    • We didn't get any fractional part that was equal to zero. But we had enough iterations (over Mantissa limit = 23) and at least one integer part that was different from zero => FULL STOP (losing precision...).
  • 5. Construct the base 2 representation of the fractional part of the number, by taking all the integer parts of the previous multiplying operations, starting from the top of the constructed list above:

    0.347(10) = 0.0101 1000 1101 0100 1111 1101(2)

  • 6. Summarizing - the positive number before normalization:

    25.347(10) = 1 1001.0101 1000 1101 0100 1111 1101(2)

  • 7. Normalize the binary representation of the number, shifting the decimal point 4 positions to the left so that only one non-zero digit stays to the left of the decimal point:

    25.347(10) =
    1 1001.0101 1000 1101 0100 1111 1101(2) =
    1 1001.0101 1000 1101 0100 1111 1101(2) × 20 =
    1.1001 0101 1000 1101 0100 1111 1101(2) × 24

  • 8. Up to this moment, there are the following elements that would feed into the 32 bit single precision IEEE 754 binary floating point:

    Sign: 1 (a negative number)

    Exponent (unadjusted): 4

    Mantissa (not-normalized): 1.1001 0101 1000 1101 0100 1111 1101

  • 9. Adjust the exponent in 8 bit excess/bias notation and then convert it from decimal (base 10) to 8 bit binary (base 2), by using the same technique of repeatedly dividing it by 2, as already demonstrated above:

    Exponent (adjusted) = Exponent (unadjusted) + 2(8-1) - 1 = (4 + 127)(10) = 131(10) =
    1000 0011(2)

  • 10. Normalize the mantissa, remove the leading (leftmost) bit, since it's allways '1' (and the decimal point) and adjust its length to 23 bits, by removing the excess bits from the right (losing precision...):

    Mantissa (not-normalized): 1.1001 0101 1000 1101 0100 1111 1101

    Mantissa (normalized): 100 1010 1100 0110 1010 0111

  • Conclusion:

    Sign (1 bit) = 1 (a negative number)

    Exponent (8 bits) = 1000 0011

    Mantissa (23 bits) = 100 1010 1100 0110 1010 0111

  • Number -25.347, converted from the decimal system (base 10) to 32 bit single precision IEEE 754 binary floating point =
    1 - 1000 0011 - 100 1010 1100 0110 1010 0111