32bit IEEE 754: Decimal ↗ Single Precision Floating Point Binary: 0.000 000 000 000 000 000 000 000 000 000 000 000 000 101 100 19 Convert the Number to 32 Bit Single Precision IEEE 754 Binary Floating Point Representation Standard, From a Base 10 Decimal System Number

Number 0.000 000 000 000 000 000 000 000 000 000 000 000 000 101 100 19(10) converted and written in 32 bit single precision IEEE 754 binary floating point representation (1 bit for sign, 8 bits for exponent, 23 bits for mantissa)

1. First, convert to binary (in base 2) the integer part: 0.
Divide the number repeatedly by 2.

Keep track of each remainder.

We stop when we get a quotient that is equal to zero.


  • division = quotient + remainder;
  • 0 ÷ 2 = 0 + 0;

2. Construct the base 2 representation of the integer part of the number.

Take all the remainders starting from the bottom of the list constructed above.


0(10) =


0(2)


3. Convert to binary (base 2) the fractional part: 0.000 000 000 000 000 000 000 000 000 000 000 000 000 101 100 19.

Multiply it repeatedly by 2.


Keep track of each integer part of the results.


Stop when we get a fractional part that is equal to zero.


  • #) multiplying = integer + fractional part;
  • 1) 0.000 000 000 000 000 000 000 000 000 000 000 000 000 101 100 19 × 2 = 0 + 0.000 000 000 000 000 000 000 000 000 000 000 000 000 202 200 38;
  • 2) 0.000 000 000 000 000 000 000 000 000 000 000 000 000 202 200 38 × 2 = 0 + 0.000 000 000 000 000 000 000 000 000 000 000 000 000 404 400 76;
  • 3) 0.000 000 000 000 000 000 000 000 000 000 000 000 000 404 400 76 × 2 = 0 + 0.000 000 000 000 000 000 000 000 000 000 000 000 000 808 801 52;
  • 4) 0.000 000 000 000 000 000 000 000 000 000 000 000 000 808 801 52 × 2 = 0 + 0.000 000 000 000 000 000 000 000 000 000 000 000 001 617 603 04;
  • 5) 0.000 000 000 000 000 000 000 000 000 000 000 000 001 617 603 04 × 2 = 0 + 0.000 000 000 000 000 000 000 000 000 000 000 000 003 235 206 08;
  • 6) 0.000 000 000 000 000 000 000 000 000 000 000 000 003 235 206 08 × 2 = 0 + 0.000 000 000 000 000 000 000 000 000 000 000 000 006 470 412 16;
  • 7) 0.000 000 000 000 000 000 000 000 000 000 000 000 006 470 412 16 × 2 = 0 + 0.000 000 000 000 000 000 000 000 000 000 000 000 012 940 824 32;
  • 8) 0.000 000 000 000 000 000 000 000 000 000 000 000 012 940 824 32 × 2 = 0 + 0.000 000 000 000 000 000 000 000 000 000 000 000 025 881 648 64;
  • 9) 0.000 000 000 000 000 000 000 000 000 000 000 000 025 881 648 64 × 2 = 0 + 0.000 000 000 000 000 000 000 000 000 000 000 000 051 763 297 28;
  • 10) 0.000 000 000 000 000 000 000 000 000 000 000 000 051 763 297 28 × 2 = 0 + 0.000 000 000 000 000 000 000 000 000 000 000 000 103 526 594 56;
  • 11) 0.000 000 000 000 000 000 000 000 000 000 000 000 103 526 594 56 × 2 = 0 + 0.000 000 000 000 000 000 000 000 000 000 000 000 207 053 189 12;
  • 12) 0.000 000 000 000 000 000 000 000 000 000 000 000 207 053 189 12 × 2 = 0 + 0.000 000 000 000 000 000 000 000 000 000 000 000 414 106 378 24;
  • 13) 0.000 000 000 000 000 000 000 000 000 000 000 000 414 106 378 24 × 2 = 0 + 0.000 000 000 000 000 000 000 000 000 000 000 000 828 212 756 48;
  • 14) 0.000 000 000 000 000 000 000 000 000 000 000 000 828 212 756 48 × 2 = 0 + 0.000 000 000 000 000 000 000 000 000 000 000 001 656 425 512 96;
  • 15) 0.000 000 000 000 000 000 000 000 000 000 000 001 656 425 512 96 × 2 = 0 + 0.000 000 000 000 000 000 000 000 000 000 000 003 312 851 025 92;
  • 16) 0.000 000 000 000 000 000 000 000 000 000 000 003 312 851 025 92 × 2 = 0 + 0.000 000 000 000 000 000 000 000 000 000 000 006 625 702 051 84;
  • 17) 0.000 000 000 000 000 000 000 000 000 000 000 006 625 702 051 84 × 2 = 0 + 0.000 000 000 000 000 000 000 000 000 000 000 013 251 404 103 68;
  • 18) 0.000 000 000 000 000 000 000 000 000 000 000 013 251 404 103 68 × 2 = 0 + 0.000 000 000 000 000 000 000 000 000 000 000 026 502 808 207 36;
  • 19) 0.000 000 000 000 000 000 000 000 000 000 000 026 502 808 207 36 × 2 = 0 + 0.000 000 000 000 000 000 000 000 000 000 000 053 005 616 414 72;
  • 20) 0.000 000 000 000 000 000 000 000 000 000 000 053 005 616 414 72 × 2 = 0 + 0.000 000 000 000 000 000 000 000 000 000 000 106 011 232 829 44;
  • 21) 0.000 000 000 000 000 000 000 000 000 000 000 106 011 232 829 44 × 2 = 0 + 0.000 000 000 000 000 000 000 000 000 000 000 212 022 465 658 88;
  • 22) 0.000 000 000 000 000 000 000 000 000 000 000 212 022 465 658 88 × 2 = 0 + 0.000 000 000 000 000 000 000 000 000 000 000 424 044 931 317 76;
  • 23) 0.000 000 000 000 000 000 000 000 000 000 000 424 044 931 317 76 × 2 = 0 + 0.000 000 000 000 000 000 000 000 000 000 000 848 089 862 635 52;
  • 24) 0.000 000 000 000 000 000 000 000 000 000 000 848 089 862 635 52 × 2 = 0 + 0.000 000 000 000 000 000 000 000 000 000 001 696 179 725 271 04;
  • 25) 0.000 000 000 000 000 000 000 000 000 000 001 696 179 725 271 04 × 2 = 0 + 0.000 000 000 000 000 000 000 000 000 000 003 392 359 450 542 08;
  • 26) 0.000 000 000 000 000 000 000 000 000 000 003 392 359 450 542 08 × 2 = 0 + 0.000 000 000 000 000 000 000 000 000 000 006 784 718 901 084 16;
  • 27) 0.000 000 000 000 000 000 000 000 000 000 006 784 718 901 084 16 × 2 = 0 + 0.000 000 000 000 000 000 000 000 000 000 013 569 437 802 168 32;
  • 28) 0.000 000 000 000 000 000 000 000 000 000 013 569 437 802 168 32 × 2 = 0 + 0.000 000 000 000 000 000 000 000 000 000 027 138 875 604 336 64;
  • 29) 0.000 000 000 000 000 000 000 000 000 000 027 138 875 604 336 64 × 2 = 0 + 0.000 000 000 000 000 000 000 000 000 000 054 277 751 208 673 28;
  • 30) 0.000 000 000 000 000 000 000 000 000 000 054 277 751 208 673 28 × 2 = 0 + 0.000 000 000 000 000 000 000 000 000 000 108 555 502 417 346 56;
  • 31) 0.000 000 000 000 000 000 000 000 000 000 108 555 502 417 346 56 × 2 = 0 + 0.000 000 000 000 000 000 000 000 000 000 217 111 004 834 693 12;
  • 32) 0.000 000 000 000 000 000 000 000 000 000 217 111 004 834 693 12 × 2 = 0 + 0.000 000 000 000 000 000 000 000 000 000 434 222 009 669 386 24;
  • 33) 0.000 000 000 000 000 000 000 000 000 000 434 222 009 669 386 24 × 2 = 0 + 0.000 000 000 000 000 000 000 000 000 000 868 444 019 338 772 48;
  • 34) 0.000 000 000 000 000 000 000 000 000 000 868 444 019 338 772 48 × 2 = 0 + 0.000 000 000 000 000 000 000 000 000 001 736 888 038 677 544 96;
  • 35) 0.000 000 000 000 000 000 000 000 000 001 736 888 038 677 544 96 × 2 = 0 + 0.000 000 000 000 000 000 000 000 000 003 473 776 077 355 089 92;
  • 36) 0.000 000 000 000 000 000 000 000 000 003 473 776 077 355 089 92 × 2 = 0 + 0.000 000 000 000 000 000 000 000 000 006 947 552 154 710 179 84;
  • 37) 0.000 000 000 000 000 000 000 000 000 006 947 552 154 710 179 84 × 2 = 0 + 0.000 000 000 000 000 000 000 000 000 013 895 104 309 420 359 68;
  • 38) 0.000 000 000 000 000 000 000 000 000 013 895 104 309 420 359 68 × 2 = 0 + 0.000 000 000 000 000 000 000 000 000 027 790 208 618 840 719 36;
  • 39) 0.000 000 000 000 000 000 000 000 000 027 790 208 618 840 719 36 × 2 = 0 + 0.000 000 000 000 000 000 000 000 000 055 580 417 237 681 438 72;
  • 40) 0.000 000 000 000 000 000 000 000 000 055 580 417 237 681 438 72 × 2 = 0 + 0.000 000 000 000 000 000 000 000 000 111 160 834 475 362 877 44;
  • 41) 0.000 000 000 000 000 000 000 000 000 111 160 834 475 362 877 44 × 2 = 0 + 0.000 000 000 000 000 000 000 000 000 222 321 668 950 725 754 88;
  • 42) 0.000 000 000 000 000 000 000 000 000 222 321 668 950 725 754 88 × 2 = 0 + 0.000 000 000 000 000 000 000 000 000 444 643 337 901 451 509 76;
  • 43) 0.000 000 000 000 000 000 000 000 000 444 643 337 901 451 509 76 × 2 = 0 + 0.000 000 000 000 000 000 000 000 000 889 286 675 802 903 019 52;
  • 44) 0.000 000 000 000 000 000 000 000 000 889 286 675 802 903 019 52 × 2 = 0 + 0.000 000 000 000 000 000 000 000 001 778 573 351 605 806 039 04;
  • 45) 0.000 000 000 000 000 000 000 000 001 778 573 351 605 806 039 04 × 2 = 0 + 0.000 000 000 000 000 000 000 000 003 557 146 703 211 612 078 08;
  • 46) 0.000 000 000 000 000 000 000 000 003 557 146 703 211 612 078 08 × 2 = 0 + 0.000 000 000 000 000 000 000 000 007 114 293 406 423 224 156 16;
  • 47) 0.000 000 000 000 000 000 000 000 007 114 293 406 423 224 156 16 × 2 = 0 + 0.000 000 000 000 000 000 000 000 014 228 586 812 846 448 312 32;
  • 48) 0.000 000 000 000 000 000 000 000 014 228 586 812 846 448 312 32 × 2 = 0 + 0.000 000 000 000 000 000 000 000 028 457 173 625 692 896 624 64;
  • 49) 0.000 000 000 000 000 000 000 000 028 457 173 625 692 896 624 64 × 2 = 0 + 0.000 000 000 000 000 000 000 000 056 914 347 251 385 793 249 28;
  • 50) 0.000 000 000 000 000 000 000 000 056 914 347 251 385 793 249 28 × 2 = 0 + 0.000 000 000 000 000 000 000 000 113 828 694 502 771 586 498 56;
  • 51) 0.000 000 000 000 000 000 000 000 113 828 694 502 771 586 498 56 × 2 = 0 + 0.000 000 000 000 000 000 000 000 227 657 389 005 543 172 997 12;
  • 52) 0.000 000 000 000 000 000 000 000 227 657 389 005 543 172 997 12 × 2 = 0 + 0.000 000 000 000 000 000 000 000 455 314 778 011 086 345 994 24;
  • 53) 0.000 000 000 000 000 000 000 000 455 314 778 011 086 345 994 24 × 2 = 0 + 0.000 000 000 000 000 000 000 000 910 629 556 022 172 691 988 48;
  • 54) 0.000 000 000 000 000 000 000 000 910 629 556 022 172 691 988 48 × 2 = 0 + 0.000 000 000 000 000 000 000 001 821 259 112 044 345 383 976 96;
  • 55) 0.000 000 000 000 000 000 000 001 821 259 112 044 345 383 976 96 × 2 = 0 + 0.000 000 000 000 000 000 000 003 642 518 224 088 690 767 953 92;
  • 56) 0.000 000 000 000 000 000 000 003 642 518 224 088 690 767 953 92 × 2 = 0 + 0.000 000 000 000 000 000 000 007 285 036 448 177 381 535 907 84;
  • 57) 0.000 000 000 000 000 000 000 007 285 036 448 177 381 535 907 84 × 2 = 0 + 0.000 000 000 000 000 000 000 014 570 072 896 354 763 071 815 68;
  • 58) 0.000 000 000 000 000 000 000 014 570 072 896 354 763 071 815 68 × 2 = 0 + 0.000 000 000 000 000 000 000 029 140 145 792 709 526 143 631 36;
  • 59) 0.000 000 000 000 000 000 000 029 140 145 792 709 526 143 631 36 × 2 = 0 + 0.000 000 000 000 000 000 000 058 280 291 585 419 052 287 262 72;
  • 60) 0.000 000 000 000 000 000 000 058 280 291 585 419 052 287 262 72 × 2 = 0 + 0.000 000 000 000 000 000 000 116 560 583 170 838 104 574 525 44;
  • 61) 0.000 000 000 000 000 000 000 116 560 583 170 838 104 574 525 44 × 2 = 0 + 0.000 000 000 000 000 000 000 233 121 166 341 676 209 149 050 88;
  • 62) 0.000 000 000 000 000 000 000 233 121 166 341 676 209 149 050 88 × 2 = 0 + 0.000 000 000 000 000 000 000 466 242 332 683 352 418 298 101 76;
  • 63) 0.000 000 000 000 000 000 000 466 242 332 683 352 418 298 101 76 × 2 = 0 + 0.000 000 000 000 000 000 000 932 484 665 366 704 836 596 203 52;
  • 64) 0.000 000 000 000 000 000 000 932 484 665 366 704 836 596 203 52 × 2 = 0 + 0.000 000 000 000 000 000 001 864 969 330 733 409 673 192 407 04;
  • 65) 0.000 000 000 000 000 000 001 864 969 330 733 409 673 192 407 04 × 2 = 0 + 0.000 000 000 000 000 000 003 729 938 661 466 819 346 384 814 08;
  • 66) 0.000 000 000 000 000 000 003 729 938 661 466 819 346 384 814 08 × 2 = 0 + 0.000 000 000 000 000 000 007 459 877 322 933 638 692 769 628 16;
  • 67) 0.000 000 000 000 000 000 007 459 877 322 933 638 692 769 628 16 × 2 = 0 + 0.000 000 000 000 000 000 014 919 754 645 867 277 385 539 256 32;
  • 68) 0.000 000 000 000 000 000 014 919 754 645 867 277 385 539 256 32 × 2 = 0 + 0.000 000 000 000 000 000 029 839 509 291 734 554 771 078 512 64;
  • 69) 0.000 000 000 000 000 000 029 839 509 291 734 554 771 078 512 64 × 2 = 0 + 0.000 000 000 000 000 000 059 679 018 583 469 109 542 157 025 28;
  • 70) 0.000 000 000 000 000 000 059 679 018 583 469 109 542 157 025 28 × 2 = 0 + 0.000 000 000 000 000 000 119 358 037 166 938 219 084 314 050 56;
  • 71) 0.000 000 000 000 000 000 119 358 037 166 938 219 084 314 050 56 × 2 = 0 + 0.000 000 000 000 000 000 238 716 074 333 876 438 168 628 101 12;
  • 72) 0.000 000 000 000 000 000 238 716 074 333 876 438 168 628 101 12 × 2 = 0 + 0.000 000 000 000 000 000 477 432 148 667 752 876 337 256 202 24;
  • 73) 0.000 000 000 000 000 000 477 432 148 667 752 876 337 256 202 24 × 2 = 0 + 0.000 000 000 000 000 000 954 864 297 335 505 752 674 512 404 48;
  • 74) 0.000 000 000 000 000 000 954 864 297 335 505 752 674 512 404 48 × 2 = 0 + 0.000 000 000 000 000 001 909 728 594 671 011 505 349 024 808 96;
  • 75) 0.000 000 000 000 000 001 909 728 594 671 011 505 349 024 808 96 × 2 = 0 + 0.000 000 000 000 000 003 819 457 189 342 023 010 698 049 617 92;
  • 76) 0.000 000 000 000 000 003 819 457 189 342 023 010 698 049 617 92 × 2 = 0 + 0.000 000 000 000 000 007 638 914 378 684 046 021 396 099 235 84;
  • 77) 0.000 000 000 000 000 007 638 914 378 684 046 021 396 099 235 84 × 2 = 0 + 0.000 000 000 000 000 015 277 828 757 368 092 042 792 198 471 68;
  • 78) 0.000 000 000 000 000 015 277 828 757 368 092 042 792 198 471 68 × 2 = 0 + 0.000 000 000 000 000 030 555 657 514 736 184 085 584 396 943 36;
  • 79) 0.000 000 000 000 000 030 555 657 514 736 184 085 584 396 943 36 × 2 = 0 + 0.000 000 000 000 000 061 111 315 029 472 368 171 168 793 886 72;
  • 80) 0.000 000 000 000 000 061 111 315 029 472 368 171 168 793 886 72 × 2 = 0 + 0.000 000 000 000 000 122 222 630 058 944 736 342 337 587 773 44;
  • 81) 0.000 000 000 000 000 122 222 630 058 944 736 342 337 587 773 44 × 2 = 0 + 0.000 000 000 000 000 244 445 260 117 889 472 684 675 175 546 88;
  • 82) 0.000 000 000 000 000 244 445 260 117 889 472 684 675 175 546 88 × 2 = 0 + 0.000 000 000 000 000 488 890 520 235 778 945 369 350 351 093 76;
  • 83) 0.000 000 000 000 000 488 890 520 235 778 945 369 350 351 093 76 × 2 = 0 + 0.000 000 000 000 000 977 781 040 471 557 890 738 700 702 187 52;
  • 84) 0.000 000 000 000 000 977 781 040 471 557 890 738 700 702 187 52 × 2 = 0 + 0.000 000 000 000 001 955 562 080 943 115 781 477 401 404 375 04;
  • 85) 0.000 000 000 000 001 955 562 080 943 115 781 477 401 404 375 04 × 2 = 0 + 0.000 000 000 000 003 911 124 161 886 231 562 954 802 808 750 08;
  • 86) 0.000 000 000 000 003 911 124 161 886 231 562 954 802 808 750 08 × 2 = 0 + 0.000 000 000 000 007 822 248 323 772 463 125 909 605 617 500 16;
  • 87) 0.000 000 000 000 007 822 248 323 772 463 125 909 605 617 500 16 × 2 = 0 + 0.000 000 000 000 015 644 496 647 544 926 251 819 211 235 000 32;
  • 88) 0.000 000 000 000 015 644 496 647 544 926 251 819 211 235 000 32 × 2 = 0 + 0.000 000 000 000 031 288 993 295 089 852 503 638 422 470 000 64;
  • 89) 0.000 000 000 000 031 288 993 295 089 852 503 638 422 470 000 64 × 2 = 0 + 0.000 000 000 000 062 577 986 590 179 705 007 276 844 940 001 28;
  • 90) 0.000 000 000 000 062 577 986 590 179 705 007 276 844 940 001 28 × 2 = 0 + 0.000 000 000 000 125 155 973 180 359 410 014 553 689 880 002 56;
  • 91) 0.000 000 000 000 125 155 973 180 359 410 014 553 689 880 002 56 × 2 = 0 + 0.000 000 000 000 250 311 946 360 718 820 029 107 379 760 005 12;
  • 92) 0.000 000 000 000 250 311 946 360 718 820 029 107 379 760 005 12 × 2 = 0 + 0.000 000 000 000 500 623 892 721 437 640 058 214 759 520 010 24;
  • 93) 0.000 000 000 000 500 623 892 721 437 640 058 214 759 520 010 24 × 2 = 0 + 0.000 000 000 001 001 247 785 442 875 280 116 429 519 040 020 48;
  • 94) 0.000 000 000 001 001 247 785 442 875 280 116 429 519 040 020 48 × 2 = 0 + 0.000 000 000 002 002 495 570 885 750 560 232 859 038 080 040 96;
  • 95) 0.000 000 000 002 002 495 570 885 750 560 232 859 038 080 040 96 × 2 = 0 + 0.000 000 000 004 004 991 141 771 501 120 465 718 076 160 081 92;
  • 96) 0.000 000 000 004 004 991 141 771 501 120 465 718 076 160 081 92 × 2 = 0 + 0.000 000 000 008 009 982 283 543 002 240 931 436 152 320 163 84;
  • 97) 0.000 000 000 008 009 982 283 543 002 240 931 436 152 320 163 84 × 2 = 0 + 0.000 000 000 016 019 964 567 086 004 481 862 872 304 640 327 68;
  • 98) 0.000 000 000 016 019 964 567 086 004 481 862 872 304 640 327 68 × 2 = 0 + 0.000 000 000 032 039 929 134 172 008 963 725 744 609 280 655 36;
  • 99) 0.000 000 000 032 039 929 134 172 008 963 725 744 609 280 655 36 × 2 = 0 + 0.000 000 000 064 079 858 268 344 017 927 451 489 218 561 310 72;
  • 100) 0.000 000 000 064 079 858 268 344 017 927 451 489 218 561 310 72 × 2 = 0 + 0.000 000 000 128 159 716 536 688 035 854 902 978 437 122 621 44;
  • 101) 0.000 000 000 128 159 716 536 688 035 854 902 978 437 122 621 44 × 2 = 0 + 0.000 000 000 256 319 433 073 376 071 709 805 956 874 245 242 88;
  • 102) 0.000 000 000 256 319 433 073 376 071 709 805 956 874 245 242 88 × 2 = 0 + 0.000 000 000 512 638 866 146 752 143 419 611 913 748 490 485 76;
  • 103) 0.000 000 000 512 638 866 146 752 143 419 611 913 748 490 485 76 × 2 = 0 + 0.000 000 001 025 277 732 293 504 286 839 223 827 496 980 971 52;
  • 104) 0.000 000 001 025 277 732 293 504 286 839 223 827 496 980 971 52 × 2 = 0 + 0.000 000 002 050 555 464 587 008 573 678 447 654 993 961 943 04;
  • 105) 0.000 000 002 050 555 464 587 008 573 678 447 654 993 961 943 04 × 2 = 0 + 0.000 000 004 101 110 929 174 017 147 356 895 309 987 923 886 08;
  • 106) 0.000 000 004 101 110 929 174 017 147 356 895 309 987 923 886 08 × 2 = 0 + 0.000 000 008 202 221 858 348 034 294 713 790 619 975 847 772 16;
  • 107) 0.000 000 008 202 221 858 348 034 294 713 790 619 975 847 772 16 × 2 = 0 + 0.000 000 016 404 443 716 696 068 589 427 581 239 951 695 544 32;
  • 108) 0.000 000 016 404 443 716 696 068 589 427 581 239 951 695 544 32 × 2 = 0 + 0.000 000 032 808 887 433 392 137 178 855 162 479 903 391 088 64;
  • 109) 0.000 000 032 808 887 433 392 137 178 855 162 479 903 391 088 64 × 2 = 0 + 0.000 000 065 617 774 866 784 274 357 710 324 959 806 782 177 28;
  • 110) 0.000 000 065 617 774 866 784 274 357 710 324 959 806 782 177 28 × 2 = 0 + 0.000 000 131 235 549 733 568 548 715 420 649 919 613 564 354 56;
  • 111) 0.000 000 131 235 549 733 568 548 715 420 649 919 613 564 354 56 × 2 = 0 + 0.000 000 262 471 099 467 137 097 430 841 299 839 227 128 709 12;
  • 112) 0.000 000 262 471 099 467 137 097 430 841 299 839 227 128 709 12 × 2 = 0 + 0.000 000 524 942 198 934 274 194 861 682 599 678 454 257 418 24;
  • 113) 0.000 000 524 942 198 934 274 194 861 682 599 678 454 257 418 24 × 2 = 0 + 0.000 001 049 884 397 868 548 389 723 365 199 356 908 514 836 48;
  • 114) 0.000 001 049 884 397 868 548 389 723 365 199 356 908 514 836 48 × 2 = 0 + 0.000 002 099 768 795 737 096 779 446 730 398 713 817 029 672 96;
  • 115) 0.000 002 099 768 795 737 096 779 446 730 398 713 817 029 672 96 × 2 = 0 + 0.000 004 199 537 591 474 193 558 893 460 797 427 634 059 345 92;
  • 116) 0.000 004 199 537 591 474 193 558 893 460 797 427 634 059 345 92 × 2 = 0 + 0.000 008 399 075 182 948 387 117 786 921 594 855 268 118 691 84;
  • 117) 0.000 008 399 075 182 948 387 117 786 921 594 855 268 118 691 84 × 2 = 0 + 0.000 016 798 150 365 896 774 235 573 843 189 710 536 237 383 68;
  • 118) 0.000 016 798 150 365 896 774 235 573 843 189 710 536 237 383 68 × 2 = 0 + 0.000 033 596 300 731 793 548 471 147 686 379 421 072 474 767 36;
  • 119) 0.000 033 596 300 731 793 548 471 147 686 379 421 072 474 767 36 × 2 = 0 + 0.000 067 192 601 463 587 096 942 295 372 758 842 144 949 534 72;
  • 120) 0.000 067 192 601 463 587 096 942 295 372 758 842 144 949 534 72 × 2 = 0 + 0.000 134 385 202 927 174 193 884 590 745 517 684 289 899 069 44;
  • 121) 0.000 134 385 202 927 174 193 884 590 745 517 684 289 899 069 44 × 2 = 0 + 0.000 268 770 405 854 348 387 769 181 491 035 368 579 798 138 88;
  • 122) 0.000 268 770 405 854 348 387 769 181 491 035 368 579 798 138 88 × 2 = 0 + 0.000 537 540 811 708 696 775 538 362 982 070 737 159 596 277 76;
  • 123) 0.000 537 540 811 708 696 775 538 362 982 070 737 159 596 277 76 × 2 = 0 + 0.001 075 081 623 417 393 551 076 725 964 141 474 319 192 555 52;
  • 124) 0.001 075 081 623 417 393 551 076 725 964 141 474 319 192 555 52 × 2 = 0 + 0.002 150 163 246 834 787 102 153 451 928 282 948 638 385 111 04;
  • 125) 0.002 150 163 246 834 787 102 153 451 928 282 948 638 385 111 04 × 2 = 0 + 0.004 300 326 493 669 574 204 306 903 856 565 897 276 770 222 08;
  • 126) 0.004 300 326 493 669 574 204 306 903 856 565 897 276 770 222 08 × 2 = 0 + 0.008 600 652 987 339 148 408 613 807 713 131 794 553 540 444 16;
  • 127) 0.008 600 652 987 339 148 408 613 807 713 131 794 553 540 444 16 × 2 = 0 + 0.017 201 305 974 678 296 817 227 615 426 263 589 107 080 888 32;
  • 128) 0.017 201 305 974 678 296 817 227 615 426 263 589 107 080 888 32 × 2 = 0 + 0.034 402 611 949 356 593 634 455 230 852 527 178 214 161 776 64;
  • 129) 0.034 402 611 949 356 593 634 455 230 852 527 178 214 161 776 64 × 2 = 0 + 0.068 805 223 898 713 187 268 910 461 705 054 356 428 323 553 28;
  • 130) 0.068 805 223 898 713 187 268 910 461 705 054 356 428 323 553 28 × 2 = 0 + 0.137 610 447 797 426 374 537 820 923 410 108 712 856 647 106 56;
  • 131) 0.137 610 447 797 426 374 537 820 923 410 108 712 856 647 106 56 × 2 = 0 + 0.275 220 895 594 852 749 075 641 846 820 217 425 713 294 213 12;
  • 132) 0.275 220 895 594 852 749 075 641 846 820 217 425 713 294 213 12 × 2 = 0 + 0.550 441 791 189 705 498 151 283 693 640 434 851 426 588 426 24;
  • 133) 0.550 441 791 189 705 498 151 283 693 640 434 851 426 588 426 24 × 2 = 1 + 0.100 883 582 379 410 996 302 567 387 280 869 702 853 176 852 48;
  • 134) 0.100 883 582 379 410 996 302 567 387 280 869 702 853 176 852 48 × 2 = 0 + 0.201 767 164 758 821 992 605 134 774 561 739 405 706 353 704 96;
  • 135) 0.201 767 164 758 821 992 605 134 774 561 739 405 706 353 704 96 × 2 = 0 + 0.403 534 329 517 643 985 210 269 549 123 478 811 412 707 409 92;
  • 136) 0.403 534 329 517 643 985 210 269 549 123 478 811 412 707 409 92 × 2 = 0 + 0.807 068 659 035 287 970 420 539 098 246 957 622 825 414 819 84;
  • 137) 0.807 068 659 035 287 970 420 539 098 246 957 622 825 414 819 84 × 2 = 1 + 0.614 137 318 070 575 940 841 078 196 493 915 245 650 829 639 68;
  • 138) 0.614 137 318 070 575 940 841 078 196 493 915 245 650 829 639 68 × 2 = 1 + 0.228 274 636 141 151 881 682 156 392 987 830 491 301 659 279 36;
  • 139) 0.228 274 636 141 151 881 682 156 392 987 830 491 301 659 279 36 × 2 = 0 + 0.456 549 272 282 303 763 364 312 785 975 660 982 603 318 558 72;
  • 140) 0.456 549 272 282 303 763 364 312 785 975 660 982 603 318 558 72 × 2 = 0 + 0.913 098 544 564 607 526 728 625 571 951 321 965 206 637 117 44;
  • 141) 0.913 098 544 564 607 526 728 625 571 951 321 965 206 637 117 44 × 2 = 1 + 0.826 197 089 129 215 053 457 251 143 902 643 930 413 274 234 88;
  • 142) 0.826 197 089 129 215 053 457 251 143 902 643 930 413 274 234 88 × 2 = 1 + 0.652 394 178 258 430 106 914 502 287 805 287 860 826 548 469 76;
  • 143) 0.652 394 178 258 430 106 914 502 287 805 287 860 826 548 469 76 × 2 = 1 + 0.304 788 356 516 860 213 829 004 575 610 575 721 653 096 939 52;
  • 144) 0.304 788 356 516 860 213 829 004 575 610 575 721 653 096 939 52 × 2 = 0 + 0.609 576 713 033 720 427 658 009 151 221 151 443 306 193 879 04;
  • 145) 0.609 576 713 033 720 427 658 009 151 221 151 443 306 193 879 04 × 2 = 1 + 0.219 153 426 067 440 855 316 018 302 442 302 886 612 387 758 08;
  • 146) 0.219 153 426 067 440 855 316 018 302 442 302 886 612 387 758 08 × 2 = 0 + 0.438 306 852 134 881 710 632 036 604 884 605 773 224 775 516 16;
  • 147) 0.438 306 852 134 881 710 632 036 604 884 605 773 224 775 516 16 × 2 = 0 + 0.876 613 704 269 763 421 264 073 209 769 211 546 449 551 032 32;
  • 148) 0.876 613 704 269 763 421 264 073 209 769 211 546 449 551 032 32 × 2 = 1 + 0.753 227 408 539 526 842 528 146 419 538 423 092 899 102 064 64;
  • 149) 0.753 227 408 539 526 842 528 146 419 538 423 092 899 102 064 64 × 2 = 1 + 0.506 454 817 079 053 685 056 292 839 076 846 185 798 204 129 28;
  • 150) 0.506 454 817 079 053 685 056 292 839 076 846 185 798 204 129 28 × 2 = 1 + 0.012 909 634 158 107 370 112 585 678 153 692 371 596 408 258 56;
  • 151) 0.012 909 634 158 107 370 112 585 678 153 692 371 596 408 258 56 × 2 = 0 + 0.025 819 268 316 214 740 225 171 356 307 384 743 192 816 517 12;
  • 152) 0.025 819 268 316 214 740 225 171 356 307 384 743 192 816 517 12 × 2 = 0 + 0.051 638 536 632 429 480 450 342 712 614 769 486 385 633 034 24;
  • 153) 0.051 638 536 632 429 480 450 342 712 614 769 486 385 633 034 24 × 2 = 0 + 0.103 277 073 264 858 960 900 685 425 229 538 972 771 266 068 48;
  • 154) 0.103 277 073 264 858 960 900 685 425 229 538 972 771 266 068 48 × 2 = 0 + 0.206 554 146 529 717 921 801 370 850 459 077 945 542 532 136 96;
  • 155) 0.206 554 146 529 717 921 801 370 850 459 077 945 542 532 136 96 × 2 = 0 + 0.413 108 293 059 435 843 602 741 700 918 155 891 085 064 273 92;
  • 156) 0.413 108 293 059 435 843 602 741 700 918 155 891 085 064 273 92 × 2 = 0 + 0.826 216 586 118 871 687 205 483 401 836 311 782 170 128 547 84;

We didn't get any fractional part that was equal to zero. But we had enough iterations (over Mantissa limit) and at least one integer that was different from zero => FULL STOP (losing precision...)


4. Construct the base 2 representation of the fractional part of the number.

Take all the integer parts of the multiplying operations, starting from the top of the constructed list above:


0.000 000 000 000 000 000 000 000 000 000 000 000 000 101 100 19(10) =


0.0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 1000 1100 1110 1001 1100 0000(2)


5. Positive number before normalization:

0.000 000 000 000 000 000 000 000 000 000 000 000 000 101 100 19(10) =


0.0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 1000 1100 1110 1001 1100 0000(2)

6. Normalize the binary representation of the number.

Shift the decimal mark 133 positions to the right, so that only one non zero digit remains to the left of it:


0.000 000 000 000 000 000 000 000 000 000 000 000 000 101 100 19(10) =


0.0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 1000 1100 1110 1001 1100 0000(2) =


0.0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 1000 1100 1110 1001 1100 0000(2) × 20 =


1.0001 1001 1101 0011 1000 000(2) × 2-133


7. Up to this moment, there are the following elements that would feed into the 32 bit single precision IEEE 754 binary floating point representation:

Sign 0 (a positive number)


Exponent (unadjusted): -133


Mantissa (not normalized):
1.0001 1001 1101 0011 1000 000


8. Adjust the exponent.

Use the 8 bit excess/bias notation:


Exponent (adjusted) =


Exponent (unadjusted) + 2(8-1) - 1 =


-133 + 2(8-1) - 1 =


(-133 + 127)(10) =


-6(10)


9. Negative exponent!

Your base ten decimal number is too close to ZERO to convert it otherwise to 32 bit single precision IEEE 754 binary floating point representation.

So it will be approximated and treated as ZERO.


10. IEEE 754, Special Case: ZERO

ZERO: Under the IEEE 754 standard, the reserved bitpattern of all the bits of the exponent and the mantissa set on 0 is being used.


-0 and +0 are distinct values, though they are equal.


11. The three elements that make up the number's 32 bit single precision IEEE 754 binary floating point representation:

Sign (1 bit) =
0 (a positive number)


Exponent (8 bits) =
0000 0000


Mantissa (23 bits) =
000 0000 0000 0000 0000 0000


The base ten decimal number 0.000 000 000 000 000 000 000 000 000 000 000 000 000 101 100 19 converted and written in 32 bit single precision IEEE 754 binary floating point representation:
0 - 0000 0000 - 000 0000 0000 0000 0000 0000

The latest decimal numbers converted from base ten to 32 bit single precision IEEE 754 floating point binary standard representation

Number -426.555 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard May 20 02:08 UTC (GMT)
Number -904.992 1 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard May 20 02:08 UTC (GMT)
Number -5 725.8 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard May 20 02:08 UTC (GMT)
Number 874 940 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard May 20 02:08 UTC (GMT)
Number 9 109 523 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard May 20 02:08 UTC (GMT)
Number 11.424 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard May 20 02:08 UTC (GMT)
Number 618 999 966 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard May 20 02:08 UTC (GMT)
Number 298.12 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard May 20 02:08 UTC (GMT)
Number 1 245 633 434 354 345 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard May 20 02:08 UTC (GMT)
Number -1 808.7 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard May 20 02:08 UTC (GMT)
All base ten decimal numbers converted to 32 bit single precision IEEE 754 binary floating point

How to convert decimal numbers from base ten to 32 bit single precision IEEE 754 binary floating point standard

Follow the steps below to convert a base 10 decimal number to 32 bit single precision IEEE 754 binary floating point:

  • 1. If the number to be converted is negative, start with its the positive version.
  • 2. First convert the integer part. Divide repeatedly by 2 the base ten positive representation of the integer number that is to be converted to binary, until we get a quotient that is equal to zero, keeping track of each remainder.
  • 3. Construct the base 2 representation of the positive integer part of the number, by taking all the remainders of the previous dividing operations, starting from the bottom of the list constructed above. Thus, the last remainder of the divisions becomes the first symbol (the leftmost) of the base two number, while the first remainder becomes the last symbol (the rightmost).
  • 4. Then convert the fractional part. Multiply the number repeatedly by 2, until we get a fractional part that is equal to zero, keeping track of each integer part of the results.
  • 5. Construct the base 2 representation of the fractional part of the number by taking all the integer parts of the previous multiplying operations, starting from the top of the constructed list above (they should appear in the binary representation, from left to right, in the order they have been calculated).
  • 6. Normalize the binary representation of the number, by shifting the decimal point (or if you prefer, the decimal mark) "n" positions either to the left or to the right, so that only one non zero digit remains to the left of the decimal point.
  • 7. Adjust the exponent in 8 bit excess/bias notation and then convert it from decimal (base 10) to 8 bit binary, by using the same technique of repeatedly dividing by 2, as shown above:
    Exponent (adjusted) = Exponent (unadjusted) + 2(8-1) - 1
  • 8. Normalize mantissa, remove the leading (leftmost) bit, since it's allways '1' (and the decimal sign if the case) and adjust its length to 23 bits, either by removing the excess bits from the right (losing precision...) or by adding extra '0' bits to the right.
  • 9. Sign (it takes 1 bit) is either 1 for a negative or 0 for a positive number.

Example: convert the negative number -25.347 from decimal system (base ten) to 32 bit single precision IEEE 754 binary floating point:

  • 1. Start with the positive version of the number:

    |-25.347| = 25.347

  • 2. First convert the integer part, 25. Divide it repeatedly by 2, keeping track of each remainder, until we get a quotient that is equal to zero:
    • division = quotient + remainder;
    • 25 ÷ 2 = 12 + 1;
    • 12 ÷ 2 = 6 + 0;
    • 6 ÷ 2 = 3 + 0;
    • 3 ÷ 2 = 1 + 1;
    • 1 ÷ 2 = 0 + 1;
    • We have encountered a quotient that is ZERO => FULL STOP
  • 3. Construct the base 2 representation of the integer part of the number by taking all the remainders of the previous dividing operations, starting from the bottom of the list constructed above:

    25(10) = 1 1001(2)

  • 4. Then convert the fractional part, 0.347. Multiply repeatedly by 2, keeping track of each integer part of the results, until we get a fractional part that is equal to zero:
    • #) multiplying = integer + fractional part;
    • 1) 0.347 × 2 = 0 + 0.694;
    • 2) 0.694 × 2 = 1 + 0.388;
    • 3) 0.388 × 2 = 0 + 0.776;
    • 4) 0.776 × 2 = 1 + 0.552;
    • 5) 0.552 × 2 = 1 + 0.104;
    • 6) 0.104 × 2 = 0 + 0.208;
    • 7) 0.208 × 2 = 0 + 0.416;
    • 8) 0.416 × 2 = 0 + 0.832;
    • 9) 0.832 × 2 = 1 + 0.664;
    • 10) 0.664 × 2 = 1 + 0.328;
    • 11) 0.328 × 2 = 0 + 0.656;
    • 12) 0.656 × 2 = 1 + 0.312;
    • 13) 0.312 × 2 = 0 + 0.624;
    • 14) 0.624 × 2 = 1 + 0.248;
    • 15) 0.248 × 2 = 0 + 0.496;
    • 16) 0.496 × 2 = 0 + 0.992;
    • 17) 0.992 × 2 = 1 + 0.984;
    • 18) 0.984 × 2 = 1 + 0.968;
    • 19) 0.968 × 2 = 1 + 0.936;
    • 20) 0.936 × 2 = 1 + 0.872;
    • 21) 0.872 × 2 = 1 + 0.744;
    • 22) 0.744 × 2 = 1 + 0.488;
    • 23) 0.488 × 2 = 0 + 0.976;
    • 24) 0.976 × 2 = 1 + 0.952;
    • We didn't get any fractional part that was equal to zero. But we had enough iterations (over Mantissa limit = 23) and at least one integer part that was different from zero => FULL STOP (losing precision...).
  • 5. Construct the base 2 representation of the fractional part of the number, by taking all the integer parts of the previous multiplying operations, starting from the top of the constructed list above:

    0.347(10) = 0.0101 1000 1101 0100 1111 1101(2)

  • 6. Summarizing - the positive number before normalization:

    25.347(10) = 1 1001.0101 1000 1101 0100 1111 1101(2)

  • 7. Normalize the binary representation of the number, shifting the decimal point 4 positions to the left so that only one non-zero digit stays to the left of the decimal point:

    25.347(10) =
    1 1001.0101 1000 1101 0100 1111 1101(2) =
    1 1001.0101 1000 1101 0100 1111 1101(2) × 20 =
    1.1001 0101 1000 1101 0100 1111 1101(2) × 24

  • 8. Up to this moment, there are the following elements that would feed into the 32 bit single precision IEEE 754 binary floating point:

    Sign: 1 (a negative number)

    Exponent (unadjusted): 4

    Mantissa (not-normalized): 1.1001 0101 1000 1101 0100 1111 1101

  • 9. Adjust the exponent in 8 bit excess/bias notation and then convert it from decimal (base 10) to 8 bit binary (base 2), by using the same technique of repeatedly dividing it by 2, as already demonstrated above:

    Exponent (adjusted) = Exponent (unadjusted) + 2(8-1) - 1 = (4 + 127)(10) = 131(10) =
    1000 0011(2)

  • 10. Normalize the mantissa, remove the leading (leftmost) bit, since it's allways '1' (and the decimal point) and adjust its length to 23 bits, by removing the excess bits from the right (losing precision...):

    Mantissa (not-normalized): 1.1001 0101 1000 1101 0100 1111 1101

    Mantissa (normalized): 100 1010 1100 0110 1010 0111

  • Conclusion:

    Sign (1 bit) = 1 (a negative number)

    Exponent (8 bits) = 1000 0011

    Mantissa (23 bits) = 100 1010 1100 0110 1010 0111

  • Number -25.347, converted from the decimal system (base 10) to 32 bit single precision IEEE 754 binary floating point =
    1 - 1000 0011 - 100 1010 1100 0110 1010 0111