32bit IEEE 754: Decimal ↗ Single Precision Floating Point Binary: -61 694 000 000 000 000 000 000 000 000 000 000 108 Convert the Number to 32 Bit Single Precision IEEE 754 Binary Floating Point Representation Standard, From a Base 10 Decimal System Number

Number -61 694 000 000 000 000 000 000 000 000 000 000 108(10) converted and written in 32 bit single precision IEEE 754 binary floating point representation (1 bit for sign, 8 bits for exponent, 23 bits for mantissa)

1. Start with the positive version of the number:

|-61 694 000 000 000 000 000 000 000 000 000 000 108| = 61 694 000 000 000 000 000 000 000 000 000 000 108

2. Divide the number repeatedly by 2.

Keep track of each remainder.

We stop when we get a quotient that is equal to zero.


  • division = quotient + remainder;
  • 61 694 000 000 000 000 000 000 000 000 000 000 108 ÷ 2 = 30 847 000 000 000 000 000 000 000 000 000 000 054 + 0;
  • 30 847 000 000 000 000 000 000 000 000 000 000 054 ÷ 2 = 15 423 500 000 000 000 000 000 000 000 000 000 027 + 0;
  • 15 423 500 000 000 000 000 000 000 000 000 000 027 ÷ 2 = 7 711 750 000 000 000 000 000 000 000 000 000 013 + 1;
  • 7 711 750 000 000 000 000 000 000 000 000 000 013 ÷ 2 = 3 855 875 000 000 000 000 000 000 000 000 000 006 + 1;
  • 3 855 875 000 000 000 000 000 000 000 000 000 006 ÷ 2 = 1 927 937 500 000 000 000 000 000 000 000 000 003 + 0;
  • 1 927 937 500 000 000 000 000 000 000 000 000 003 ÷ 2 = 963 968 750 000 000 000 000 000 000 000 000 001 + 1;
  • 963 968 750 000 000 000 000 000 000 000 000 001 ÷ 2 = 481 984 375 000 000 000 000 000 000 000 000 000 + 1;
  • 481 984 375 000 000 000 000 000 000 000 000 000 ÷ 2 = 240 992 187 500 000 000 000 000 000 000 000 000 + 0;
  • 240 992 187 500 000 000 000 000 000 000 000 000 ÷ 2 = 120 496 093 750 000 000 000 000 000 000 000 000 + 0;
  • 120 496 093 750 000 000 000 000 000 000 000 000 ÷ 2 = 60 248 046 875 000 000 000 000 000 000 000 000 + 0;
  • 60 248 046 875 000 000 000 000 000 000 000 000 ÷ 2 = 30 124 023 437 500 000 000 000 000 000 000 000 + 0;
  • 30 124 023 437 500 000 000 000 000 000 000 000 ÷ 2 = 15 062 011 718 750 000 000 000 000 000 000 000 + 0;
  • 15 062 011 718 750 000 000 000 000 000 000 000 ÷ 2 = 7 531 005 859 375 000 000 000 000 000 000 000 + 0;
  • 7 531 005 859 375 000 000 000 000 000 000 000 ÷ 2 = 3 765 502 929 687 500 000 000 000 000 000 000 + 0;
  • 3 765 502 929 687 500 000 000 000 000 000 000 ÷ 2 = 1 882 751 464 843 750 000 000 000 000 000 000 + 0;
  • 1 882 751 464 843 750 000 000 000 000 000 000 ÷ 2 = 941 375 732 421 875 000 000 000 000 000 000 + 0;
  • 941 375 732 421 875 000 000 000 000 000 000 ÷ 2 = 470 687 866 210 937 500 000 000 000 000 000 + 0;
  • 470 687 866 210 937 500 000 000 000 000 000 ÷ 2 = 235 343 933 105 468 750 000 000 000 000 000 + 0;
  • 235 343 933 105 468 750 000 000 000 000 000 ÷ 2 = 117 671 966 552 734 375 000 000 000 000 000 + 0;
  • 117 671 966 552 734 375 000 000 000 000 000 ÷ 2 = 58 835 983 276 367 187 500 000 000 000 000 + 0;
  • 58 835 983 276 367 187 500 000 000 000 000 ÷ 2 = 29 417 991 638 183 593 750 000 000 000 000 + 0;
  • 29 417 991 638 183 593 750 000 000 000 000 ÷ 2 = 14 708 995 819 091 796 875 000 000 000 000 + 0;
  • 14 708 995 819 091 796 875 000 000 000 000 ÷ 2 = 7 354 497 909 545 898 437 500 000 000 000 + 0;
  • 7 354 497 909 545 898 437 500 000 000 000 ÷ 2 = 3 677 248 954 772 949 218 750 000 000 000 + 0;
  • 3 677 248 954 772 949 218 750 000 000 000 ÷ 2 = 1 838 624 477 386 474 609 375 000 000 000 + 0;
  • 1 838 624 477 386 474 609 375 000 000 000 ÷ 2 = 919 312 238 693 237 304 687 500 000 000 + 0;
  • 919 312 238 693 237 304 687 500 000 000 ÷ 2 = 459 656 119 346 618 652 343 750 000 000 + 0;
  • 459 656 119 346 618 652 343 750 000 000 ÷ 2 = 229 828 059 673 309 326 171 875 000 000 + 0;
  • 229 828 059 673 309 326 171 875 000 000 ÷ 2 = 114 914 029 836 654 663 085 937 500 000 + 0;
  • 114 914 029 836 654 663 085 937 500 000 ÷ 2 = 57 457 014 918 327 331 542 968 750 000 + 0;
  • 57 457 014 918 327 331 542 968 750 000 ÷ 2 = 28 728 507 459 163 665 771 484 375 000 + 0;
  • 28 728 507 459 163 665 771 484 375 000 ÷ 2 = 14 364 253 729 581 832 885 742 187 500 + 0;
  • 14 364 253 729 581 832 885 742 187 500 ÷ 2 = 7 182 126 864 790 916 442 871 093 750 + 0;
  • 7 182 126 864 790 916 442 871 093 750 ÷ 2 = 3 591 063 432 395 458 221 435 546 875 + 0;
  • 3 591 063 432 395 458 221 435 546 875 ÷ 2 = 1 795 531 716 197 729 110 717 773 437 + 1;
  • 1 795 531 716 197 729 110 717 773 437 ÷ 2 = 897 765 858 098 864 555 358 886 718 + 1;
  • 897 765 858 098 864 555 358 886 718 ÷ 2 = 448 882 929 049 432 277 679 443 359 + 0;
  • 448 882 929 049 432 277 679 443 359 ÷ 2 = 224 441 464 524 716 138 839 721 679 + 1;
  • 224 441 464 524 716 138 839 721 679 ÷ 2 = 112 220 732 262 358 069 419 860 839 + 1;
  • 112 220 732 262 358 069 419 860 839 ÷ 2 = 56 110 366 131 179 034 709 930 419 + 1;
  • 56 110 366 131 179 034 709 930 419 ÷ 2 = 28 055 183 065 589 517 354 965 209 + 1;
  • 28 055 183 065 589 517 354 965 209 ÷ 2 = 14 027 591 532 794 758 677 482 604 + 1;
  • 14 027 591 532 794 758 677 482 604 ÷ 2 = 7 013 795 766 397 379 338 741 302 + 0;
  • 7 013 795 766 397 379 338 741 302 ÷ 2 = 3 506 897 883 198 689 669 370 651 + 0;
  • 3 506 897 883 198 689 669 370 651 ÷ 2 = 1 753 448 941 599 344 834 685 325 + 1;
  • 1 753 448 941 599 344 834 685 325 ÷ 2 = 876 724 470 799 672 417 342 662 + 1;
  • 876 724 470 799 672 417 342 662 ÷ 2 = 438 362 235 399 836 208 671 331 + 0;
  • 438 362 235 399 836 208 671 331 ÷ 2 = 219 181 117 699 918 104 335 665 + 1;
  • 219 181 117 699 918 104 335 665 ÷ 2 = 109 590 558 849 959 052 167 832 + 1;
  • 109 590 558 849 959 052 167 832 ÷ 2 = 54 795 279 424 979 526 083 916 + 0;
  • 54 795 279 424 979 526 083 916 ÷ 2 = 27 397 639 712 489 763 041 958 + 0;
  • 27 397 639 712 489 763 041 958 ÷ 2 = 13 698 819 856 244 881 520 979 + 0;
  • 13 698 819 856 244 881 520 979 ÷ 2 = 6 849 409 928 122 440 760 489 + 1;
  • 6 849 409 928 122 440 760 489 ÷ 2 = 3 424 704 964 061 220 380 244 + 1;
  • 3 424 704 964 061 220 380 244 ÷ 2 = 1 712 352 482 030 610 190 122 + 0;
  • 1 712 352 482 030 610 190 122 ÷ 2 = 856 176 241 015 305 095 061 + 0;
  • 856 176 241 015 305 095 061 ÷ 2 = 428 088 120 507 652 547 530 + 1;
  • 428 088 120 507 652 547 530 ÷ 2 = 214 044 060 253 826 273 765 + 0;
  • 214 044 060 253 826 273 765 ÷ 2 = 107 022 030 126 913 136 882 + 1;
  • 107 022 030 126 913 136 882 ÷ 2 = 53 511 015 063 456 568 441 + 0;
  • 53 511 015 063 456 568 441 ÷ 2 = 26 755 507 531 728 284 220 + 1;
  • 26 755 507 531 728 284 220 ÷ 2 = 13 377 753 765 864 142 110 + 0;
  • 13 377 753 765 864 142 110 ÷ 2 = 6 688 876 882 932 071 055 + 0;
  • 6 688 876 882 932 071 055 ÷ 2 = 3 344 438 441 466 035 527 + 1;
  • 3 344 438 441 466 035 527 ÷ 2 = 1 672 219 220 733 017 763 + 1;
  • 1 672 219 220 733 017 763 ÷ 2 = 836 109 610 366 508 881 + 1;
  • 836 109 610 366 508 881 ÷ 2 = 418 054 805 183 254 440 + 1;
  • 418 054 805 183 254 440 ÷ 2 = 209 027 402 591 627 220 + 0;
  • 209 027 402 591 627 220 ÷ 2 = 104 513 701 295 813 610 + 0;
  • 104 513 701 295 813 610 ÷ 2 = 52 256 850 647 906 805 + 0;
  • 52 256 850 647 906 805 ÷ 2 = 26 128 425 323 953 402 + 1;
  • 26 128 425 323 953 402 ÷ 2 = 13 064 212 661 976 701 + 0;
  • 13 064 212 661 976 701 ÷ 2 = 6 532 106 330 988 350 + 1;
  • 6 532 106 330 988 350 ÷ 2 = 3 266 053 165 494 175 + 0;
  • 3 266 053 165 494 175 ÷ 2 = 1 633 026 582 747 087 + 1;
  • 1 633 026 582 747 087 ÷ 2 = 816 513 291 373 543 + 1;
  • 816 513 291 373 543 ÷ 2 = 408 256 645 686 771 + 1;
  • 408 256 645 686 771 ÷ 2 = 204 128 322 843 385 + 1;
  • 204 128 322 843 385 ÷ 2 = 102 064 161 421 692 + 1;
  • 102 064 161 421 692 ÷ 2 = 51 032 080 710 846 + 0;
  • 51 032 080 710 846 ÷ 2 = 25 516 040 355 423 + 0;
  • 25 516 040 355 423 ÷ 2 = 12 758 020 177 711 + 1;
  • 12 758 020 177 711 ÷ 2 = 6 379 010 088 855 + 1;
  • 6 379 010 088 855 ÷ 2 = 3 189 505 044 427 + 1;
  • 3 189 505 044 427 ÷ 2 = 1 594 752 522 213 + 1;
  • 1 594 752 522 213 ÷ 2 = 797 376 261 106 + 1;
  • 797 376 261 106 ÷ 2 = 398 688 130 553 + 0;
  • 398 688 130 553 ÷ 2 = 199 344 065 276 + 1;
  • 199 344 065 276 ÷ 2 = 99 672 032 638 + 0;
  • 99 672 032 638 ÷ 2 = 49 836 016 319 + 0;
  • 49 836 016 319 ÷ 2 = 24 918 008 159 + 1;
  • 24 918 008 159 ÷ 2 = 12 459 004 079 + 1;
  • 12 459 004 079 ÷ 2 = 6 229 502 039 + 1;
  • 6 229 502 039 ÷ 2 = 3 114 751 019 + 1;
  • 3 114 751 019 ÷ 2 = 1 557 375 509 + 1;
  • 1 557 375 509 ÷ 2 = 778 687 754 + 1;
  • 778 687 754 ÷ 2 = 389 343 877 + 0;
  • 389 343 877 ÷ 2 = 194 671 938 + 1;
  • 194 671 938 ÷ 2 = 97 335 969 + 0;
  • 97 335 969 ÷ 2 = 48 667 984 + 1;
  • 48 667 984 ÷ 2 = 24 333 992 + 0;
  • 24 333 992 ÷ 2 = 12 166 996 + 0;
  • 12 166 996 ÷ 2 = 6 083 498 + 0;
  • 6 083 498 ÷ 2 = 3 041 749 + 0;
  • 3 041 749 ÷ 2 = 1 520 874 + 1;
  • 1 520 874 ÷ 2 = 760 437 + 0;
  • 760 437 ÷ 2 = 380 218 + 1;
  • 380 218 ÷ 2 = 190 109 + 0;
  • 190 109 ÷ 2 = 95 054 + 1;
  • 95 054 ÷ 2 = 47 527 + 0;
  • 47 527 ÷ 2 = 23 763 + 1;
  • 23 763 ÷ 2 = 11 881 + 1;
  • 11 881 ÷ 2 = 5 940 + 1;
  • 5 940 ÷ 2 = 2 970 + 0;
  • 2 970 ÷ 2 = 1 485 + 0;
  • 1 485 ÷ 2 = 742 + 1;
  • 742 ÷ 2 = 371 + 0;
  • 371 ÷ 2 = 185 + 1;
  • 185 ÷ 2 = 92 + 1;
  • 92 ÷ 2 = 46 + 0;
  • 46 ÷ 2 = 23 + 0;
  • 23 ÷ 2 = 11 + 1;
  • 11 ÷ 2 = 5 + 1;
  • 5 ÷ 2 = 2 + 1;
  • 2 ÷ 2 = 1 + 0;
  • 1 ÷ 2 = 0 + 1;

3. Construct the base 2 representation of the positive number.

Take all the remainders starting from the bottom of the list constructed above.


61 694 000 000 000 000 000 000 000 000 000 000 108(10) =


10 1110 0110 1001 1101 0101 0000 1010 1111 1100 1011 1110 0111 1101 0100 0111 1001 0101 0011 0001 1011 0011 1110 1100 0000 0000 0000 0000 0000 0000 0110 1100(2)


4. Normalize the binary representation of the number.

Shift the decimal mark 125 positions to the left, so that only one non zero digit remains to the left of it:


61 694 000 000 000 000 000 000 000 000 000 000 108(10) =


10 1110 0110 1001 1101 0101 0000 1010 1111 1100 1011 1110 0111 1101 0100 0111 1001 0101 0011 0001 1011 0011 1110 1100 0000 0000 0000 0000 0000 0000 0110 1100(2) =


10 1110 0110 1001 1101 0101 0000 1010 1111 1100 1011 1110 0111 1101 0100 0111 1001 0101 0011 0001 1011 0011 1110 1100 0000 0000 0000 0000 0000 0000 0110 1100(2) × 20 =


1.0111 0011 0100 1110 1010 1000 0101 0111 1110 0101 1111 0011 1110 1010 0011 1100 1010 1001 1000 1101 1001 1111 0110 0000 0000 0000 0000 0000 0000 0011 0110 0(2) × 2125


5. Up to this moment, there are the following elements that would feed into the 32 bit single precision IEEE 754 binary floating point representation:

Sign 1 (a negative number)


Exponent (unadjusted): 125


Mantissa (not normalized):
1.0111 0011 0100 1110 1010 1000 0101 0111 1110 0101 1111 0011 1110 1010 0011 1100 1010 1001 1000 1101 1001 1111 0110 0000 0000 0000 0000 0000 0000 0011 0110 0


6. Adjust the exponent.

Use the 8 bit excess/bias notation:


Exponent (adjusted) =


Exponent (unadjusted) + 2(8-1) - 1 =


125 + 2(8-1) - 1 =


(125 + 127)(10) =


252(10)


7. Convert the adjusted exponent from the decimal (base 10) to 8 bit binary.

Use the same technique of repeatedly dividing by 2:


  • division = quotient + remainder;
  • 252 ÷ 2 = 126 + 0;
  • 126 ÷ 2 = 63 + 0;
  • 63 ÷ 2 = 31 + 1;
  • 31 ÷ 2 = 15 + 1;
  • 15 ÷ 2 = 7 + 1;
  • 7 ÷ 2 = 3 + 1;
  • 3 ÷ 2 = 1 + 1;
  • 1 ÷ 2 = 0 + 1;

8. Construct the base 2 representation of the adjusted exponent.

Take all the remainders starting from the bottom of the list constructed above.


Exponent (adjusted) =


252(10) =


1111 1100(2)


9. Normalize the mantissa.

a) Remove the leading (the leftmost) bit, since it's allways 1, and the decimal point, if the case.


b) Adjust its length to 23 bits, by removing the excess bits, from the right (if any of the excess bits is set on 1, we are losing precision...).


Mantissa (normalized) =


1. 011 1001 1010 0111 0101 0100 00 1010 1111 1100 1011 1110 0111 1101 0100 0111 1001 0101 0011 0001 1011 0011 1110 1100 0000 0000 0000 0000 0000 0000 0110 1100 =


011 1001 1010 0111 0101 0100


10. The three elements that make up the number's 32 bit single precision IEEE 754 binary floating point representation:

Sign (1 bit) =
1 (a negative number)


Exponent (8 bits) =
1111 1100


Mantissa (23 bits) =
011 1001 1010 0111 0101 0100


The base ten decimal number -61 694 000 000 000 000 000 000 000 000 000 000 108 converted and written in 32 bit single precision IEEE 754 binary floating point representation:
1 - 1111 1100 - 011 1001 1010 0111 0101 0100

The latest decimal numbers converted from base ten to 32 bit single precision IEEE 754 floating point binary standard representation

Number 1 227 210 472 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard Apr 30 10:35 UTC (GMT)
Number 1 697 124 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard Apr 30 10:35 UTC (GMT)
Number 115 628 450 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard Apr 30 10:35 UTC (GMT)
Number 33 136 765 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard Apr 30 10:35 UTC (GMT)
Number 458 763 124.2 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard Apr 30 10:35 UTC (GMT)
Number 32 998 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard Apr 30 10:35 UTC (GMT)
Number 1 374.389 538 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard Apr 30 10:35 UTC (GMT)
Number 0.018 836 974 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard Apr 30 10:35 UTC (GMT)
Number 62 040 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard Apr 30 10:35 UTC (GMT)
Number -1 302.123 456 789 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard Apr 30 10:35 UTC (GMT)
All base ten decimal numbers converted to 32 bit single precision IEEE 754 binary floating point

How to convert decimal numbers from base ten to 32 bit single precision IEEE 754 binary floating point standard

Follow the steps below to convert a base 10 decimal number to 32 bit single precision IEEE 754 binary floating point:

  • 1. If the number to be converted is negative, start with its the positive version.
  • 2. First convert the integer part. Divide repeatedly by 2 the base ten positive representation of the integer number that is to be converted to binary, until we get a quotient that is equal to zero, keeping track of each remainder.
  • 3. Construct the base 2 representation of the positive integer part of the number, by taking all the remainders of the previous dividing operations, starting from the bottom of the list constructed above. Thus, the last remainder of the divisions becomes the first symbol (the leftmost) of the base two number, while the first remainder becomes the last symbol (the rightmost).
  • 4. Then convert the fractional part. Multiply the number repeatedly by 2, until we get a fractional part that is equal to zero, keeping track of each integer part of the results.
  • 5. Construct the base 2 representation of the fractional part of the number by taking all the integer parts of the previous multiplying operations, starting from the top of the constructed list above (they should appear in the binary representation, from left to right, in the order they have been calculated).
  • 6. Normalize the binary representation of the number, by shifting the decimal point (or if you prefer, the decimal mark) "n" positions either to the left or to the right, so that only one non zero digit remains to the left of the decimal point.
  • 7. Adjust the exponent in 8 bit excess/bias notation and then convert it from decimal (base 10) to 8 bit binary, by using the same technique of repeatedly dividing by 2, as shown above:
    Exponent (adjusted) = Exponent (unadjusted) + 2(8-1) - 1
  • 8. Normalize mantissa, remove the leading (leftmost) bit, since it's allways '1' (and the decimal sign if the case) and adjust its length to 23 bits, either by removing the excess bits from the right (losing precision...) or by adding extra '0' bits to the right.
  • 9. Sign (it takes 1 bit) is either 1 for a negative or 0 for a positive number.

Example: convert the negative number -25.347 from decimal system (base ten) to 32 bit single precision IEEE 754 binary floating point:

  • 1. Start with the positive version of the number:

    |-25.347| = 25.347

  • 2. First convert the integer part, 25. Divide it repeatedly by 2, keeping track of each remainder, until we get a quotient that is equal to zero:
    • division = quotient + remainder;
    • 25 ÷ 2 = 12 + 1;
    • 12 ÷ 2 = 6 + 0;
    • 6 ÷ 2 = 3 + 0;
    • 3 ÷ 2 = 1 + 1;
    • 1 ÷ 2 = 0 + 1;
    • We have encountered a quotient that is ZERO => FULL STOP
  • 3. Construct the base 2 representation of the integer part of the number by taking all the remainders of the previous dividing operations, starting from the bottom of the list constructed above:

    25(10) = 1 1001(2)

  • 4. Then convert the fractional part, 0.347. Multiply repeatedly by 2, keeping track of each integer part of the results, until we get a fractional part that is equal to zero:
    • #) multiplying = integer + fractional part;
    • 1) 0.347 × 2 = 0 + 0.694;
    • 2) 0.694 × 2 = 1 + 0.388;
    • 3) 0.388 × 2 = 0 + 0.776;
    • 4) 0.776 × 2 = 1 + 0.552;
    • 5) 0.552 × 2 = 1 + 0.104;
    • 6) 0.104 × 2 = 0 + 0.208;
    • 7) 0.208 × 2 = 0 + 0.416;
    • 8) 0.416 × 2 = 0 + 0.832;
    • 9) 0.832 × 2 = 1 + 0.664;
    • 10) 0.664 × 2 = 1 + 0.328;
    • 11) 0.328 × 2 = 0 + 0.656;
    • 12) 0.656 × 2 = 1 + 0.312;
    • 13) 0.312 × 2 = 0 + 0.624;
    • 14) 0.624 × 2 = 1 + 0.248;
    • 15) 0.248 × 2 = 0 + 0.496;
    • 16) 0.496 × 2 = 0 + 0.992;
    • 17) 0.992 × 2 = 1 + 0.984;
    • 18) 0.984 × 2 = 1 + 0.968;
    • 19) 0.968 × 2 = 1 + 0.936;
    • 20) 0.936 × 2 = 1 + 0.872;
    • 21) 0.872 × 2 = 1 + 0.744;
    • 22) 0.744 × 2 = 1 + 0.488;
    • 23) 0.488 × 2 = 0 + 0.976;
    • 24) 0.976 × 2 = 1 + 0.952;
    • We didn't get any fractional part that was equal to zero. But we had enough iterations (over Mantissa limit = 23) and at least one integer part that was different from zero => FULL STOP (losing precision...).
  • 5. Construct the base 2 representation of the fractional part of the number, by taking all the integer parts of the previous multiplying operations, starting from the top of the constructed list above:

    0.347(10) = 0.0101 1000 1101 0100 1111 1101(2)

  • 6. Summarizing - the positive number before normalization:

    25.347(10) = 1 1001.0101 1000 1101 0100 1111 1101(2)

  • 7. Normalize the binary representation of the number, shifting the decimal point 4 positions to the left so that only one non-zero digit stays to the left of the decimal point:

    25.347(10) =
    1 1001.0101 1000 1101 0100 1111 1101(2) =
    1 1001.0101 1000 1101 0100 1111 1101(2) × 20 =
    1.1001 0101 1000 1101 0100 1111 1101(2) × 24

  • 8. Up to this moment, there are the following elements that would feed into the 32 bit single precision IEEE 754 binary floating point:

    Sign: 1 (a negative number)

    Exponent (unadjusted): 4

    Mantissa (not-normalized): 1.1001 0101 1000 1101 0100 1111 1101

  • 9. Adjust the exponent in 8 bit excess/bias notation and then convert it from decimal (base 10) to 8 bit binary (base 2), by using the same technique of repeatedly dividing it by 2, as already demonstrated above:

    Exponent (adjusted) = Exponent (unadjusted) + 2(8-1) - 1 = (4 + 127)(10) = 131(10) =
    1000 0011(2)

  • 10. Normalize the mantissa, remove the leading (leftmost) bit, since it's allways '1' (and the decimal point) and adjust its length to 23 bits, by removing the excess bits from the right (losing precision...):

    Mantissa (not-normalized): 1.1001 0101 1000 1101 0100 1111 1101

    Mantissa (normalized): 100 1010 1100 0110 1010 0111

  • Conclusion:

    Sign (1 bit) = 1 (a negative number)

    Exponent (8 bits) = 1000 0011

    Mantissa (23 bits) = 100 1010 1100 0110 1010 0111

  • Number -25.347, converted from the decimal system (base 10) to 32 bit single precision IEEE 754 binary floating point =
    1 - 1000 0011 - 100 1010 1100 0110 1010 0111