32bit IEEE 754: Decimal ↗ Single Precision Floating Point Binary: -2 510 000 000 000 000 000 104 Convert the Number to 32 Bit Single Precision IEEE 754 Binary Floating Point Representation Standard, From a Base 10 Decimal System Number

Number -2 510 000 000 000 000 000 104(10) converted and written in 32 bit single precision IEEE 754 binary floating point representation (1 bit for sign, 8 bits for exponent, 23 bits for mantissa)

1. Start with the positive version of the number:

|-2 510 000 000 000 000 000 104| = 2 510 000 000 000 000 000 104

2. Divide the number repeatedly by 2.

Keep track of each remainder.

We stop when we get a quotient that is equal to zero.


  • division = quotient + remainder;
  • 2 510 000 000 000 000 000 104 ÷ 2 = 1 255 000 000 000 000 000 052 + 0;
  • 1 255 000 000 000 000 000 052 ÷ 2 = 627 500 000 000 000 000 026 + 0;
  • 627 500 000 000 000 000 026 ÷ 2 = 313 750 000 000 000 000 013 + 0;
  • 313 750 000 000 000 000 013 ÷ 2 = 156 875 000 000 000 000 006 + 1;
  • 156 875 000 000 000 000 006 ÷ 2 = 78 437 500 000 000 000 003 + 0;
  • 78 437 500 000 000 000 003 ÷ 2 = 39 218 750 000 000 000 001 + 1;
  • 39 218 750 000 000 000 001 ÷ 2 = 19 609 375 000 000 000 000 + 1;
  • 19 609 375 000 000 000 000 ÷ 2 = 9 804 687 500 000 000 000 + 0;
  • 9 804 687 500 000 000 000 ÷ 2 = 4 902 343 750 000 000 000 + 0;
  • 4 902 343 750 000 000 000 ÷ 2 = 2 451 171 875 000 000 000 + 0;
  • 2 451 171 875 000 000 000 ÷ 2 = 1 225 585 937 500 000 000 + 0;
  • 1 225 585 937 500 000 000 ÷ 2 = 612 792 968 750 000 000 + 0;
  • 612 792 968 750 000 000 ÷ 2 = 306 396 484 375 000 000 + 0;
  • 306 396 484 375 000 000 ÷ 2 = 153 198 242 187 500 000 + 0;
  • 153 198 242 187 500 000 ÷ 2 = 76 599 121 093 750 000 + 0;
  • 76 599 121 093 750 000 ÷ 2 = 38 299 560 546 875 000 + 0;
  • 38 299 560 546 875 000 ÷ 2 = 19 149 780 273 437 500 + 0;
  • 19 149 780 273 437 500 ÷ 2 = 9 574 890 136 718 750 + 0;
  • 9 574 890 136 718 750 ÷ 2 = 4 787 445 068 359 375 + 0;
  • 4 787 445 068 359 375 ÷ 2 = 2 393 722 534 179 687 + 1;
  • 2 393 722 534 179 687 ÷ 2 = 1 196 861 267 089 843 + 1;
  • 1 196 861 267 089 843 ÷ 2 = 598 430 633 544 921 + 1;
  • 598 430 633 544 921 ÷ 2 = 299 215 316 772 460 + 1;
  • 299 215 316 772 460 ÷ 2 = 149 607 658 386 230 + 0;
  • 149 607 658 386 230 ÷ 2 = 74 803 829 193 115 + 0;
  • 74 803 829 193 115 ÷ 2 = 37 401 914 596 557 + 1;
  • 37 401 914 596 557 ÷ 2 = 18 700 957 298 278 + 1;
  • 18 700 957 298 278 ÷ 2 = 9 350 478 649 139 + 0;
  • 9 350 478 649 139 ÷ 2 = 4 675 239 324 569 + 1;
  • 4 675 239 324 569 ÷ 2 = 2 337 619 662 284 + 1;
  • 2 337 619 662 284 ÷ 2 = 1 168 809 831 142 + 0;
  • 1 168 809 831 142 ÷ 2 = 584 404 915 571 + 0;
  • 584 404 915 571 ÷ 2 = 292 202 457 785 + 1;
  • 292 202 457 785 ÷ 2 = 146 101 228 892 + 1;
  • 146 101 228 892 ÷ 2 = 73 050 614 446 + 0;
  • 73 050 614 446 ÷ 2 = 36 525 307 223 + 0;
  • 36 525 307 223 ÷ 2 = 18 262 653 611 + 1;
  • 18 262 653 611 ÷ 2 = 9 131 326 805 + 1;
  • 9 131 326 805 ÷ 2 = 4 565 663 402 + 1;
  • 4 565 663 402 ÷ 2 = 2 282 831 701 + 0;
  • 2 282 831 701 ÷ 2 = 1 141 415 850 + 1;
  • 1 141 415 850 ÷ 2 = 570 707 925 + 0;
  • 570 707 925 ÷ 2 = 285 353 962 + 1;
  • 285 353 962 ÷ 2 = 142 676 981 + 0;
  • 142 676 981 ÷ 2 = 71 338 490 + 1;
  • 71 338 490 ÷ 2 = 35 669 245 + 0;
  • 35 669 245 ÷ 2 = 17 834 622 + 1;
  • 17 834 622 ÷ 2 = 8 917 311 + 0;
  • 8 917 311 ÷ 2 = 4 458 655 + 1;
  • 4 458 655 ÷ 2 = 2 229 327 + 1;
  • 2 229 327 ÷ 2 = 1 114 663 + 1;
  • 1 114 663 ÷ 2 = 557 331 + 1;
  • 557 331 ÷ 2 = 278 665 + 1;
  • 278 665 ÷ 2 = 139 332 + 1;
  • 139 332 ÷ 2 = 69 666 + 0;
  • 69 666 ÷ 2 = 34 833 + 0;
  • 34 833 ÷ 2 = 17 416 + 1;
  • 17 416 ÷ 2 = 8 708 + 0;
  • 8 708 ÷ 2 = 4 354 + 0;
  • 4 354 ÷ 2 = 2 177 + 0;
  • 2 177 ÷ 2 = 1 088 + 1;
  • 1 088 ÷ 2 = 544 + 0;
  • 544 ÷ 2 = 272 + 0;
  • 272 ÷ 2 = 136 + 0;
  • 136 ÷ 2 = 68 + 0;
  • 68 ÷ 2 = 34 + 0;
  • 34 ÷ 2 = 17 + 0;
  • 17 ÷ 2 = 8 + 1;
  • 8 ÷ 2 = 4 + 0;
  • 4 ÷ 2 = 2 + 0;
  • 2 ÷ 2 = 1 + 0;
  • 1 ÷ 2 = 0 + 1;

3. Construct the base 2 representation of the positive number.

Take all the remainders starting from the bottom of the list constructed above.


2 510 000 000 000 000 000 104(10) =


1000 1000 0001 0001 0011 1111 0101 0101 0111 0011 0011 0110 0111 1000 0000 0000 0110 1000(2)


4. Normalize the binary representation of the number.

Shift the decimal mark 71 positions to the left, so that only one non zero digit remains to the left of it:


2 510 000 000 000 000 000 104(10) =


1000 1000 0001 0001 0011 1111 0101 0101 0111 0011 0011 0110 0111 1000 0000 0000 0110 1000(2) =


1000 1000 0001 0001 0011 1111 0101 0101 0111 0011 0011 0110 0111 1000 0000 0000 0110 1000(2) × 20 =


1.0001 0000 0010 0010 0111 1110 1010 1010 1110 0110 0110 1100 1111 0000 0000 0000 1101 000(2) × 271


5. Up to this moment, there are the following elements that would feed into the 32 bit single precision IEEE 754 binary floating point representation:

Sign 1 (a negative number)


Exponent (unadjusted): 71


Mantissa (not normalized):
1.0001 0000 0010 0010 0111 1110 1010 1010 1110 0110 0110 1100 1111 0000 0000 0000 1101 000


6. Adjust the exponent.

Use the 8 bit excess/bias notation:


Exponent (adjusted) =


Exponent (unadjusted) + 2(8-1) - 1 =


71 + 2(8-1) - 1 =


(71 + 127)(10) =


198(10)


7. Convert the adjusted exponent from the decimal (base 10) to 8 bit binary.

Use the same technique of repeatedly dividing by 2:


  • division = quotient + remainder;
  • 198 ÷ 2 = 99 + 0;
  • 99 ÷ 2 = 49 + 1;
  • 49 ÷ 2 = 24 + 1;
  • 24 ÷ 2 = 12 + 0;
  • 12 ÷ 2 = 6 + 0;
  • 6 ÷ 2 = 3 + 0;
  • 3 ÷ 2 = 1 + 1;
  • 1 ÷ 2 = 0 + 1;

8. Construct the base 2 representation of the adjusted exponent.

Take all the remainders starting from the bottom of the list constructed above.


Exponent (adjusted) =


198(10) =


1100 0110(2)


9. Normalize the mantissa.

a) Remove the leading (the leftmost) bit, since it's allways 1, and the decimal point, if the case.


b) Adjust its length to 23 bits, by removing the excess bits, from the right (if any of the excess bits is set on 1, we are losing precision...).


Mantissa (normalized) =


1. 000 1000 0001 0001 0011 1111 0101 0101 0111 0011 0011 0110 0111 1000 0000 0000 0110 1000 =


000 1000 0001 0001 0011 1111


10. The three elements that make up the number's 32 bit single precision IEEE 754 binary floating point representation:

Sign (1 bit) =
1 (a negative number)


Exponent (8 bits) =
1100 0110


Mantissa (23 bits) =
000 1000 0001 0001 0011 1111


The base ten decimal number -2 510 000 000 000 000 000 104 converted and written in 32 bit single precision IEEE 754 binary floating point representation:
1 - 1100 0110 - 000 1000 0001 0001 0011 1111

The latest decimal numbers converted from base ten to 32 bit single precision IEEE 754 floating point binary standard representation

Number 3 545 522 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard May 22 00:58 UTC (GMT)
Number 13.125 010 000 5 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard May 22 00:58 UTC (GMT)
Number 23 939 019 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard May 22 00:58 UTC (GMT)
Number 53.73 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard May 22 00:58 UTC (GMT)
Number 11 000 001 100 110 100 000 000 000 000 099 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard May 22 00:58 UTC (GMT)
Number 0.18 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard May 22 00:57 UTC (GMT)
Number -163.874 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard May 22 00:57 UTC (GMT)
Number 0.069 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard May 22 00:57 UTC (GMT)
Number 0.069 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard May 22 00:57 UTC (GMT)
Number -19 441 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard May 22 00:57 UTC (GMT)
All base ten decimal numbers converted to 32 bit single precision IEEE 754 binary floating point

How to convert decimal numbers from base ten to 32 bit single precision IEEE 754 binary floating point standard

Follow the steps below to convert a base 10 decimal number to 32 bit single precision IEEE 754 binary floating point:

  • 1. If the number to be converted is negative, start with its the positive version.
  • 2. First convert the integer part. Divide repeatedly by 2 the base ten positive representation of the integer number that is to be converted to binary, until we get a quotient that is equal to zero, keeping track of each remainder.
  • 3. Construct the base 2 representation of the positive integer part of the number, by taking all the remainders of the previous dividing operations, starting from the bottom of the list constructed above. Thus, the last remainder of the divisions becomes the first symbol (the leftmost) of the base two number, while the first remainder becomes the last symbol (the rightmost).
  • 4. Then convert the fractional part. Multiply the number repeatedly by 2, until we get a fractional part that is equal to zero, keeping track of each integer part of the results.
  • 5. Construct the base 2 representation of the fractional part of the number by taking all the integer parts of the previous multiplying operations, starting from the top of the constructed list above (they should appear in the binary representation, from left to right, in the order they have been calculated).
  • 6. Normalize the binary representation of the number, by shifting the decimal point (or if you prefer, the decimal mark) "n" positions either to the left or to the right, so that only one non zero digit remains to the left of the decimal point.
  • 7. Adjust the exponent in 8 bit excess/bias notation and then convert it from decimal (base 10) to 8 bit binary, by using the same technique of repeatedly dividing by 2, as shown above:
    Exponent (adjusted) = Exponent (unadjusted) + 2(8-1) - 1
  • 8. Normalize mantissa, remove the leading (leftmost) bit, since it's allways '1' (and the decimal sign if the case) and adjust its length to 23 bits, either by removing the excess bits from the right (losing precision...) or by adding extra '0' bits to the right.
  • 9. Sign (it takes 1 bit) is either 1 for a negative or 0 for a positive number.

Example: convert the negative number -25.347 from decimal system (base ten) to 32 bit single precision IEEE 754 binary floating point:

  • 1. Start with the positive version of the number:

    |-25.347| = 25.347

  • 2. First convert the integer part, 25. Divide it repeatedly by 2, keeping track of each remainder, until we get a quotient that is equal to zero:
    • division = quotient + remainder;
    • 25 ÷ 2 = 12 + 1;
    • 12 ÷ 2 = 6 + 0;
    • 6 ÷ 2 = 3 + 0;
    • 3 ÷ 2 = 1 + 1;
    • 1 ÷ 2 = 0 + 1;
    • We have encountered a quotient that is ZERO => FULL STOP
  • 3. Construct the base 2 representation of the integer part of the number by taking all the remainders of the previous dividing operations, starting from the bottom of the list constructed above:

    25(10) = 1 1001(2)

  • 4. Then convert the fractional part, 0.347. Multiply repeatedly by 2, keeping track of each integer part of the results, until we get a fractional part that is equal to zero:
    • #) multiplying = integer + fractional part;
    • 1) 0.347 × 2 = 0 + 0.694;
    • 2) 0.694 × 2 = 1 + 0.388;
    • 3) 0.388 × 2 = 0 + 0.776;
    • 4) 0.776 × 2 = 1 + 0.552;
    • 5) 0.552 × 2 = 1 + 0.104;
    • 6) 0.104 × 2 = 0 + 0.208;
    • 7) 0.208 × 2 = 0 + 0.416;
    • 8) 0.416 × 2 = 0 + 0.832;
    • 9) 0.832 × 2 = 1 + 0.664;
    • 10) 0.664 × 2 = 1 + 0.328;
    • 11) 0.328 × 2 = 0 + 0.656;
    • 12) 0.656 × 2 = 1 + 0.312;
    • 13) 0.312 × 2 = 0 + 0.624;
    • 14) 0.624 × 2 = 1 + 0.248;
    • 15) 0.248 × 2 = 0 + 0.496;
    • 16) 0.496 × 2 = 0 + 0.992;
    • 17) 0.992 × 2 = 1 + 0.984;
    • 18) 0.984 × 2 = 1 + 0.968;
    • 19) 0.968 × 2 = 1 + 0.936;
    • 20) 0.936 × 2 = 1 + 0.872;
    • 21) 0.872 × 2 = 1 + 0.744;
    • 22) 0.744 × 2 = 1 + 0.488;
    • 23) 0.488 × 2 = 0 + 0.976;
    • 24) 0.976 × 2 = 1 + 0.952;
    • We didn't get any fractional part that was equal to zero. But we had enough iterations (over Mantissa limit = 23) and at least one integer part that was different from zero => FULL STOP (losing precision...).
  • 5. Construct the base 2 representation of the fractional part of the number, by taking all the integer parts of the previous multiplying operations, starting from the top of the constructed list above:

    0.347(10) = 0.0101 1000 1101 0100 1111 1101(2)

  • 6. Summarizing - the positive number before normalization:

    25.347(10) = 1 1001.0101 1000 1101 0100 1111 1101(2)

  • 7. Normalize the binary representation of the number, shifting the decimal point 4 positions to the left so that only one non-zero digit stays to the left of the decimal point:

    25.347(10) =
    1 1001.0101 1000 1101 0100 1111 1101(2) =
    1 1001.0101 1000 1101 0100 1111 1101(2) × 20 =
    1.1001 0101 1000 1101 0100 1111 1101(2) × 24

  • 8. Up to this moment, there are the following elements that would feed into the 32 bit single precision IEEE 754 binary floating point:

    Sign: 1 (a negative number)

    Exponent (unadjusted): 4

    Mantissa (not-normalized): 1.1001 0101 1000 1101 0100 1111 1101

  • 9. Adjust the exponent in 8 bit excess/bias notation and then convert it from decimal (base 10) to 8 bit binary (base 2), by using the same technique of repeatedly dividing it by 2, as already demonstrated above:

    Exponent (adjusted) = Exponent (unadjusted) + 2(8-1) - 1 = (4 + 127)(10) = 131(10) =
    1000 0011(2)

  • 10. Normalize the mantissa, remove the leading (leftmost) bit, since it's allways '1' (and the decimal point) and adjust its length to 23 bits, by removing the excess bits from the right (losing precision...):

    Mantissa (not-normalized): 1.1001 0101 1000 1101 0100 1111 1101

    Mantissa (normalized): 100 1010 1100 0110 1010 0111

  • Conclusion:

    Sign (1 bit) = 1 (a negative number)

    Exponent (8 bits) = 1000 0011

    Mantissa (23 bits) = 100 1010 1100 0110 1010 0111

  • Number -25.347, converted from the decimal system (base 10) to 32 bit single precision IEEE 754 binary floating point =
    1 - 1000 0011 - 100 1010 1100 0110 1010 0111