32bit IEEE 754: Decimal ↗ Single Precision Floating Point Binary: -11 000 000 110 999 999 999 999 999 999 960 Convert the Number to 32 Bit Single Precision IEEE 754 Binary Floating Point Representation Standard, From a Base 10 Decimal System Number

Number -11 000 000 110 999 999 999 999 999 999 960(10) converted and written in 32 bit single precision IEEE 754 binary floating point representation (1 bit for sign, 8 bits for exponent, 23 bits for mantissa)

1. Start with the positive version of the number:

|-11 000 000 110 999 999 999 999 999 999 960| = 11 000 000 110 999 999 999 999 999 999 960

2. Divide the number repeatedly by 2.

Keep track of each remainder.

We stop when we get a quotient that is equal to zero.


  • division = quotient + remainder;
  • 11 000 000 110 999 999 999 999 999 999 960 ÷ 2 = 5 500 000 055 499 999 999 999 999 999 980 + 0;
  • 5 500 000 055 499 999 999 999 999 999 980 ÷ 2 = 2 750 000 027 749 999 999 999 999 999 990 + 0;
  • 2 750 000 027 749 999 999 999 999 999 990 ÷ 2 = 1 375 000 013 874 999 999 999 999 999 995 + 0;
  • 1 375 000 013 874 999 999 999 999 999 995 ÷ 2 = 687 500 006 937 499 999 999 999 999 997 + 1;
  • 687 500 006 937 499 999 999 999 999 997 ÷ 2 = 343 750 003 468 749 999 999 999 999 998 + 1;
  • 343 750 003 468 749 999 999 999 999 998 ÷ 2 = 171 875 001 734 374 999 999 999 999 999 + 0;
  • 171 875 001 734 374 999 999 999 999 999 ÷ 2 = 85 937 500 867 187 499 999 999 999 999 + 1;
  • 85 937 500 867 187 499 999 999 999 999 ÷ 2 = 42 968 750 433 593 749 999 999 999 999 + 1;
  • 42 968 750 433 593 749 999 999 999 999 ÷ 2 = 21 484 375 216 796 874 999 999 999 999 + 1;
  • 21 484 375 216 796 874 999 999 999 999 ÷ 2 = 10 742 187 608 398 437 499 999 999 999 + 1;
  • 10 742 187 608 398 437 499 999 999 999 ÷ 2 = 5 371 093 804 199 218 749 999 999 999 + 1;
  • 5 371 093 804 199 218 749 999 999 999 ÷ 2 = 2 685 546 902 099 609 374 999 999 999 + 1;
  • 2 685 546 902 099 609 374 999 999 999 ÷ 2 = 1 342 773 451 049 804 687 499 999 999 + 1;
  • 1 342 773 451 049 804 687 499 999 999 ÷ 2 = 671 386 725 524 902 343 749 999 999 + 1;
  • 671 386 725 524 902 343 749 999 999 ÷ 2 = 335 693 362 762 451 171 874 999 999 + 1;
  • 335 693 362 762 451 171 874 999 999 ÷ 2 = 167 846 681 381 225 585 937 499 999 + 1;
  • 167 846 681 381 225 585 937 499 999 ÷ 2 = 83 923 340 690 612 792 968 749 999 + 1;
  • 83 923 340 690 612 792 968 749 999 ÷ 2 = 41 961 670 345 306 396 484 374 999 + 1;
  • 41 961 670 345 306 396 484 374 999 ÷ 2 = 20 980 835 172 653 198 242 187 499 + 1;
  • 20 980 835 172 653 198 242 187 499 ÷ 2 = 10 490 417 586 326 599 121 093 749 + 1;
  • 10 490 417 586 326 599 121 093 749 ÷ 2 = 5 245 208 793 163 299 560 546 874 + 1;
  • 5 245 208 793 163 299 560 546 874 ÷ 2 = 2 622 604 396 581 649 780 273 437 + 0;
  • 2 622 604 396 581 649 780 273 437 ÷ 2 = 1 311 302 198 290 824 890 136 718 + 1;
  • 1 311 302 198 290 824 890 136 718 ÷ 2 = 655 651 099 145 412 445 068 359 + 0;
  • 655 651 099 145 412 445 068 359 ÷ 2 = 327 825 549 572 706 222 534 179 + 1;
  • 327 825 549 572 706 222 534 179 ÷ 2 = 163 912 774 786 353 111 267 089 + 1;
  • 163 912 774 786 353 111 267 089 ÷ 2 = 81 956 387 393 176 555 633 544 + 1;
  • 81 956 387 393 176 555 633 544 ÷ 2 = 40 978 193 696 588 277 816 772 + 0;
  • 40 978 193 696 588 277 816 772 ÷ 2 = 20 489 096 848 294 138 908 386 + 0;
  • 20 489 096 848 294 138 908 386 ÷ 2 = 10 244 548 424 147 069 454 193 + 0;
  • 10 244 548 424 147 069 454 193 ÷ 2 = 5 122 274 212 073 534 727 096 + 1;
  • 5 122 274 212 073 534 727 096 ÷ 2 = 2 561 137 106 036 767 363 548 + 0;
  • 2 561 137 106 036 767 363 548 ÷ 2 = 1 280 568 553 018 383 681 774 + 0;
  • 1 280 568 553 018 383 681 774 ÷ 2 = 640 284 276 509 191 840 887 + 0;
  • 640 284 276 509 191 840 887 ÷ 2 = 320 142 138 254 595 920 443 + 1;
  • 320 142 138 254 595 920 443 ÷ 2 = 160 071 069 127 297 960 221 + 1;
  • 160 071 069 127 297 960 221 ÷ 2 = 80 035 534 563 648 980 110 + 1;
  • 80 035 534 563 648 980 110 ÷ 2 = 40 017 767 281 824 490 055 + 0;
  • 40 017 767 281 824 490 055 ÷ 2 = 20 008 883 640 912 245 027 + 1;
  • 20 008 883 640 912 245 027 ÷ 2 = 10 004 441 820 456 122 513 + 1;
  • 10 004 441 820 456 122 513 ÷ 2 = 5 002 220 910 228 061 256 + 1;
  • 5 002 220 910 228 061 256 ÷ 2 = 2 501 110 455 114 030 628 + 0;
  • 2 501 110 455 114 030 628 ÷ 2 = 1 250 555 227 557 015 314 + 0;
  • 1 250 555 227 557 015 314 ÷ 2 = 625 277 613 778 507 657 + 0;
  • 625 277 613 778 507 657 ÷ 2 = 312 638 806 889 253 828 + 1;
  • 312 638 806 889 253 828 ÷ 2 = 156 319 403 444 626 914 + 0;
  • 156 319 403 444 626 914 ÷ 2 = 78 159 701 722 313 457 + 0;
  • 78 159 701 722 313 457 ÷ 2 = 39 079 850 861 156 728 + 1;
  • 39 079 850 861 156 728 ÷ 2 = 19 539 925 430 578 364 + 0;
  • 19 539 925 430 578 364 ÷ 2 = 9 769 962 715 289 182 + 0;
  • 9 769 962 715 289 182 ÷ 2 = 4 884 981 357 644 591 + 0;
  • 4 884 981 357 644 591 ÷ 2 = 2 442 490 678 822 295 + 1;
  • 2 442 490 678 822 295 ÷ 2 = 1 221 245 339 411 147 + 1;
  • 1 221 245 339 411 147 ÷ 2 = 610 622 669 705 573 + 1;
  • 610 622 669 705 573 ÷ 2 = 305 311 334 852 786 + 1;
  • 305 311 334 852 786 ÷ 2 = 152 655 667 426 393 + 0;
  • 152 655 667 426 393 ÷ 2 = 76 327 833 713 196 + 1;
  • 76 327 833 713 196 ÷ 2 = 38 163 916 856 598 + 0;
  • 38 163 916 856 598 ÷ 2 = 19 081 958 428 299 + 0;
  • 19 081 958 428 299 ÷ 2 = 9 540 979 214 149 + 1;
  • 9 540 979 214 149 ÷ 2 = 4 770 489 607 074 + 1;
  • 4 770 489 607 074 ÷ 2 = 2 385 244 803 537 + 0;
  • 2 385 244 803 537 ÷ 2 = 1 192 622 401 768 + 1;
  • 1 192 622 401 768 ÷ 2 = 596 311 200 884 + 0;
  • 596 311 200 884 ÷ 2 = 298 155 600 442 + 0;
  • 298 155 600 442 ÷ 2 = 149 077 800 221 + 0;
  • 149 077 800 221 ÷ 2 = 74 538 900 110 + 1;
  • 74 538 900 110 ÷ 2 = 37 269 450 055 + 0;
  • 37 269 450 055 ÷ 2 = 18 634 725 027 + 1;
  • 18 634 725 027 ÷ 2 = 9 317 362 513 + 1;
  • 9 317 362 513 ÷ 2 = 4 658 681 256 + 1;
  • 4 658 681 256 ÷ 2 = 2 329 340 628 + 0;
  • 2 329 340 628 ÷ 2 = 1 164 670 314 + 0;
  • 1 164 670 314 ÷ 2 = 582 335 157 + 0;
  • 582 335 157 ÷ 2 = 291 167 578 + 1;
  • 291 167 578 ÷ 2 = 145 583 789 + 0;
  • 145 583 789 ÷ 2 = 72 791 894 + 1;
  • 72 791 894 ÷ 2 = 36 395 947 + 0;
  • 36 395 947 ÷ 2 = 18 197 973 + 1;
  • 18 197 973 ÷ 2 = 9 098 986 + 1;
  • 9 098 986 ÷ 2 = 4 549 493 + 0;
  • 4 549 493 ÷ 2 = 2 274 746 + 1;
  • 2 274 746 ÷ 2 = 1 137 373 + 0;
  • 1 137 373 ÷ 2 = 568 686 + 1;
  • 568 686 ÷ 2 = 284 343 + 0;
  • 284 343 ÷ 2 = 142 171 + 1;
  • 142 171 ÷ 2 = 71 085 + 1;
  • 71 085 ÷ 2 = 35 542 + 1;
  • 35 542 ÷ 2 = 17 771 + 0;
  • 17 771 ÷ 2 = 8 885 + 1;
  • 8 885 ÷ 2 = 4 442 + 1;
  • 4 442 ÷ 2 = 2 221 + 0;
  • 2 221 ÷ 2 = 1 110 + 1;
  • 1 110 ÷ 2 = 555 + 0;
  • 555 ÷ 2 = 277 + 1;
  • 277 ÷ 2 = 138 + 1;
  • 138 ÷ 2 = 69 + 0;
  • 69 ÷ 2 = 34 + 1;
  • 34 ÷ 2 = 17 + 0;
  • 17 ÷ 2 = 8 + 1;
  • 8 ÷ 2 = 4 + 0;
  • 4 ÷ 2 = 2 + 0;
  • 2 ÷ 2 = 1 + 0;
  • 1 ÷ 2 = 0 + 1;

3. Construct the base 2 representation of the positive number.

Take all the remainders starting from the bottom of the list constructed above.


11 000 000 110 999 999 999 999 999 999 960(10) =


1000 1010 1101 0110 1110 1010 1101 0100 0111 0100 0101 1001 0111 1000 1001 0001 1101 1100 0100 0111 0101 1111 1111 1111 1101 1000(2)


4. Normalize the binary representation of the number.

Shift the decimal mark 103 positions to the left, so that only one non zero digit remains to the left of it:


11 000 000 110 999 999 999 999 999 999 960(10) =


1000 1010 1101 0110 1110 1010 1101 0100 0111 0100 0101 1001 0111 1000 1001 0001 1101 1100 0100 0111 0101 1111 1111 1111 1101 1000(2) =


1000 1010 1101 0110 1110 1010 1101 0100 0111 0100 0101 1001 0111 1000 1001 0001 1101 1100 0100 0111 0101 1111 1111 1111 1101 1000(2) × 20 =


1.0001 0101 1010 1101 1101 0101 1010 1000 1110 1000 1011 0010 1111 0001 0010 0011 1011 1000 1000 1110 1011 1111 1111 1111 1011 000(2) × 2103


5. Up to this moment, there are the following elements that would feed into the 32 bit single precision IEEE 754 binary floating point representation:

Sign 1 (a negative number)


Exponent (unadjusted): 103


Mantissa (not normalized):
1.0001 0101 1010 1101 1101 0101 1010 1000 1110 1000 1011 0010 1111 0001 0010 0011 1011 1000 1000 1110 1011 1111 1111 1111 1011 000


6. Adjust the exponent.

Use the 8 bit excess/bias notation:


Exponent (adjusted) =


Exponent (unadjusted) + 2(8-1) - 1 =


103 + 2(8-1) - 1 =


(103 + 127)(10) =


230(10)


7. Convert the adjusted exponent from the decimal (base 10) to 8 bit binary.

Use the same technique of repeatedly dividing by 2:


  • division = quotient + remainder;
  • 230 ÷ 2 = 115 + 0;
  • 115 ÷ 2 = 57 + 1;
  • 57 ÷ 2 = 28 + 1;
  • 28 ÷ 2 = 14 + 0;
  • 14 ÷ 2 = 7 + 0;
  • 7 ÷ 2 = 3 + 1;
  • 3 ÷ 2 = 1 + 1;
  • 1 ÷ 2 = 0 + 1;

8. Construct the base 2 representation of the adjusted exponent.

Take all the remainders starting from the bottom of the list constructed above.


Exponent (adjusted) =


230(10) =


1110 0110(2)


9. Normalize the mantissa.

a) Remove the leading (the leftmost) bit, since it's allways 1, and the decimal point, if the case.


b) Adjust its length to 23 bits, by removing the excess bits, from the right (if any of the excess bits is set on 1, we are losing precision...).


Mantissa (normalized) =


1. 000 1010 1101 0110 1110 1010 1101 0100 0111 0100 0101 1001 0111 1000 1001 0001 1101 1100 0100 0111 0101 1111 1111 1111 1101 1000 =


000 1010 1101 0110 1110 1010


10. The three elements that make up the number's 32 bit single precision IEEE 754 binary floating point representation:

Sign (1 bit) =
1 (a negative number)


Exponent (8 bits) =
1110 0110


Mantissa (23 bits) =
000 1010 1101 0110 1110 1010


The base ten decimal number -11 000 000 110 999 999 999 999 999 999 960 converted and written in 32 bit single precision IEEE 754 binary floating point representation:
1 - 1110 0110 - 000 1010 1101 0110 1110 1010

The latest decimal numbers converted from base ten to 32 bit single precision IEEE 754 floating point binary standard representation

Number -69.812 7 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard May 01 00:12 UTC (GMT)
Number 1 499 922 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard May 01 00:12 UTC (GMT)
Number -21.98 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard May 01 00:12 UTC (GMT)
Number 0.500 000 05 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard May 01 00:12 UTC (GMT)
Number 1 001.110 111 01 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard May 01 00:12 UTC (GMT)
Number 1 007.343 1 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard May 01 00:12 UTC (GMT)
Number -2 317.7 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard May 01 00:12 UTC (GMT)
Number 231.111 3 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard May 01 00:12 UTC (GMT)
Number 218.41 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard May 01 00:12 UTC (GMT)
Number 275 347 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard May 01 00:12 UTC (GMT)
All base ten decimal numbers converted to 32 bit single precision IEEE 754 binary floating point

How to convert decimal numbers from base ten to 32 bit single precision IEEE 754 binary floating point standard

Follow the steps below to convert a base 10 decimal number to 32 bit single precision IEEE 754 binary floating point:

  • 1. If the number to be converted is negative, start with its the positive version.
  • 2. First convert the integer part. Divide repeatedly by 2 the base ten positive representation of the integer number that is to be converted to binary, until we get a quotient that is equal to zero, keeping track of each remainder.
  • 3. Construct the base 2 representation of the positive integer part of the number, by taking all the remainders of the previous dividing operations, starting from the bottom of the list constructed above. Thus, the last remainder of the divisions becomes the first symbol (the leftmost) of the base two number, while the first remainder becomes the last symbol (the rightmost).
  • 4. Then convert the fractional part. Multiply the number repeatedly by 2, until we get a fractional part that is equal to zero, keeping track of each integer part of the results.
  • 5. Construct the base 2 representation of the fractional part of the number by taking all the integer parts of the previous multiplying operations, starting from the top of the constructed list above (they should appear in the binary representation, from left to right, in the order they have been calculated).
  • 6. Normalize the binary representation of the number, by shifting the decimal point (or if you prefer, the decimal mark) "n" positions either to the left or to the right, so that only one non zero digit remains to the left of the decimal point.
  • 7. Adjust the exponent in 8 bit excess/bias notation and then convert it from decimal (base 10) to 8 bit binary, by using the same technique of repeatedly dividing by 2, as shown above:
    Exponent (adjusted) = Exponent (unadjusted) + 2(8-1) - 1
  • 8. Normalize mantissa, remove the leading (leftmost) bit, since it's allways '1' (and the decimal sign if the case) and adjust its length to 23 bits, either by removing the excess bits from the right (losing precision...) or by adding extra '0' bits to the right.
  • 9. Sign (it takes 1 bit) is either 1 for a negative or 0 for a positive number.

Example: convert the negative number -25.347 from decimal system (base ten) to 32 bit single precision IEEE 754 binary floating point:

  • 1. Start with the positive version of the number:

    |-25.347| = 25.347

  • 2. First convert the integer part, 25. Divide it repeatedly by 2, keeping track of each remainder, until we get a quotient that is equal to zero:
    • division = quotient + remainder;
    • 25 ÷ 2 = 12 + 1;
    • 12 ÷ 2 = 6 + 0;
    • 6 ÷ 2 = 3 + 0;
    • 3 ÷ 2 = 1 + 1;
    • 1 ÷ 2 = 0 + 1;
    • We have encountered a quotient that is ZERO => FULL STOP
  • 3. Construct the base 2 representation of the integer part of the number by taking all the remainders of the previous dividing operations, starting from the bottom of the list constructed above:

    25(10) = 1 1001(2)

  • 4. Then convert the fractional part, 0.347. Multiply repeatedly by 2, keeping track of each integer part of the results, until we get a fractional part that is equal to zero:
    • #) multiplying = integer + fractional part;
    • 1) 0.347 × 2 = 0 + 0.694;
    • 2) 0.694 × 2 = 1 + 0.388;
    • 3) 0.388 × 2 = 0 + 0.776;
    • 4) 0.776 × 2 = 1 + 0.552;
    • 5) 0.552 × 2 = 1 + 0.104;
    • 6) 0.104 × 2 = 0 + 0.208;
    • 7) 0.208 × 2 = 0 + 0.416;
    • 8) 0.416 × 2 = 0 + 0.832;
    • 9) 0.832 × 2 = 1 + 0.664;
    • 10) 0.664 × 2 = 1 + 0.328;
    • 11) 0.328 × 2 = 0 + 0.656;
    • 12) 0.656 × 2 = 1 + 0.312;
    • 13) 0.312 × 2 = 0 + 0.624;
    • 14) 0.624 × 2 = 1 + 0.248;
    • 15) 0.248 × 2 = 0 + 0.496;
    • 16) 0.496 × 2 = 0 + 0.992;
    • 17) 0.992 × 2 = 1 + 0.984;
    • 18) 0.984 × 2 = 1 + 0.968;
    • 19) 0.968 × 2 = 1 + 0.936;
    • 20) 0.936 × 2 = 1 + 0.872;
    • 21) 0.872 × 2 = 1 + 0.744;
    • 22) 0.744 × 2 = 1 + 0.488;
    • 23) 0.488 × 2 = 0 + 0.976;
    • 24) 0.976 × 2 = 1 + 0.952;
    • We didn't get any fractional part that was equal to zero. But we had enough iterations (over Mantissa limit = 23) and at least one integer part that was different from zero => FULL STOP (losing precision...).
  • 5. Construct the base 2 representation of the fractional part of the number, by taking all the integer parts of the previous multiplying operations, starting from the top of the constructed list above:

    0.347(10) = 0.0101 1000 1101 0100 1111 1101(2)

  • 6. Summarizing - the positive number before normalization:

    25.347(10) = 1 1001.0101 1000 1101 0100 1111 1101(2)

  • 7. Normalize the binary representation of the number, shifting the decimal point 4 positions to the left so that only one non-zero digit stays to the left of the decimal point:

    25.347(10) =
    1 1001.0101 1000 1101 0100 1111 1101(2) =
    1 1001.0101 1000 1101 0100 1111 1101(2) × 20 =
    1.1001 0101 1000 1101 0100 1111 1101(2) × 24

  • 8. Up to this moment, there are the following elements that would feed into the 32 bit single precision IEEE 754 binary floating point:

    Sign: 1 (a negative number)

    Exponent (unadjusted): 4

    Mantissa (not-normalized): 1.1001 0101 1000 1101 0100 1111 1101

  • 9. Adjust the exponent in 8 bit excess/bias notation and then convert it from decimal (base 10) to 8 bit binary (base 2), by using the same technique of repeatedly dividing it by 2, as already demonstrated above:

    Exponent (adjusted) = Exponent (unadjusted) + 2(8-1) - 1 = (4 + 127)(10) = 131(10) =
    1000 0011(2)

  • 10. Normalize the mantissa, remove the leading (leftmost) bit, since it's allways '1' (and the decimal point) and adjust its length to 23 bits, by removing the excess bits from the right (losing precision...):

    Mantissa (not-normalized): 1.1001 0101 1000 1101 0100 1111 1101

    Mantissa (normalized): 100 1010 1100 0110 1010 0111

  • Conclusion:

    Sign (1 bit) = 1 (a negative number)

    Exponent (8 bits) = 1000 0011

    Mantissa (23 bits) = 100 1010 1100 0110 1010 0111

  • Number -25.347, converted from the decimal system (base 10) to 32 bit single precision IEEE 754 binary floating point =
    1 - 1000 0011 - 100 1010 1100 0110 1010 0111