32bit IEEE 754: Decimal ↗ Single Precision Floating Point Binary: -0.000 000 000 000 000 000 000 000 000 000 000 000 007 Convert the Number to 32 Bit Single Precision IEEE 754 Binary Floating Point Representation Standard, From a Base 10 Decimal System Number

Number -0.000 000 000 000 000 000 000 000 000 000 000 000 007(10) converted and written in 32 bit single precision IEEE 754 binary floating point representation (1 bit for sign, 8 bits for exponent, 23 bits for mantissa)

1. Start with the positive version of the number:

|-0.000 000 000 000 000 000 000 000 000 000 000 000 007| = 0.000 000 000 000 000 000 000 000 000 000 000 000 007

2. First, convert to binary (in base 2) the integer part: 0.
Divide the number repeatedly by 2.

Keep track of each remainder.

We stop when we get a quotient that is equal to zero.


  • division = quotient + remainder;
  • 0 ÷ 2 = 0 + 0;

3. Construct the base 2 representation of the integer part of the number.

Take all the remainders starting from the bottom of the list constructed above.


0(10) =


0(2)


4. Convert to binary (base 2) the fractional part: 0.000 000 000 000 000 000 000 000 000 000 000 000 007.

Multiply it repeatedly by 2.


Keep track of each integer part of the results.


Stop when we get a fractional part that is equal to zero.


  • #) multiplying = integer + fractional part;
  • 1) 0.000 000 000 000 000 000 000 000 000 000 000 000 007 × 2 = 0 + 0.000 000 000 000 000 000 000 000 000 000 000 000 014;
  • 2) 0.000 000 000 000 000 000 000 000 000 000 000 000 014 × 2 = 0 + 0.000 000 000 000 000 000 000 000 000 000 000 000 028;
  • 3) 0.000 000 000 000 000 000 000 000 000 000 000 000 028 × 2 = 0 + 0.000 000 000 000 000 000 000 000 000 000 000 000 056;
  • 4) 0.000 000 000 000 000 000 000 000 000 000 000 000 056 × 2 = 0 + 0.000 000 000 000 000 000 000 000 000 000 000 000 112;
  • 5) 0.000 000 000 000 000 000 000 000 000 000 000 000 112 × 2 = 0 + 0.000 000 000 000 000 000 000 000 000 000 000 000 224;
  • 6) 0.000 000 000 000 000 000 000 000 000 000 000 000 224 × 2 = 0 + 0.000 000 000 000 000 000 000 000 000 000 000 000 448;
  • 7) 0.000 000 000 000 000 000 000 000 000 000 000 000 448 × 2 = 0 + 0.000 000 000 000 000 000 000 000 000 000 000 000 896;
  • 8) 0.000 000 000 000 000 000 000 000 000 000 000 000 896 × 2 = 0 + 0.000 000 000 000 000 000 000 000 000 000 000 001 792;
  • 9) 0.000 000 000 000 000 000 000 000 000 000 000 001 792 × 2 = 0 + 0.000 000 000 000 000 000 000 000 000 000 000 003 584;
  • 10) 0.000 000 000 000 000 000 000 000 000 000 000 003 584 × 2 = 0 + 0.000 000 000 000 000 000 000 000 000 000 000 007 168;
  • 11) 0.000 000 000 000 000 000 000 000 000 000 000 007 168 × 2 = 0 + 0.000 000 000 000 000 000 000 000 000 000 000 014 336;
  • 12) 0.000 000 000 000 000 000 000 000 000 000 000 014 336 × 2 = 0 + 0.000 000 000 000 000 000 000 000 000 000 000 028 672;
  • 13) 0.000 000 000 000 000 000 000 000 000 000 000 028 672 × 2 = 0 + 0.000 000 000 000 000 000 000 000 000 000 000 057 344;
  • 14) 0.000 000 000 000 000 000 000 000 000 000 000 057 344 × 2 = 0 + 0.000 000 000 000 000 000 000 000 000 000 000 114 688;
  • 15) 0.000 000 000 000 000 000 000 000 000 000 000 114 688 × 2 = 0 + 0.000 000 000 000 000 000 000 000 000 000 000 229 376;
  • 16) 0.000 000 000 000 000 000 000 000 000 000 000 229 376 × 2 = 0 + 0.000 000 000 000 000 000 000 000 000 000 000 458 752;
  • 17) 0.000 000 000 000 000 000 000 000 000 000 000 458 752 × 2 = 0 + 0.000 000 000 000 000 000 000 000 000 000 000 917 504;
  • 18) 0.000 000 000 000 000 000 000 000 000 000 000 917 504 × 2 = 0 + 0.000 000 000 000 000 000 000 000 000 000 001 835 008;
  • 19) 0.000 000 000 000 000 000 000 000 000 000 001 835 008 × 2 = 0 + 0.000 000 000 000 000 000 000 000 000 000 003 670 016;
  • 20) 0.000 000 000 000 000 000 000 000 000 000 003 670 016 × 2 = 0 + 0.000 000 000 000 000 000 000 000 000 000 007 340 032;
  • 21) 0.000 000 000 000 000 000 000 000 000 000 007 340 032 × 2 = 0 + 0.000 000 000 000 000 000 000 000 000 000 014 680 064;
  • 22) 0.000 000 000 000 000 000 000 000 000 000 014 680 064 × 2 = 0 + 0.000 000 000 000 000 000 000 000 000 000 029 360 128;
  • 23) 0.000 000 000 000 000 000 000 000 000 000 029 360 128 × 2 = 0 + 0.000 000 000 000 000 000 000 000 000 000 058 720 256;
  • 24) 0.000 000 000 000 000 000 000 000 000 000 058 720 256 × 2 = 0 + 0.000 000 000 000 000 000 000 000 000 000 117 440 512;
  • 25) 0.000 000 000 000 000 000 000 000 000 000 117 440 512 × 2 = 0 + 0.000 000 000 000 000 000 000 000 000 000 234 881 024;
  • 26) 0.000 000 000 000 000 000 000 000 000 000 234 881 024 × 2 = 0 + 0.000 000 000 000 000 000 000 000 000 000 469 762 048;
  • 27) 0.000 000 000 000 000 000 000 000 000 000 469 762 048 × 2 = 0 + 0.000 000 000 000 000 000 000 000 000 000 939 524 096;
  • 28) 0.000 000 000 000 000 000 000 000 000 000 939 524 096 × 2 = 0 + 0.000 000 000 000 000 000 000 000 000 001 879 048 192;
  • 29) 0.000 000 000 000 000 000 000 000 000 001 879 048 192 × 2 = 0 + 0.000 000 000 000 000 000 000 000 000 003 758 096 384;
  • 30) 0.000 000 000 000 000 000 000 000 000 003 758 096 384 × 2 = 0 + 0.000 000 000 000 000 000 000 000 000 007 516 192 768;
  • 31) 0.000 000 000 000 000 000 000 000 000 007 516 192 768 × 2 = 0 + 0.000 000 000 000 000 000 000 000 000 015 032 385 536;
  • 32) 0.000 000 000 000 000 000 000 000 000 015 032 385 536 × 2 = 0 + 0.000 000 000 000 000 000 000 000 000 030 064 771 072;
  • 33) 0.000 000 000 000 000 000 000 000 000 030 064 771 072 × 2 = 0 + 0.000 000 000 000 000 000 000 000 000 060 129 542 144;
  • 34) 0.000 000 000 000 000 000 000 000 000 060 129 542 144 × 2 = 0 + 0.000 000 000 000 000 000 000 000 000 120 259 084 288;
  • 35) 0.000 000 000 000 000 000 000 000 000 120 259 084 288 × 2 = 0 + 0.000 000 000 000 000 000 000 000 000 240 518 168 576;
  • 36) 0.000 000 000 000 000 000 000 000 000 240 518 168 576 × 2 = 0 + 0.000 000 000 000 000 000 000 000 000 481 036 337 152;
  • 37) 0.000 000 000 000 000 000 000 000 000 481 036 337 152 × 2 = 0 + 0.000 000 000 000 000 000 000 000 000 962 072 674 304;
  • 38) 0.000 000 000 000 000 000 000 000 000 962 072 674 304 × 2 = 0 + 0.000 000 000 000 000 000 000 000 001 924 145 348 608;
  • 39) 0.000 000 000 000 000 000 000 000 001 924 145 348 608 × 2 = 0 + 0.000 000 000 000 000 000 000 000 003 848 290 697 216;
  • 40) 0.000 000 000 000 000 000 000 000 003 848 290 697 216 × 2 = 0 + 0.000 000 000 000 000 000 000 000 007 696 581 394 432;
  • 41) 0.000 000 000 000 000 000 000 000 007 696 581 394 432 × 2 = 0 + 0.000 000 000 000 000 000 000 000 015 393 162 788 864;
  • 42) 0.000 000 000 000 000 000 000 000 015 393 162 788 864 × 2 = 0 + 0.000 000 000 000 000 000 000 000 030 786 325 577 728;
  • 43) 0.000 000 000 000 000 000 000 000 030 786 325 577 728 × 2 = 0 + 0.000 000 000 000 000 000 000 000 061 572 651 155 456;
  • 44) 0.000 000 000 000 000 000 000 000 061 572 651 155 456 × 2 = 0 + 0.000 000 000 000 000 000 000 000 123 145 302 310 912;
  • 45) 0.000 000 000 000 000 000 000 000 123 145 302 310 912 × 2 = 0 + 0.000 000 000 000 000 000 000 000 246 290 604 621 824;
  • 46) 0.000 000 000 000 000 000 000 000 246 290 604 621 824 × 2 = 0 + 0.000 000 000 000 000 000 000 000 492 581 209 243 648;
  • 47) 0.000 000 000 000 000 000 000 000 492 581 209 243 648 × 2 = 0 + 0.000 000 000 000 000 000 000 000 985 162 418 487 296;
  • 48) 0.000 000 000 000 000 000 000 000 985 162 418 487 296 × 2 = 0 + 0.000 000 000 000 000 000 000 001 970 324 836 974 592;
  • 49) 0.000 000 000 000 000 000 000 001 970 324 836 974 592 × 2 = 0 + 0.000 000 000 000 000 000 000 003 940 649 673 949 184;
  • 50) 0.000 000 000 000 000 000 000 003 940 649 673 949 184 × 2 = 0 + 0.000 000 000 000 000 000 000 007 881 299 347 898 368;
  • 51) 0.000 000 000 000 000 000 000 007 881 299 347 898 368 × 2 = 0 + 0.000 000 000 000 000 000 000 015 762 598 695 796 736;
  • 52) 0.000 000 000 000 000 000 000 015 762 598 695 796 736 × 2 = 0 + 0.000 000 000 000 000 000 000 031 525 197 391 593 472;
  • 53) 0.000 000 000 000 000 000 000 031 525 197 391 593 472 × 2 = 0 + 0.000 000 000 000 000 000 000 063 050 394 783 186 944;
  • 54) 0.000 000 000 000 000 000 000 063 050 394 783 186 944 × 2 = 0 + 0.000 000 000 000 000 000 000 126 100 789 566 373 888;
  • 55) 0.000 000 000 000 000 000 000 126 100 789 566 373 888 × 2 = 0 + 0.000 000 000 000 000 000 000 252 201 579 132 747 776;
  • 56) 0.000 000 000 000 000 000 000 252 201 579 132 747 776 × 2 = 0 + 0.000 000 000 000 000 000 000 504 403 158 265 495 552;
  • 57) 0.000 000 000 000 000 000 000 504 403 158 265 495 552 × 2 = 0 + 0.000 000 000 000 000 000 001 008 806 316 530 991 104;
  • 58) 0.000 000 000 000 000 000 001 008 806 316 530 991 104 × 2 = 0 + 0.000 000 000 000 000 000 002 017 612 633 061 982 208;
  • 59) 0.000 000 000 000 000 000 002 017 612 633 061 982 208 × 2 = 0 + 0.000 000 000 000 000 000 004 035 225 266 123 964 416;
  • 60) 0.000 000 000 000 000 000 004 035 225 266 123 964 416 × 2 = 0 + 0.000 000 000 000 000 000 008 070 450 532 247 928 832;
  • 61) 0.000 000 000 000 000 000 008 070 450 532 247 928 832 × 2 = 0 + 0.000 000 000 000 000 000 016 140 901 064 495 857 664;
  • 62) 0.000 000 000 000 000 000 016 140 901 064 495 857 664 × 2 = 0 + 0.000 000 000 000 000 000 032 281 802 128 991 715 328;
  • 63) 0.000 000 000 000 000 000 032 281 802 128 991 715 328 × 2 = 0 + 0.000 000 000 000 000 000 064 563 604 257 983 430 656;
  • 64) 0.000 000 000 000 000 000 064 563 604 257 983 430 656 × 2 = 0 + 0.000 000 000 000 000 000 129 127 208 515 966 861 312;
  • 65) 0.000 000 000 000 000 000 129 127 208 515 966 861 312 × 2 = 0 + 0.000 000 000 000 000 000 258 254 417 031 933 722 624;
  • 66) 0.000 000 000 000 000 000 258 254 417 031 933 722 624 × 2 = 0 + 0.000 000 000 000 000 000 516 508 834 063 867 445 248;
  • 67) 0.000 000 000 000 000 000 516 508 834 063 867 445 248 × 2 = 0 + 0.000 000 000 000 000 001 033 017 668 127 734 890 496;
  • 68) 0.000 000 000 000 000 001 033 017 668 127 734 890 496 × 2 = 0 + 0.000 000 000 000 000 002 066 035 336 255 469 780 992;
  • 69) 0.000 000 000 000 000 002 066 035 336 255 469 780 992 × 2 = 0 + 0.000 000 000 000 000 004 132 070 672 510 939 561 984;
  • 70) 0.000 000 000 000 000 004 132 070 672 510 939 561 984 × 2 = 0 + 0.000 000 000 000 000 008 264 141 345 021 879 123 968;
  • 71) 0.000 000 000 000 000 008 264 141 345 021 879 123 968 × 2 = 0 + 0.000 000 000 000 000 016 528 282 690 043 758 247 936;
  • 72) 0.000 000 000 000 000 016 528 282 690 043 758 247 936 × 2 = 0 + 0.000 000 000 000 000 033 056 565 380 087 516 495 872;
  • 73) 0.000 000 000 000 000 033 056 565 380 087 516 495 872 × 2 = 0 + 0.000 000 000 000 000 066 113 130 760 175 032 991 744;
  • 74) 0.000 000 000 000 000 066 113 130 760 175 032 991 744 × 2 = 0 + 0.000 000 000 000 000 132 226 261 520 350 065 983 488;
  • 75) 0.000 000 000 000 000 132 226 261 520 350 065 983 488 × 2 = 0 + 0.000 000 000 000 000 264 452 523 040 700 131 966 976;
  • 76) 0.000 000 000 000 000 264 452 523 040 700 131 966 976 × 2 = 0 + 0.000 000 000 000 000 528 905 046 081 400 263 933 952;
  • 77) 0.000 000 000 000 000 528 905 046 081 400 263 933 952 × 2 = 0 + 0.000 000 000 000 001 057 810 092 162 800 527 867 904;
  • 78) 0.000 000 000 000 001 057 810 092 162 800 527 867 904 × 2 = 0 + 0.000 000 000 000 002 115 620 184 325 601 055 735 808;
  • 79) 0.000 000 000 000 002 115 620 184 325 601 055 735 808 × 2 = 0 + 0.000 000 000 000 004 231 240 368 651 202 111 471 616;
  • 80) 0.000 000 000 000 004 231 240 368 651 202 111 471 616 × 2 = 0 + 0.000 000 000 000 008 462 480 737 302 404 222 943 232;
  • 81) 0.000 000 000 000 008 462 480 737 302 404 222 943 232 × 2 = 0 + 0.000 000 000 000 016 924 961 474 604 808 445 886 464;
  • 82) 0.000 000 000 000 016 924 961 474 604 808 445 886 464 × 2 = 0 + 0.000 000 000 000 033 849 922 949 209 616 891 772 928;
  • 83) 0.000 000 000 000 033 849 922 949 209 616 891 772 928 × 2 = 0 + 0.000 000 000 000 067 699 845 898 419 233 783 545 856;
  • 84) 0.000 000 000 000 067 699 845 898 419 233 783 545 856 × 2 = 0 + 0.000 000 000 000 135 399 691 796 838 467 567 091 712;
  • 85) 0.000 000 000 000 135 399 691 796 838 467 567 091 712 × 2 = 0 + 0.000 000 000 000 270 799 383 593 676 935 134 183 424;
  • 86) 0.000 000 000 000 270 799 383 593 676 935 134 183 424 × 2 = 0 + 0.000 000 000 000 541 598 767 187 353 870 268 366 848;
  • 87) 0.000 000 000 000 541 598 767 187 353 870 268 366 848 × 2 = 0 + 0.000 000 000 001 083 197 534 374 707 740 536 733 696;
  • 88) 0.000 000 000 001 083 197 534 374 707 740 536 733 696 × 2 = 0 + 0.000 000 000 002 166 395 068 749 415 481 073 467 392;
  • 89) 0.000 000 000 002 166 395 068 749 415 481 073 467 392 × 2 = 0 + 0.000 000 000 004 332 790 137 498 830 962 146 934 784;
  • 90) 0.000 000 000 004 332 790 137 498 830 962 146 934 784 × 2 = 0 + 0.000 000 000 008 665 580 274 997 661 924 293 869 568;
  • 91) 0.000 000 000 008 665 580 274 997 661 924 293 869 568 × 2 = 0 + 0.000 000 000 017 331 160 549 995 323 848 587 739 136;
  • 92) 0.000 000 000 017 331 160 549 995 323 848 587 739 136 × 2 = 0 + 0.000 000 000 034 662 321 099 990 647 697 175 478 272;
  • 93) 0.000 000 000 034 662 321 099 990 647 697 175 478 272 × 2 = 0 + 0.000 000 000 069 324 642 199 981 295 394 350 956 544;
  • 94) 0.000 000 000 069 324 642 199 981 295 394 350 956 544 × 2 = 0 + 0.000 000 000 138 649 284 399 962 590 788 701 913 088;
  • 95) 0.000 000 000 138 649 284 399 962 590 788 701 913 088 × 2 = 0 + 0.000 000 000 277 298 568 799 925 181 577 403 826 176;
  • 96) 0.000 000 000 277 298 568 799 925 181 577 403 826 176 × 2 = 0 + 0.000 000 000 554 597 137 599 850 363 154 807 652 352;
  • 97) 0.000 000 000 554 597 137 599 850 363 154 807 652 352 × 2 = 0 + 0.000 000 001 109 194 275 199 700 726 309 615 304 704;
  • 98) 0.000 000 001 109 194 275 199 700 726 309 615 304 704 × 2 = 0 + 0.000 000 002 218 388 550 399 401 452 619 230 609 408;
  • 99) 0.000 000 002 218 388 550 399 401 452 619 230 609 408 × 2 = 0 + 0.000 000 004 436 777 100 798 802 905 238 461 218 816;
  • 100) 0.000 000 004 436 777 100 798 802 905 238 461 218 816 × 2 = 0 + 0.000 000 008 873 554 201 597 605 810 476 922 437 632;
  • 101) 0.000 000 008 873 554 201 597 605 810 476 922 437 632 × 2 = 0 + 0.000 000 017 747 108 403 195 211 620 953 844 875 264;
  • 102) 0.000 000 017 747 108 403 195 211 620 953 844 875 264 × 2 = 0 + 0.000 000 035 494 216 806 390 423 241 907 689 750 528;
  • 103) 0.000 000 035 494 216 806 390 423 241 907 689 750 528 × 2 = 0 + 0.000 000 070 988 433 612 780 846 483 815 379 501 056;
  • 104) 0.000 000 070 988 433 612 780 846 483 815 379 501 056 × 2 = 0 + 0.000 000 141 976 867 225 561 692 967 630 759 002 112;
  • 105) 0.000 000 141 976 867 225 561 692 967 630 759 002 112 × 2 = 0 + 0.000 000 283 953 734 451 123 385 935 261 518 004 224;
  • 106) 0.000 000 283 953 734 451 123 385 935 261 518 004 224 × 2 = 0 + 0.000 000 567 907 468 902 246 771 870 523 036 008 448;
  • 107) 0.000 000 567 907 468 902 246 771 870 523 036 008 448 × 2 = 0 + 0.000 001 135 814 937 804 493 543 741 046 072 016 896;
  • 108) 0.000 001 135 814 937 804 493 543 741 046 072 016 896 × 2 = 0 + 0.000 002 271 629 875 608 987 087 482 092 144 033 792;
  • 109) 0.000 002 271 629 875 608 987 087 482 092 144 033 792 × 2 = 0 + 0.000 004 543 259 751 217 974 174 964 184 288 067 584;
  • 110) 0.000 004 543 259 751 217 974 174 964 184 288 067 584 × 2 = 0 + 0.000 009 086 519 502 435 948 349 928 368 576 135 168;
  • 111) 0.000 009 086 519 502 435 948 349 928 368 576 135 168 × 2 = 0 + 0.000 018 173 039 004 871 896 699 856 737 152 270 336;
  • 112) 0.000 018 173 039 004 871 896 699 856 737 152 270 336 × 2 = 0 + 0.000 036 346 078 009 743 793 399 713 474 304 540 672;
  • 113) 0.000 036 346 078 009 743 793 399 713 474 304 540 672 × 2 = 0 + 0.000 072 692 156 019 487 586 799 426 948 609 081 344;
  • 114) 0.000 072 692 156 019 487 586 799 426 948 609 081 344 × 2 = 0 + 0.000 145 384 312 038 975 173 598 853 897 218 162 688;
  • 115) 0.000 145 384 312 038 975 173 598 853 897 218 162 688 × 2 = 0 + 0.000 290 768 624 077 950 347 197 707 794 436 325 376;
  • 116) 0.000 290 768 624 077 950 347 197 707 794 436 325 376 × 2 = 0 + 0.000 581 537 248 155 900 694 395 415 588 872 650 752;
  • 117) 0.000 581 537 248 155 900 694 395 415 588 872 650 752 × 2 = 0 + 0.001 163 074 496 311 801 388 790 831 177 745 301 504;
  • 118) 0.001 163 074 496 311 801 388 790 831 177 745 301 504 × 2 = 0 + 0.002 326 148 992 623 602 777 581 662 355 490 603 008;
  • 119) 0.002 326 148 992 623 602 777 581 662 355 490 603 008 × 2 = 0 + 0.004 652 297 985 247 205 555 163 324 710 981 206 016;
  • 120) 0.004 652 297 985 247 205 555 163 324 710 981 206 016 × 2 = 0 + 0.009 304 595 970 494 411 110 326 649 421 962 412 032;
  • 121) 0.009 304 595 970 494 411 110 326 649 421 962 412 032 × 2 = 0 + 0.018 609 191 940 988 822 220 653 298 843 924 824 064;
  • 122) 0.018 609 191 940 988 822 220 653 298 843 924 824 064 × 2 = 0 + 0.037 218 383 881 977 644 441 306 597 687 849 648 128;
  • 123) 0.037 218 383 881 977 644 441 306 597 687 849 648 128 × 2 = 0 + 0.074 436 767 763 955 288 882 613 195 375 699 296 256;
  • 124) 0.074 436 767 763 955 288 882 613 195 375 699 296 256 × 2 = 0 + 0.148 873 535 527 910 577 765 226 390 751 398 592 512;
  • 125) 0.148 873 535 527 910 577 765 226 390 751 398 592 512 × 2 = 0 + 0.297 747 071 055 821 155 530 452 781 502 797 185 024;
  • 126) 0.297 747 071 055 821 155 530 452 781 502 797 185 024 × 2 = 0 + 0.595 494 142 111 642 311 060 905 563 005 594 370 048;
  • 127) 0.595 494 142 111 642 311 060 905 563 005 594 370 048 × 2 = 1 + 0.190 988 284 223 284 622 121 811 126 011 188 740 096;
  • 128) 0.190 988 284 223 284 622 121 811 126 011 188 740 096 × 2 = 0 + 0.381 976 568 446 569 244 243 622 252 022 377 480 192;
  • 129) 0.381 976 568 446 569 244 243 622 252 022 377 480 192 × 2 = 0 + 0.763 953 136 893 138 488 487 244 504 044 754 960 384;
  • 130) 0.763 953 136 893 138 488 487 244 504 044 754 960 384 × 2 = 1 + 0.527 906 273 786 276 976 974 489 008 089 509 920 768;
  • 131) 0.527 906 273 786 276 976 974 489 008 089 509 920 768 × 2 = 1 + 0.055 812 547 572 553 953 948 978 016 179 019 841 536;
  • 132) 0.055 812 547 572 553 953 948 978 016 179 019 841 536 × 2 = 0 + 0.111 625 095 145 107 907 897 956 032 358 039 683 072;
  • 133) 0.111 625 095 145 107 907 897 956 032 358 039 683 072 × 2 = 0 + 0.223 250 190 290 215 815 795 912 064 716 079 366 144;
  • 134) 0.223 250 190 290 215 815 795 912 064 716 079 366 144 × 2 = 0 + 0.446 500 380 580 431 631 591 824 129 432 158 732 288;
  • 135) 0.446 500 380 580 431 631 591 824 129 432 158 732 288 × 2 = 0 + 0.893 000 761 160 863 263 183 648 258 864 317 464 576;
  • 136) 0.893 000 761 160 863 263 183 648 258 864 317 464 576 × 2 = 1 + 0.786 001 522 321 726 526 367 296 517 728 634 929 152;
  • 137) 0.786 001 522 321 726 526 367 296 517 728 634 929 152 × 2 = 1 + 0.572 003 044 643 453 052 734 593 035 457 269 858 304;
  • 138) 0.572 003 044 643 453 052 734 593 035 457 269 858 304 × 2 = 1 + 0.144 006 089 286 906 105 469 186 070 914 539 716 608;
  • 139) 0.144 006 089 286 906 105 469 186 070 914 539 716 608 × 2 = 0 + 0.288 012 178 573 812 210 938 372 141 829 079 433 216;
  • 140) 0.288 012 178 573 812 210 938 372 141 829 079 433 216 × 2 = 0 + 0.576 024 357 147 624 421 876 744 283 658 158 866 432;
  • 141) 0.576 024 357 147 624 421 876 744 283 658 158 866 432 × 2 = 1 + 0.152 048 714 295 248 843 753 488 567 316 317 732 864;
  • 142) 0.152 048 714 295 248 843 753 488 567 316 317 732 864 × 2 = 0 + 0.304 097 428 590 497 687 506 977 134 632 635 465 728;
  • 143) 0.304 097 428 590 497 687 506 977 134 632 635 465 728 × 2 = 0 + 0.608 194 857 180 995 375 013 954 269 265 270 931 456;
  • 144) 0.608 194 857 180 995 375 013 954 269 265 270 931 456 × 2 = 1 + 0.216 389 714 361 990 750 027 908 538 530 541 862 912;
  • 145) 0.216 389 714 361 990 750 027 908 538 530 541 862 912 × 2 = 0 + 0.432 779 428 723 981 500 055 817 077 061 083 725 824;
  • 146) 0.432 779 428 723 981 500 055 817 077 061 083 725 824 × 2 = 0 + 0.865 558 857 447 963 000 111 634 154 122 167 451 648;
  • 147) 0.865 558 857 447 963 000 111 634 154 122 167 451 648 × 2 = 1 + 0.731 117 714 895 926 000 223 268 308 244 334 903 296;
  • 148) 0.731 117 714 895 926 000 223 268 308 244 334 903 296 × 2 = 1 + 0.462 235 429 791 852 000 446 536 616 488 669 806 592;
  • 149) 0.462 235 429 791 852 000 446 536 616 488 669 806 592 × 2 = 0 + 0.924 470 859 583 704 000 893 073 232 977 339 613 184;
  • 150) 0.924 470 859 583 704 000 893 073 232 977 339 613 184 × 2 = 1 + 0.848 941 719 167 408 001 786 146 465 954 679 226 368;

We didn't get any fractional part that was equal to zero. But we had enough iterations (over Mantissa limit) and at least one integer that was different from zero => FULL STOP (losing precision...)


5. Construct the base 2 representation of the fractional part of the number.

Take all the integer parts of the multiplying operations, starting from the top of the constructed list above:


0.000 000 000 000 000 000 000 000 000 000 000 000 007(10) =


0.0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0010 0110 0001 1100 1001 0011 01(2)


6. Positive number before normalization:

0.000 000 000 000 000 000 000 000 000 000 000 000 007(10) =


0.0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0010 0110 0001 1100 1001 0011 01(2)

7. Normalize the binary representation of the number.

Shift the decimal mark 127 positions to the right, so that only one non zero digit remains to the left of it:


0.000 000 000 000 000 000 000 000 000 000 000 000 007(10) =


0.0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0010 0110 0001 1100 1001 0011 01(2) =


0.0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0010 0110 0001 1100 1001 0011 01(2) × 20 =


1.0011 0000 1110 0100 1001 101(2) × 2-127


8. Up to this moment, there are the following elements that would feed into the 32 bit single precision IEEE 754 binary floating point representation:

Sign 1 (a negative number)


Exponent (unadjusted): -127


Mantissa (not normalized):
1.0011 0000 1110 0100 1001 101


9. Adjust the exponent.

Use the 8 bit excess/bias notation:


Exponent (adjusted) =


Exponent (unadjusted) + 2(8-1) - 1 =


-127 + 2(8-1) - 1 =


(-127 + 127)(10) =


0(10)


10. Convert the adjusted exponent from the decimal (base 10) to 8 bit binary.

Use the same technique of repeatedly dividing by 2:


  • division = quotient + remainder;
  • 0 ÷ 2 = 0 + 0;

11. Construct the base 2 representation of the adjusted exponent.

Take all the remainders starting from the bottom of the list constructed above.


Exponent (adjusted) =


0(10) =


0000 0000(2)


12. Normalize the mantissa.

a) Remove the leading (the leftmost) bit, since it's allways 1, and the decimal point, if the case.


b) Adjust its length to 23 bits, only if necessary (not the case here).


Mantissa (normalized) =


1. 001 1000 0111 0010 0100 1101 =


001 1000 0111 0010 0100 1101


13. The three elements that make up the number's 32 bit single precision IEEE 754 binary floating point representation:

Sign (1 bit) =
1 (a negative number)


Exponent (8 bits) =
0000 0000


Mantissa (23 bits) =
001 1000 0111 0010 0100 1101


The base ten decimal number -0.000 000 000 000 000 000 000 000 000 000 000 000 007 converted and written in 32 bit single precision IEEE 754 binary floating point representation:
1 - 0000 0000 - 001 1000 0111 0010 0100 1101

The latest decimal numbers converted from base ten to 32 bit single precision IEEE 754 floating point binary standard representation

Number -997 952 692 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard May 01 14:04 UTC (GMT)
Number 3 923 738 616 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard May 01 14:04 UTC (GMT)
Number 41.503 1 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard May 01 14:04 UTC (GMT)
Number 0.060 180 664 1 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard May 01 14:04 UTC (GMT)
Number 1 263.3 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard May 01 14:04 UTC (GMT)
Number -86 818 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard May 01 14:04 UTC (GMT)
Number 24.423 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard May 01 14:04 UTC (GMT)
Number -14 748 365 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard May 01 14:04 UTC (GMT)
Number 0.002 309 799 194 335 935 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard May 01 14:04 UTC (GMT)
Number -2 457 792 772.2 converted from decimal system (written in base ten) to 32 bit single precision IEEE 754 binary floating point representation standard May 01 14:04 UTC (GMT)
All base ten decimal numbers converted to 32 bit single precision IEEE 754 binary floating point

How to convert decimal numbers from base ten to 32 bit single precision IEEE 754 binary floating point standard

Follow the steps below to convert a base 10 decimal number to 32 bit single precision IEEE 754 binary floating point:

  • 1. If the number to be converted is negative, start with its the positive version.
  • 2. First convert the integer part. Divide repeatedly by 2 the base ten positive representation of the integer number that is to be converted to binary, until we get a quotient that is equal to zero, keeping track of each remainder.
  • 3. Construct the base 2 representation of the positive integer part of the number, by taking all the remainders of the previous dividing operations, starting from the bottom of the list constructed above. Thus, the last remainder of the divisions becomes the first symbol (the leftmost) of the base two number, while the first remainder becomes the last symbol (the rightmost).
  • 4. Then convert the fractional part. Multiply the number repeatedly by 2, until we get a fractional part that is equal to zero, keeping track of each integer part of the results.
  • 5. Construct the base 2 representation of the fractional part of the number by taking all the integer parts of the previous multiplying operations, starting from the top of the constructed list above (they should appear in the binary representation, from left to right, in the order they have been calculated).
  • 6. Normalize the binary representation of the number, by shifting the decimal point (or if you prefer, the decimal mark) "n" positions either to the left or to the right, so that only one non zero digit remains to the left of the decimal point.
  • 7. Adjust the exponent in 8 bit excess/bias notation and then convert it from decimal (base 10) to 8 bit binary, by using the same technique of repeatedly dividing by 2, as shown above:
    Exponent (adjusted) = Exponent (unadjusted) + 2(8-1) - 1
  • 8. Normalize mantissa, remove the leading (leftmost) bit, since it's allways '1' (and the decimal sign if the case) and adjust its length to 23 bits, either by removing the excess bits from the right (losing precision...) or by adding extra '0' bits to the right.
  • 9. Sign (it takes 1 bit) is either 1 for a negative or 0 for a positive number.

Example: convert the negative number -25.347 from decimal system (base ten) to 32 bit single precision IEEE 754 binary floating point:

  • 1. Start with the positive version of the number:

    |-25.347| = 25.347

  • 2. First convert the integer part, 25. Divide it repeatedly by 2, keeping track of each remainder, until we get a quotient that is equal to zero:
    • division = quotient + remainder;
    • 25 ÷ 2 = 12 + 1;
    • 12 ÷ 2 = 6 + 0;
    • 6 ÷ 2 = 3 + 0;
    • 3 ÷ 2 = 1 + 1;
    • 1 ÷ 2 = 0 + 1;
    • We have encountered a quotient that is ZERO => FULL STOP
  • 3. Construct the base 2 representation of the integer part of the number by taking all the remainders of the previous dividing operations, starting from the bottom of the list constructed above:

    25(10) = 1 1001(2)

  • 4. Then convert the fractional part, 0.347. Multiply repeatedly by 2, keeping track of each integer part of the results, until we get a fractional part that is equal to zero:
    • #) multiplying = integer + fractional part;
    • 1) 0.347 × 2 = 0 + 0.694;
    • 2) 0.694 × 2 = 1 + 0.388;
    • 3) 0.388 × 2 = 0 + 0.776;
    • 4) 0.776 × 2 = 1 + 0.552;
    • 5) 0.552 × 2 = 1 + 0.104;
    • 6) 0.104 × 2 = 0 + 0.208;
    • 7) 0.208 × 2 = 0 + 0.416;
    • 8) 0.416 × 2 = 0 + 0.832;
    • 9) 0.832 × 2 = 1 + 0.664;
    • 10) 0.664 × 2 = 1 + 0.328;
    • 11) 0.328 × 2 = 0 + 0.656;
    • 12) 0.656 × 2 = 1 + 0.312;
    • 13) 0.312 × 2 = 0 + 0.624;
    • 14) 0.624 × 2 = 1 + 0.248;
    • 15) 0.248 × 2 = 0 + 0.496;
    • 16) 0.496 × 2 = 0 + 0.992;
    • 17) 0.992 × 2 = 1 + 0.984;
    • 18) 0.984 × 2 = 1 + 0.968;
    • 19) 0.968 × 2 = 1 + 0.936;
    • 20) 0.936 × 2 = 1 + 0.872;
    • 21) 0.872 × 2 = 1 + 0.744;
    • 22) 0.744 × 2 = 1 + 0.488;
    • 23) 0.488 × 2 = 0 + 0.976;
    • 24) 0.976 × 2 = 1 + 0.952;
    • We didn't get any fractional part that was equal to zero. But we had enough iterations (over Mantissa limit = 23) and at least one integer part that was different from zero => FULL STOP (losing precision...).
  • 5. Construct the base 2 representation of the fractional part of the number, by taking all the integer parts of the previous multiplying operations, starting from the top of the constructed list above:

    0.347(10) = 0.0101 1000 1101 0100 1111 1101(2)

  • 6. Summarizing - the positive number before normalization:

    25.347(10) = 1 1001.0101 1000 1101 0100 1111 1101(2)

  • 7. Normalize the binary representation of the number, shifting the decimal point 4 positions to the left so that only one non-zero digit stays to the left of the decimal point:

    25.347(10) =
    1 1001.0101 1000 1101 0100 1111 1101(2) =
    1 1001.0101 1000 1101 0100 1111 1101(2) × 20 =
    1.1001 0101 1000 1101 0100 1111 1101(2) × 24

  • 8. Up to this moment, there are the following elements that would feed into the 32 bit single precision IEEE 754 binary floating point:

    Sign: 1 (a negative number)

    Exponent (unadjusted): 4

    Mantissa (not-normalized): 1.1001 0101 1000 1101 0100 1111 1101

  • 9. Adjust the exponent in 8 bit excess/bias notation and then convert it from decimal (base 10) to 8 bit binary (base 2), by using the same technique of repeatedly dividing it by 2, as already demonstrated above:

    Exponent (adjusted) = Exponent (unadjusted) + 2(8-1) - 1 = (4 + 127)(10) = 131(10) =
    1000 0011(2)

  • 10. Normalize the mantissa, remove the leading (leftmost) bit, since it's allways '1' (and the decimal point) and adjust its length to 23 bits, by removing the excess bits from the right (losing precision...):

    Mantissa (not-normalized): 1.1001 0101 1000 1101 0100 1111 1101

    Mantissa (normalized): 100 1010 1100 0110 1010 0111

  • Conclusion:

    Sign (1 bit) = 1 (a negative number)

    Exponent (8 bits) = 1000 0011

    Mantissa (23 bits) = 100 1010 1100 0110 1010 0111

  • Number -25.347, converted from the decimal system (base 10) to 32 bit single precision IEEE 754 binary floating point =
    1 - 1000 0011 - 100 1010 1100 0110 1010 0111