8 793 278 316 383 116 498 Base 10 Integer Number Converted to Signed Binary Code (Base 2)

How to convert 8 793 278 316 383 116 498(10), a signed base 10 integer number? How to write it as a signed binary code in base 2

What are the required steps to convert base 10 integer
number 8 793 278 316 383 116 498 to signed binary code (in base 2)?

  • A signed integer, written in base ten, or a decimal system number, is a number written using the digits 0 through 9 and the sign, which can be positive (+) or negative (-). If positive, the sign is usually not written. A number written in base two, or binary, is a number written using only the digits 0 and 1.

1. Divide the number repeatedly by 2:

Keep track of each remainder.

Stop when you get a quotient that is equal to zero.


  • division = quotient + remainder;
  • 8 793 278 316 383 116 498 ÷ 2 = 4 396 639 158 191 558 249 + 0;
  • 4 396 639 158 191 558 249 ÷ 2 = 2 198 319 579 095 779 124 + 1;
  • 2 198 319 579 095 779 124 ÷ 2 = 1 099 159 789 547 889 562 + 0;
  • 1 099 159 789 547 889 562 ÷ 2 = 549 579 894 773 944 781 + 0;
  • 549 579 894 773 944 781 ÷ 2 = 274 789 947 386 972 390 + 1;
  • 274 789 947 386 972 390 ÷ 2 = 137 394 973 693 486 195 + 0;
  • 137 394 973 693 486 195 ÷ 2 = 68 697 486 846 743 097 + 1;
  • 68 697 486 846 743 097 ÷ 2 = 34 348 743 423 371 548 + 1;
  • 34 348 743 423 371 548 ÷ 2 = 17 174 371 711 685 774 + 0;
  • 17 174 371 711 685 774 ÷ 2 = 8 587 185 855 842 887 + 0;
  • 8 587 185 855 842 887 ÷ 2 = 4 293 592 927 921 443 + 1;
  • 4 293 592 927 921 443 ÷ 2 = 2 146 796 463 960 721 + 1;
  • 2 146 796 463 960 721 ÷ 2 = 1 073 398 231 980 360 + 1;
  • 1 073 398 231 980 360 ÷ 2 = 536 699 115 990 180 + 0;
  • 536 699 115 990 180 ÷ 2 = 268 349 557 995 090 + 0;
  • 268 349 557 995 090 ÷ 2 = 134 174 778 997 545 + 0;
  • 134 174 778 997 545 ÷ 2 = 67 087 389 498 772 + 1;
  • 67 087 389 498 772 ÷ 2 = 33 543 694 749 386 + 0;
  • 33 543 694 749 386 ÷ 2 = 16 771 847 374 693 + 0;
  • 16 771 847 374 693 ÷ 2 = 8 385 923 687 346 + 1;
  • 8 385 923 687 346 ÷ 2 = 4 192 961 843 673 + 0;
  • 4 192 961 843 673 ÷ 2 = 2 096 480 921 836 + 1;
  • 2 096 480 921 836 ÷ 2 = 1 048 240 460 918 + 0;
  • 1 048 240 460 918 ÷ 2 = 524 120 230 459 + 0;
  • 524 120 230 459 ÷ 2 = 262 060 115 229 + 1;
  • 262 060 115 229 ÷ 2 = 131 030 057 614 + 1;
  • 131 030 057 614 ÷ 2 = 65 515 028 807 + 0;
  • 65 515 028 807 ÷ 2 = 32 757 514 403 + 1;
  • 32 757 514 403 ÷ 2 = 16 378 757 201 + 1;
  • 16 378 757 201 ÷ 2 = 8 189 378 600 + 1;
  • 8 189 378 600 ÷ 2 = 4 094 689 300 + 0;
  • 4 094 689 300 ÷ 2 = 2 047 344 650 + 0;
  • 2 047 344 650 ÷ 2 = 1 023 672 325 + 0;
  • 1 023 672 325 ÷ 2 = 511 836 162 + 1;
  • 511 836 162 ÷ 2 = 255 918 081 + 0;
  • 255 918 081 ÷ 2 = 127 959 040 + 1;
  • 127 959 040 ÷ 2 = 63 979 520 + 0;
  • 63 979 520 ÷ 2 = 31 989 760 + 0;
  • 31 989 760 ÷ 2 = 15 994 880 + 0;
  • 15 994 880 ÷ 2 = 7 997 440 + 0;
  • 7 997 440 ÷ 2 = 3 998 720 + 0;
  • 3 998 720 ÷ 2 = 1 999 360 + 0;
  • 1 999 360 ÷ 2 = 999 680 + 0;
  • 999 680 ÷ 2 = 499 840 + 0;
  • 499 840 ÷ 2 = 249 920 + 0;
  • 249 920 ÷ 2 = 124 960 + 0;
  • 124 960 ÷ 2 = 62 480 + 0;
  • 62 480 ÷ 2 = 31 240 + 0;
  • 31 240 ÷ 2 = 15 620 + 0;
  • 15 620 ÷ 2 = 7 810 + 0;
  • 7 810 ÷ 2 = 3 905 + 0;
  • 3 905 ÷ 2 = 1 952 + 1;
  • 1 952 ÷ 2 = 976 + 0;
  • 976 ÷ 2 = 488 + 0;
  • 488 ÷ 2 = 244 + 0;
  • 244 ÷ 2 = 122 + 0;
  • 122 ÷ 2 = 61 + 0;
  • 61 ÷ 2 = 30 + 1;
  • 30 ÷ 2 = 15 + 0;
  • 15 ÷ 2 = 7 + 1;
  • 7 ÷ 2 = 3 + 1;
  • 3 ÷ 2 = 1 + 1;
  • 1 ÷ 2 = 0 + 1;

2. Construct the base 2 representation of the positive number:

Take all the remainders starting from the bottom of the list constructed above.

8 793 278 316 383 116 498(10) = 111 1010 0000 1000 0000 0000 0000 1010 0011 1011 0010 1001 0001 1100 1101 0010(2)


3. Determine the signed binary number bit length:

  • The base 2 number's actual length, in bits: 63.

  • A signed binary's bit length must be equal to a power of 2, as of:
  • 21 = 2; 22 = 4; 23 = 8; 24 = 16; 25 = 32; 26 = 64; ...
  • The first bit (the leftmost) is reserved for the sign:
  • 0 = positive integer number, 1 = negative integer number

The least number that is:


1) a power of 2

2) and is larger than the actual length, 63,

3) so that the first bit (leftmost) could be zero
(we deal with a positive number at this moment)


=== is: 64.


4. Get the positive binary computer representation on 64 bits (8 Bytes):

If needed, add extra 0s in front (to the left) of the base 2 number, up to the required length, 64:


8 793 278 316 383 116 498(10) Base 10 integer number converted and written as a signed binary code (in base 2):

8 793 278 316 383 116 498(10) = 0111 1010 0000 1000 0000 0000 0000 1010 0011 1011 0010 1001 0001 1100 1101 0010

Spaces were used to group digits: for binary, by 4, for decimal, by 3.


How to convert signed base 10 integers in decimal to binary code system

Follow the steps below to convert a signed base ten integer number to signed binary:

  • 1. In a signed binary, first bit (the leftmost) is reserved for sign: 0 = positive integer number, 1 = positive integer number. If the number to be converted is negative, start with its positive version.
  • 2. Divide repeatedly by 2 the positive integer number keeping track of each remainder. STOP when we get a quotient that is ZERO.
  • 3. Construct the base 2 representation of the positive number, by taking all the remainders starting from the bottom of the list constructed above. Thus, the last remainder of the divisions becomes the first symbol (the leftmost) of the base two number, while the first remainder becomes the last symbol (the rightmost).
  • 4. Binary numbers represented in computer language have a length of 4, 8, 16, 32, 64, ... bits (power of 2) - if needed, fill in extra '0' bits in front of the base 2 number (to the left), up to the right length; this way the first bit (the leftmost one) is always '0', as for a positive representation.
  • 5. To get the negative reprezentation of the number, simply switch the first bit (the leftmost one), from '0' to '1'.

Example: convert the negative number -63 from decimal system (base ten) to signed binary code system:

  • 1. Start with the positive version of the number: |-63| = 63;
  • 2. Divide repeatedly 63 by 2, keeping track of each remainder, until we get a quotient that is equal to zero:
    • division = quotient + remainder
    • 63 ÷ 2 = 31 + 1
    • 31 ÷ 2 = 15 + 1
    • 15 ÷ 2 = 7 + 1
    • 7 ÷ 2 = 3 + 1
    • 3 ÷ 2 = 1 + 1
    • 1 ÷ 2 = 0 + 1
  • 3. Construct the base 2 representation of the positive number, by taking all the remainders starting from the bottom of the list constructed above:
    63(10) = 11 1111(2)
  • 4. The actual length of base 2 representation number is 6, so the positive binary computer representation length of the signed binary will take in this case 8 bits (the least power of 2 higher than 6) - add extra '0's in front (to the left), up to the required length; this way the first bit (the leftmost one) is to be '0', as for a positive number:
    63(10) = 0011 1111(2)
  • 5. To get the negative integer number representation simply change the first bit (the leftmost), from '0' to '1':
    -63(10) = 1011 1111
  • Number -63(10), signed integer, converted from decimal system (base 10) to signed binary = 1011 1111