What are the required steps to convert base 10 integer
number 68 426 030 677 to signed binary code (in base 2)?
- A signed integer, written in base ten, or a decimal system number, is a number written using the digits 0 through 9 and the sign, which can be positive (+) or negative (-). If positive, the sign is usually not written. A number written in base two, or binary, is a number written using only the digits 0 and 1.
1. Divide the number repeatedly by 2:
Keep track of each remainder.
Stop when you get a quotient that is equal to zero.
- division = quotient + remainder;
- 68 426 030 677 ÷ 2 = 34 213 015 338 + 1;
- 34 213 015 338 ÷ 2 = 17 106 507 669 + 0;
- 17 106 507 669 ÷ 2 = 8 553 253 834 + 1;
- 8 553 253 834 ÷ 2 = 4 276 626 917 + 0;
- 4 276 626 917 ÷ 2 = 2 138 313 458 + 1;
- 2 138 313 458 ÷ 2 = 1 069 156 729 + 0;
- 1 069 156 729 ÷ 2 = 534 578 364 + 1;
- 534 578 364 ÷ 2 = 267 289 182 + 0;
- 267 289 182 ÷ 2 = 133 644 591 + 0;
- 133 644 591 ÷ 2 = 66 822 295 + 1;
- 66 822 295 ÷ 2 = 33 411 147 + 1;
- 33 411 147 ÷ 2 = 16 705 573 + 1;
- 16 705 573 ÷ 2 = 8 352 786 + 1;
- 8 352 786 ÷ 2 = 4 176 393 + 0;
- 4 176 393 ÷ 2 = 2 088 196 + 1;
- 2 088 196 ÷ 2 = 1 044 098 + 0;
- 1 044 098 ÷ 2 = 522 049 + 0;
- 522 049 ÷ 2 = 261 024 + 1;
- 261 024 ÷ 2 = 130 512 + 0;
- 130 512 ÷ 2 = 65 256 + 0;
- 65 256 ÷ 2 = 32 628 + 0;
- 32 628 ÷ 2 = 16 314 + 0;
- 16 314 ÷ 2 = 8 157 + 0;
- 8 157 ÷ 2 = 4 078 + 1;
- 4 078 ÷ 2 = 2 039 + 0;
- 2 039 ÷ 2 = 1 019 + 1;
- 1 019 ÷ 2 = 509 + 1;
- 509 ÷ 2 = 254 + 1;
- 254 ÷ 2 = 127 + 0;
- 127 ÷ 2 = 63 + 1;
- 63 ÷ 2 = 31 + 1;
- 31 ÷ 2 = 15 + 1;
- 15 ÷ 2 = 7 + 1;
- 7 ÷ 2 = 3 + 1;
- 3 ÷ 2 = 1 + 1;
- 1 ÷ 2 = 0 + 1;
2. Construct the base 2 representation of the positive number:
Take all the remainders starting from the bottom of the list constructed above.
68 426 030 677(10) = 1111 1110 1110 1000 0010 0101 1110 0101 0101(2)
3. Determine the signed binary number bit length:
The base 2 number's actual length, in bits: 36.
- A signed binary's bit length must be equal to a power of 2, as of:
- 21 = 2; 22 = 4; 23 = 8; 24 = 16; 25 = 32; 26 = 64; ...
- The first bit (the leftmost) is reserved for the sign:
- 0 = positive integer number, 1 = negative integer number
The least number that is:
1) a power of 2
2) and is larger than the actual length, 36,
3) so that the first bit (leftmost) could be zero
(we deal with a positive number at this moment)
=== is: 64.
4. Get the positive binary computer representation on 64 bits (8 Bytes):
If needed, add extra 0s in front (to the left) of the base 2 number, up to the required length, 64:
68 426 030 677(10) Base 10 integer number converted and written as a signed binary code (in base 2):
68 426 030 677(10) = 0000 0000 0000 0000 0000 0000 0000 1111 1110 1110 1000 0010 0101 1110 0101 0101
Spaces were used to group digits: for binary, by 4, for decimal, by 3.